Radian measure

Angles are most often measured in degrees, arcminutes and arcseconds.

1 degree (°) is 1/360 of a complete circle.
1 arcminute = 1/60 of a degree
1 arcsecond = 1/60 of a minute = 1/3600 of a degree

A circle has a circumference $C = \pi r$ so the distance around half a circle is $\frac{\pi r}{2}$ and the distance around a quarter of a circle is $0.5\pi r$ etc..

Let distance D be the distance around a circle spanned by α°.
D is a fraction of the circumference C

$$D = \frac{\alpha}{360}$$

As $C = 2\pi r$
$$\frac{D}{2\pi r} = \frac{\alpha}{360}$$

So we can rearrange this formula to get
$$D = \frac{2\pi}{360} r \alpha$$

If we define a new unit of length the radian
where \(\alpha^c = \frac{2\pi^c}{360^\circ} \times \alpha^o \)

then the D formula becomes

\[D = r\alpha^c \]

The superscript 'c' can be used to denote radians.

NOTE: To use this formula \(\alpha \) MUST BE IN RADIANS.

Small angle approximation

The formula \(D = r\alpha^c \) provides a way of estimating distances in certain circumstances.

Suppose a pole is stuck vertically into the ground a distance \(d \) away from an observer (see diagram).

If the angle \(\alpha \) is small (less than 20 degrees) then the height \(h \) is very close to the distance \(D \) along the arc so that,

\[d = r \]

\[h \approx D = d\alpha^c \]

The smaller the angle is then the more accurate this approximation is.
Astrophysics Applications

In most astrophysical applications α is generally much less than 1 degree.

Instead of expressing α in radians, it is expressed in terms of arcseconds so a conversion factor is required.

As shown before, for α in degrees

$$D = \frac{2\pi}{360} d\alpha$$

2π radians is equivalent to 360 degrees

360 degrees is equivalent to $360 \times 60 \times 60$ arcseconds

For α in arcseconds

$$D = \frac{2\pi}{360 \times 60 \times 60} d\alpha$$

$$D = \frac{\alpha d}{206265}$$

D and d must have same units

(e.g. m, km, A.U., light years, parsecs)