On the Effect of Lensing Constraints and Model Assumptions on Magnification Uncertainties

Keren Sharon (U. Michigan)

did most of the work: Traci Johnson (UMich) Matt Bayliss (Harvard)

New Haven Nov 2014

Outline

- I) On the importance of source redshifts
- 2) Cosmological assumptions
- 3) Mass on the line of sight

Source Redshifts: New Measurements

- Magellan
- Multi Object Slit masks
- 4.4h Ldss3 AS1063
 - new redshift for source #11
 - confirmation of 8 counterimages
- 7.5h IMACS A2744
 - new redshift for source #3
 - confirmation of 8 counterimages

naron

Additional science with spectroscopy

Multiple images and mass modeling

- Confirm identification of multiple images
- Pinpoint the source redshift to improve mass modelling
- Necessary to measure cosmology with strong lensing (Jullo et al. 2010)

peron sharon

High redshift dropouts

- Confirm high redshift identification (through Lyman-alpha emission)
- Measure Lyman-alpha equivalent width (test for reionization)
- Other emission lines: measure physical properties (outflows, ...)

Yale

Johan Richard

I) Spec z vs free redshifts

• Magnifications:

- Fixing ONE redshift in AS1063 resulted in more complex model in order to satisfy the lensing constraints.
- Setting z as free parameter* vs spec z changes the predicted magnification.

shaven

Johnson et al. (2014)

Talk with Traci! →
 (+presentation on Friday)

I) Spec z vs free redshifts

• Magnifications:

- Fixing ONE redshift in AS1063 resulted in more complex model in order to satisfy the lensing constraints.
- Setting z as free parameter* vs spec z changes the predicted magnification.
- Photometric redshifts have statistical strength.

haven

 Talk with Traci! → (+presentation on Friday)

I) Spec z vs free redshifts

- Mass profile:
 - Arc redshifts correlate with total mass
 - Affect predicted mass slope and concentration

MACS1149+22

Smith+ 2009

Throughout this paper, we assume ΛCDM cosmology with $\Omega_M = 0.3$, $\Omega_{\Lambda} = 0.7$, and $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$. All magnitudes are reported in the AB system.

(Everyone et al.)

The lens equation depends on cosmology through d_{LS}/d_S

What happens if you model the cluster assuming a different cosmology?

Source	$\Omega_M{}^{\mathrm{a}}$	$H_0~({ m km~s^{-1}})$	Reference
fiducial "concordance cosmology" Planck 2013+WP+hL+BAO WMAP-9+eCMB+H ₀ +BAO SPT Clusters+WMAP+SNe	$\begin{array}{c} 0.300 \\ 0.308 \\ 0.286 \\ 0.255 \end{array}$	70 67.8 69.3 71.6	Planck Collaboration et al. (2013) Hinshaw et al. (2013) Reichardt et al. (2013)

- Model each cluster with all 4 cosmologies
- For each pixel: what is the distribution of *magnifications* from
 - A: "statistical" model uncertainties
 - B: varying cosmology

sharon

con

Bayliss, Sharon, Johnson (in prep.)

Shavon

ron

Bayliss et al. 2013

New Haven Nov 2014

Masses on the line of sight add to the lensing potential

+ Approximation: model the foreground galaxy at the same plane as the cluster

- Can't derive the galaxy mass from the lens parameters

The Effect of Large-Scale Structure on the Magnification of High-Redshift Sources by Cluster-Lenses

Anson D'Aloisio^{1*}, Priyamvada Natarajan^{2,3}, and Paul R. Shapiro¹

Talk with Anson → (+presentation on Friday)

Conclusions

- As we enter the era of "precision" lens modeling, we need to better understand sources of systematic uncertainties that are due to model assumptions and lensing constraints.
 - accurate redshifts
 - LOS structure
 - accounting for cosmological uncertainties
- A large step in this direction is in the community's combined effort to model simulated data (see Massimo's presentation on Friday)

