HST Grism Spectroscopy of the HFF with GLASS: Lyα Emitters at z>6

Kasper B. Schmidt
UC Santa Barbara

The GLASS Team
GLASS

THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE

- P.I. Tommaso Treu (UCLA) glass.physics.ucsb.edu
- HST Grism Spectroscopy of 10 massive clusters (Cycle 21)

- Investigate the gas and galaxies at the EoR
 - 2nd part of this talk

- Describe how metals cycle in and out of galaxies
 - see Jones’ talk in 12+3 minutes

- Support SN searches in the HFF
 - see Rodney’s talk tomorrow

- Assess the environmental dependence on galaxy evolution
Grism (slitless/3D) Spectroscopy

- Spectra of *everything* in the field-of-view
- Spatial information to create resolved EL and metallicity maps

- Emission Line redshift precision $Δz\sim0.005$
 - e.g. Brammer et al. 2012
• Spectra of \sim10000 ($m_{F140W} < 24$) with spectroscopic limits $\lesssim 1e-18$ erg/s/cm2; Schmidt et al. 2014a
The epoch of reionization is where neutral hydrogen was (re-)ionized by radiation from the first astronomical sources, cf. talks by Bullock, Oesch, Coe, Atek, Livermore, Huang.
Potential Lyα in GLASS Spectra

- Multiple imaged source behind RXJ2248 at $z = 6.11$
 - Boone et al. (2013) and Balestra et al. (2013)

- **GLASS** observes each Cluster at 2 PAs $\sim 90^\circ$ apart
 - Minimizes contamination and strengthens line recognition

Lyα @ $z = 6.11$
C = Contamination
Lyα @ $z = 6.11$
Potential Lyα in GLASS Spectra

- 6/10 Clusters have complete GLASS data
 - A2744, MACS0717, MACS1423, MACS2129, RXJ1347, RXJ2248

- ~20 LBGs per cluster selected via:
 - Color selections: i, z, Y, J, JH dropouts
 - Photo-z: BPZ (Benitez 2000) and EAZY (Brammer et al. 2008)
 - Literature samples from e.g. Atek et al. (2013), Zheng et al. (2014), Ishigaki et al. (2014), Bradley et al. (2014), Karman et al. (2014)

- 20-30% of LBGs show ‘line-features’ in the GLASS spectra
Potential Lyα in GLASS Spectra

Lyα @ $z = 6.90$

Lyα @ $z = 6.79$

Lyα @ $z = 6.35$

Lyα @ $z = 7.08$

Lyα @ $z = 6.35$

Lyα @ $z = 6.32$
GLASS EoR Inference at z > 7

- Collected all z > 7 galaxies in completed GLASS clusters
- Selected spectra for objects with low contamination level
- Estimated Ly\(\alpha\) EW limits based on grism spectra
 - Conservatively ignoring the potential Ly\(\alpha\) detections for now
- Apply Bayesian EoR inference from Treu et al. (2012)
EoR State at z > 7: Upper Limits
(If none of the Lyα detections are confirmed)

See also Treu et al (2013; z~8), Pentericci et al. (2014; z~7) and Tilvi et al. (2014; z~8)
GLASS

- Well underway (6/10 completed clusters)
- Spectra of *everything* in the WFC3/ACS FoV

Lyα at z > 6
- 100s of spectra of LBGs resulting in EW limits
- 10s of confirmed/candidate Lyα emission lines
THE GLASS TEAM

glass.physics.ucsb.edu

- Tommaso Treu, PI (UCLA)
- Marusa Bradač (UCD)
- Gabriel Brammer (STScI)
- Mark Dijkstra (UoO)
- Alan Dressler (Carnegie Obs.)
- Adriano Fontana (INAF Rome)
- Raphael Gavazzi (IAP)
- Alaina Henry (NASA Goddard)
- Austin Hoag (UCD)
- Kuang-Han Huang (UCD)
- Tucker Jones (UCSB)
- Patrick Kelly (UCB)
- Matt Malkan (UCLA)
- Charlotte Mason (UCSB)
- Laura Pentericci (INAF Rome)
- Bianca Poggianti (INAF Padova)
- Kasper Schmidt (UCSB)
- Massimo Stiavelli (STScI)
- Michele Trenti (Cambridge)
- Anja vd Linden (DARK/Stanford)
- Benedetta Vulcani (KIPMU Tokyo)
- Xin Wang (UCSB)
HST spectroscopy of clusters.

No atmosphere

No skylines

Extensive HST imaging of clusters

Atmospheric absorption and skylines

Similar to synergy between 3D-HST and CANDELS
EoR State at z > 7: Upper Limits

(If none of the Lyα detections are confirmed)

See also Treu et al (2013; z~8), Pentericci et al. (2014; z~7) and Tilvi et al. (2014; z~8)