## Cluster Mass Reconstruction with GRALE: mass distribution within and behind MACS J0416

Liliya L.R. Williams, Kevin Sebesta (U Minnesota) Jori Liesenborgs (U Hasselt) Irshad Mohammed, Prasenjit Saha (U Zurich)

# **GRALE** basics

Flexible, free-form: does not rely on mass following light

Adaptive grid: resolution set by local mass density properties

**Basis functions**: projected Plummer spheres (~1000) + mass sheet final mass maps include uncertainties from lensing mass degeneracies

#### Search of mass model space uses a genetic algorithm:

- $\diamond$  does not get stuck in local minima
- ♦ inspired by biological evolution

trial mass maps created thru' mutation and cloning fittest mass maps have a higher chance of propagation

#### fitness determined by

- fractional overlap of sources in the source plane not affected by magnification; no over-focusing
- null space: maps with spurious images are less fit defined for each source separately

### MACS J0416: mass reconstruction & uncertainties

fractional rms =  $\frac{rms(\vec{x})}{\kappa(\vec{x})}$ 

<30 individual reconstructions>



used 149 images from 57 sources (Jauzac+2014; Grillo+2014)

### Mass distribution from strong lensing: how well does light follow mass?



### Mass distribution from strong lensing: how well does light follow mass?



### Mass distribution: local mass centroids



### Mass distribution: mass-galaxy correlation function box



# Mass-Galaxy Correlation



## Line of sight structure behind MACS 0416







#### if there were no uncertainties map values should be 0 or +ve





### Line of sight structure behind MACS 0416

The relevant uncertainties: those associated with using disjointed image sets.

Here we use uncertainties from dispersion between individual maps within each  $z_{\text{source}}$  interval

$$\kappa_{\Delta Z2} - \kappa_{\Delta Z1}$$

rms of  $\Delta z1$  maps



$$\kappa_{\Delta z2}$$
 –  $\kappa_{\Delta z1}$ 

rms of  $\Delta z^2$  maps



#### Line of sight structure behind MACS 0416 both histograms are approx. symmetric: no evidence for pixels significant los structures at z>2.5 Z blue histogram black histogram -1010 0 60 60 $(\kappa_{\Delta z^2} - \kappa_{\Delta z^1}) / [\text{rms of } \kappa_{\Delta z^{1,2}}]$ 40 20



## Line of sight structure behind Abell 1689



# Conclusions

#### **GRALE**:

excellent tool for reconstructing mass distribution in clusters in a free-form way

#### MACS0416:

Mass-galaxy correlation: strong correlation with bright galaxies weaker correlations/anti-correlations with faint/faintest galaxies

No significant los structures behind the cluster consistent with the fact that other reconstructions of MACS J0416 have very low lens-plane rms: 0.68" (Jauzac+2014); 0.3" (Grillo+2014) Abell 1689 probably does have a massive los clump at z>2.5-3

#### Future work:

a more extensive exploration of the los structures and the uncertainties WL+SL in progress for 6 HST Frontier Field clusters more distant future: flexion