Sarbani Basu's Research

  • Home
  • Research
  • Publications
  • CV
MORE DETAILS TO COME SOON. IN THE MEANTIME, ENJOY THE PRETTY PICTURES!

Full sized images can be obtained by clicking  on the images.

SOLAR STRUCTURE AND DYNAMICS:

The sound-speed differennce between the Sun and a solar model  Fig 1: The difference in the squared sound speed between the Sun and a standard solar model. The differences were obtained by inverting the difference between oscillation frequencies of the Sun and those of the model. The solar oscillation frequencies were obtained my the Michelson Doppler Imager (MDI; see link in box to the right).  Note that the sound-speed profile of the model agrees to within fractions of a percent with  the sound-speed profile of the Sun. The small difference in the core gives us an indication that the solar neutrino problem cannot be a result of a deficient solar model (if  the model were bad, the differences between the Sun and the model would be much larger). In fact, non-standard  models constructed with an aim to solve the neutrino problem have much larger differences with respect to the Sun. Observations made by the Sudbury Neutrino Observatory confirm that the solution of the solar neutrino problem lies not with the standard solar model, but with the standard model of particle physics that assumes that neutrinos are massless particles.

Equation of state differences  Fig. 2: The relative difference in the adiabatic index Gamma1 between the Sun and solar models constructed with different equations of state. Only the "intrinsic" difference, i.e., the difference independent of the differences in structure and helium abundance, is shown. Note that the old EFF equation of state fairs very badly, but the more modern MHD and OPAL equations of state are deficient too. As in Fig. 1, these differences were obtained by inverting frequency differences between the Sun and the models.

The latitudinal distribution of sound speed in the Sun. Fig. 3: The latitudinal distribution of solar sound speed plotted as a function of latitude and radius.. The quantity plotted is actually the relative departure from the spherically symmetric sound speed shown in Fig. 1 above. Note that the asphericity of  the solar sound-speed distribution is small. The figure shows that the solar equatorial regions are cooler than the mid-latitude regions.


The solar rotation rate  Fig. 4: The solar rotation rate as a function of radius and latitude. These results were obtained by inverting frequency splittings obtained by the Global Oscillation Network Group (GONG). The rotation rate is given in nHz. The equator rotates with a period of roughly 25 days and the pole around 32 days. The dotted line 0.713R  marks the position of the base of the convection zone. The of the steep change in rotation rate near the position of the base of the convection zone is usually referred to as the "tachocline" and is believed to be the seat of the solar dynamo. Also seen is a shear layer close to the solar surface, and it can be seen that the maximum value of the solar rotation is around a radius of 0.95R at the solar equator.

SOLAR ABUNDANCES:

Sound-speed, abundances Abundances: density  
Fig 5: There  is an ongoing controversy about Z/X, the solar heavy metal abundance. Till about 2004,  Z/X of  the Sun was believed to be 0.023, as was found by Grevesse & Sauval (1998). However, since 2004, a new type of  analysis indicated that solar Z/X is much lower, and is  about 0.0165 (Asplund, Grevesse & Sauval 2005).  Solar models constructed with the lower abundance, however, show  much larger differences with respect to the Sun compared with models constructed with the older, higher abundances. This can be seen from these figures. The panel on the left shows the relative sound speed difference between a model constructed with  the higher abundances (shown in red) and with a model constructed with the lower abundances (blue). The panel on the right shows the relative density differences between the Sun and the two models. Note that the differences are much smaller for the high-abundance model. This and other helioseismic results indicate that  the solar Z/X is high and that the analysis that resulted in the low abundances suffer from some discrepancies. A review of the controversy can be found in Basu & Antia (2008).

CHANGES IN SOLAR STRUCTURE AND DYNAMICS:

Zonal flows  Fig 6:  The solar rotation rate changes with change in the level of solar activity. The change can be seen clearly by subtracting out the time averaged rotation rate from the rotation rate at each epoch. This figure shows the change in the rotation rate as a function of radius and latitude.The results shown are in m/s and the error in the results is of  1 m/s. These results were obtained with data obtained by GONG over solar cycle 23. Note the shifting pattern of the changes.

zonal flows  
Fig 7: The same as in Fig. 6, except that we have plotted the changes in rotation as a function of time and latitude for a few radii (top) and as a function of time and radius at a few latitudes (bottom). The upper panel shows a clear pattern of bands that migrate towards the equator in the low-latitude regions, and the bands that move towards the poles in the high-latitude region. This pattern is very similar to the pattern of torsional oscillations observed at the solar surface, and the flows are often referred to as zonal flows. The lower panel shows that the zonal flow pattern moving upwards from near the base of the convection zone as the solar cycle progresses.  The pattern migrates upwards with a speed of about 1 m/s.

Structural differences  
Fig. 8: Unlike the case of  the solar rotation rate (Figs 6 and 7 above), change in solar structure in the deeper layers of the Sun is small and have taken a long time to detect. The figure shows the relative sound-speed difference between the Sun at the activity maximum of cycle 23 and the Sun at the activity minimum prior to the rise of cycle 23. Results obtained by both MDI and GONG data are shown, the lines and the symbols show the results of  two different types of inversions. As can be seen, the differences are extremely small. The difference at the base of the convection zone (marked by the vertical line) corresponds to a change of magnetic field of about 300-400kG. Special analysis techniques had to be used to obtain the result and details can be found in Baldner & Basu (2008).

Changes at the surface  
Fig. 9: While changes in structure in the deeper layers of the Sun are small (and difficult to detect), changes in the near-surface layers are larger and somewhat easier to detect. Changes in the latitudinal distribution of solar sound-speed are particularly large. The figure shows the relative difference in sound-speed and the relative difference in the adiabatic index between the equator and a few latitudes as a function of time. Results averaged over two radius ranges are shown. We can see that not only does the sound-speed and adiabatic index change with time, different latitudes show a different magnitude of change.

ACTIVE REGIONS:

Sound-speed, ar9901  
Fig. 8:  Helioseismic techniques can be used to study the thermal structure of active regions. The figure shows the relative sound-speed difference between active region AR9901 and an adjacent quiet region. It can be seen that the sound speed of the active region is lower than that of the quiet region till a depth of about 7Mm,  and then the sound-speed of the active region becomes larger. The magnitude of the difference (both the negative region close to the surface and the positive region deeper) depends on the magnetic field strength of the active region.

gradients and sun-spots  Fig. 9: There appears to be a close correlation between changes in the solar rotation rate and the positions where sunspots emerge. In particular, the correlation is between changes in  the radial and latitudinal gradients of the solar rotation rate and the positions of sunspot emerge. This is shown in the figure. The colour image shows the change in the radial gradient as a function of time and latitude (top) and the change in the latitudinal gradient as a function of time and latitude (bottom) at 0.98R. The points mark the position of sunspots. Sunspots appear to concentrate in low-latitude regions where the variation in the radial gradient is positive but the variation of the latitudinal gradient is negative. 



Helioseismology


Asteroseismology

GONG
MDI
HMI
KEPLER