

Spatially Resolved Spectroscopy of Lensed Galaxies in the HFF

Tucker Jones (UCSB/CGE)
& the GLASS team

Yale Frontier Fields Workshop, 12 November 2014

Frontier Field goals:

"These Frontier Fields will combine the power of HST with the natural gravitational telescopes of high-magnification clusters of galaxies. Using both the Wide Field Camera 3 and Advanced Camera for Surveys in parallel, HST will produce the deepest observations of clusters and their lensed galaxies ever obtained, and the second-deepest observations of blank fields (located near the clusters). These images will reveal distant galaxy populations ~10-100 times fainter than any previously observed, improve our statistical understanding of galaxies during the epoch of reionization, and provide unprecedented measurements of the dark matter within massive clusters."

At intermediate redshifts (z ≈ 1-3):

- 1. Detailed structure of massive galaxies (>10⁹ M_☉)
- 2. First glimpse of dwarf galaxy properties

THE GLASS SCIENCE DRIVERS

- I. Galaxies at the epoch of reionization
 - Kasper Schmidt's talk
 - Observing Lyα at 5.5 < z < 13.0

- This talk
- 2. How gas and metals cycle in and out of galaxies
 - Emission line ratio maps of 100s of galaxies at 1.3 < z < 2.3
- 3. Galaxy evolution in dense environments
 - Spatially resolved star formation in cluster cores and outskirts
- 4. Super Novae for cosmology etc.
 - Steve Rodney's talk (tomorrow)
 - SN discoveries in up to 4 epochs of imaging per cluster

GLASS

THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE

- HST Grism Spectroscopy of 10 massive clusters (Cycle 21)
- P.I.Tommaso Treu (UCSB)

glass.physics.ucsb.edu

Spectra of ~20000 objects (~10000 down to m_{F140W} ~ 24)
 Complete wavelength coverage from 0.8–1.7 μm
 Strehl ≈ 1, resolution ≤ 0.13 arcsec, no sky lines, no telluric absorption

Emission line maps with GLASS

Source plane reconstruction

Emission line maps with GLASS

Metallicity gradient evolution

Mergers flatten metallicity gradients (Rupke et al. 2010; Rich et al. 2012) Strong feedback/outflows flatten metallicity gradients (Gibson et al. 2013; Angles-Alcazar et al. 2014)

→ Gradient evolution is sensitive to galaxy evolution processes

TJ et al. 2013, 2014

Metallicity gradient evolution

Mergers flatten metallicity gradients (Rupke et al. 2010; Rich et al. 2012) Strong feedback/outflows flatten metallicity gradients (Gibson et al. 2013; Angles-Alcazar et al. 2014)

→ Gradient evolution is sensitive to galaxy evolution processes

TJ et al. 2013, 2014

GLASS/HFF data c.f. field surveys at z=2

GLASS data in the Frontier Fields probe an order of magnitude lower stellar mass compared to field surveys.

- → Increased dynamic range
- → Probes the mass range of local group dwarf progenitors at z~2

Mass-metallicity(-SFR) relation: consistent with previous data, possible steep slope at low mass

GLASS initial results reveal a dwarf galaxy progenitor at z=1.85 with very high specific SFR. Can possibly explain:

- The "cusp-core" problem
- The "too big to fail" problem
- The "missing satellites" problem

GLASS/HFF data c.f.

GLASS initial results reveal a dwarf galaxy progenitor at z=1.85 with very high specific SFR. Can possibly explain:

- The "cusp-core" problem
- The "too big to fail" problem
- The "missing satellites" problem

GLASS THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE

Bottom line

Detailed structure of massive galaxies at z > 1 ($M_* \sim 10^9 M_{\odot}$)

- → Emission line maps for 100+ galaxies
- → Resolved M_{*}, SFR, metallicity
- → Metallicity gradient evolution

Properties of dwarf galaxy progenitors at z > 1

- → GLASS probes down to $M_* \sim 10^7 M_{\odot}$ at $z\sim 2$
- → Will address whether feedback can resolve tension between observed dwarf galaxies and ΛCDM theory

THE **GLASS** TEAM

Attending HHF @ Yale

glass.physics.ucsb.edu

- Tommaso Treu, PI (UCLA)
- Marusa Bradač (UCD)
- Gabriel Brammer (STScI)
- Mark Dijkstra (UoO)
- Alan Dressler (Carnegie Obs.)
- Adriano Fontana (INAF Rome)
- Raphael Gavazzi (IAP)
- Alaina Henry (NASA Goddard)
- Austin Hoag (UCD)
- Kuang-Han Huang (UCD)
- Tucker Jones (UCSB)

- Patrick Kelly (UCB)
- Matt Malkan (UCLA)
- Charlotte Mason (UCSB)
- Laura Pentericci (INAF Rome)
- Bianca Poggianti (INAF Padova)
- Kasper Schmidt (UCSB)
- Massimo Stiavelli (STScI)
- Michele Trenti (Cambridge)
- Anja vd Linden (DARK/Stanford)
- Benedetta Vulcani (KIPMU Tokyo)
- Xin Wang (UCSB)