Clusters And LENsing Distant Sources

Spectroscopic surveys of the Frontier Fields clusters

Johan Richard (CRAL, Lyon)

Vera Patricio (CRAL), Benjamin Clément (CRAL), Mathilde Jauzac (Durham), Hakim Atek (EPFL), Eric Jullo (LAM, Marseille), Jean-Paul Kneib (EPFL), Mark Swinbank (Durham), the CATS team and the MUSE consortium
Multiple images and mass modelling

High redshift dropouts

Multiple images and mass modelling

Atek, Richard et al. 2014a,b

High redshift dropouts

Additional science with spectroscopy

Multiple images and mass modeling

- Confirm identification of multiple images
- Pinpoint the source redshift to improve mass modelling
- Necessary to measure cosmology with strong lensing (Jullo et al. 2010)

High redshift dropouts

- Confirm high redshift identification (through Lyman-alpha emission)
- Measure Lyman-alpha equivalent width (test for reionization)
- Other emission lines: measure physical properties (outflows, …)
Pre-HFF spectroscopy of multiple systems

- No spec-z was available for Abell 2744 and AS1063 during pre-HFF lens modelling effort.
- VLT/FORS2 and Magellan/LDSS3 optical spectroscopy provided redshifts for all modellers in A2744, AS1063, A370.
- Some redshifts confirmed by Johnson et al. 2014, in press.
Primary Goals:
- Confirm $z > 3$ dropouts through Lyman-alpha emission
- Confirm / identify more multiple images for high precision mass modeling

Secondary Goals:
- If present, measure the physical properties of extended arcs
- Dynamics of cluster members

- 1x1 arcmin2 integral field spectrograph
- 0.2” spaxel sampling, <0.2” IQ
- 4650-9300 Angstroms
- R=1500-3500
- 35% throughput end-to-end
Primary Goals:
• Confirm $z > 3$ dropouts through Lyman-alpha emission
• Confirm / identify more multiple images for high precision mass modeling

Secondary Goals:
• If present, measure the physical properties of extended arcs
• Dynamics of cluster members
Test case: SMACSJ2031.8-4036

- Massive galaxy cluster at z=0.331
- HST imaging F606W/F814W
- Strong lensing constrained by 3 multiple systems
- 1 specz @ z=3.5073 (Christensen et al. 2012a,b)
- MUSE commissioning: 10 hrs in ~1.0-1.1” seeing
Continuum color image

Composite narrow-band image

Lyα CIIIλ [OII]λ
Confirmation and spectroscopic redshifts for 11 systems
Physical properties of a bright system at z=3.5
Patricio et al. in prep.
MUSE SV program: AS1063
(Co-PI: Clément & Caputi)

- 3 hrs 10 min / 4 OBs (8x1420s exposures)
- Seeing 1.2”-1.4”
- Covered the majority of multiple systems and a known spiral at z=0.6
- Known z=6.107 LAE
 Monna et al. 2014
 Boone et al. 2014
 Balestra et al. 2014
MUSE SV program: AS1063

- Redshifts for known multiple images
- New singly and multiply-imaged Lyman-alpha emitters
- Currently updating the mass model (Clément et al.)

Karman et al. 2015, submitted
MUSE GTO program: A2744

- 5 x 2 hrs mosaic to cover central region + almost full WFC3 fov.
- Sep. and Oct. 2014 runs
- Average Seeing 0.6”-0.8”
- Preliminary results from first reduction!
A2744: first analysis

- First fishing expedition.
- Emission line sources: 82+ redshifts
- $z<1.5$
- $z>1.5$
- Systematic extraction of HST sources including multiple images/dropouts
A2744: first analysis

z=5.66 dropout

18.1
18.2
A2744: first analysis

z=5.66 dropout

fLya=9e-17

18.1

18.2
A2744: first analysis

z=5.66 dropout

18.3
Analysis of known multiple systems

System 5

MUSE-NB

HST-WFC3 STACK

z=6 dropout $\mu=30+/-8$ each

System 33
Analysis of known multiple systems
Analysis of known multiple systems

MUSE-NB

HST-WFC3 STACK
Analysis of known multiple systems
Analysis of known multiple systems
Analysis of known multiple systems

MUSE-NB

HST-WFC3 STACK
Analysis of known multiple systems
Analysis of known multiple systems
Analysis of known multiple systems

$f_{\text{Ly}a}=3.7 \times 10^{-17}$
New multiply-imaged systems

MUSE

STACKED WFC3
(all bands)
New multiply-imaged systems

MUSE

STACKED WFC3 (all bands)

z=4.191

W>80Å

z=2.949
New multiply-imaged systems

MUSE

STACKED WFC3 (all bands)

z=4.191

W>80Å

z=2.949

… To Be Continued!
VLT / KMOS spectroscopy

- **SV program Abell1689:**
 - Targetting the FF clusters A2744 and AS1063
 - 4h per cluster, 20 targets
 - Redshift measurements for multiple images through Hα, Hβ, [OIII] and [OII] in H+K band

- **FF program:**
 - Targetting the FF clusters A2744 and AS1063
 - 4h per cluster, 20 targets
 - Redshift measurements for multiple images through Hα, Hβ, [OIII] and [OII] in H+K band

Richard et al. in preparation
Conclusions – Future work

• Spectroscopic follow-up is very useful and successful at confirming multiply-imaged lensed systems and measuring their physical properties.

• **MUSE** shows very promising results already on the Frontier Field clusters. In 2-4 hours, we can identify new multiply imaged systems with large equivalent width emission lines, deeper than the HST-FF data.

• More MUSE-GT time will be used to increase the depth in FF clusters

• In addition, we will be able to use (1) the velocity field in giant arcs (2) the kinematics of cluster members as a constraint to the mass models.

• **KMOS** is also an excellent asset to measure redshifts of faint multiply imaged systems.