The Effect of Large-Scale Structure on the Magnification of High-z Sources by Cluster-Lenses*

Anson D'Aloisio University of Washington, Seattle University of Texas at Austin

Collaborators: Priyamvada Natarajan & Paul R. Shapiro

*MNRAS, 445, 3581 (arXiv:1311.1614)

HFF Precision Magnification Maps

• Groups already reporting statistical uncertainties in µ as low as a few percent!

*Example from Jauzac et al. 2014

Intervening Large-Scale Structure

Weak Lensing by LSS

Strong-Lensing by Cluster

http://www.lsst.org

Note, these magnification effects are NOT simply additive.

Intervening Large-Scale Structure

*From D'Aloisio & Natarajan 2011

see e.g. Wambsganss et al. 2005; Dalal et. al. 2005; Hilbert et. al. 2007; Puchwein & Hilbert 2009; Jullo et. al. 2010; D'Aloisio & Natarajan 2011; Host 2011

- LSS's relative deflection of images:
- ~2 arcsec. (D'Aloisio & Natarajan 2011; Host 2011)
- Perturbs critical curves, boosts stronglensing cross section by ~50%
 (e.g. Wambsganss et. al. 2005; Dalal et. al. 2005; Puchwein & Hilbert 2009)
- Cluster-lenses are on special lines of sight. (Bayliss, Johnson, Sharon et. al. 2014)

Intervening Large-Scale Structure

Question: How much can LSS contribute to the magnification maps of cluster-lenses?

- Approach: "semi-analytical" based on nonlinear matter power spectrum.
- A useful precursor to simulations:

Shot noise in ray-tracing, especially for large μ. (Bradac et al. 2004; Amara et al. 2006; Li et al. 2006; Xu et al. 2009; Rau et. al. 2013; Angulo et al. 2014)

• Finite mass-resolution of simulations, and power from $0.01 \le k \le 1000 \text{ Mpc}^{-1}$ contributes! (see arXiv:1311.1614)

The Calculation: Concept

Ensemble of LSS realizations

Isolated Cluster-lens

The Calculation: Concept

Stick the cluster in ensemble and measure fluctuations across magnification maps

The Calculation: in Practice

• Lens equation:
$$\theta_{S,i} = \theta_{I,i} - \alpha_i (\boldsymbol{x}(\chi_L)) + \frac{2}{\chi_S} \int_0^{\chi_S} d\chi' \partial_i \Phi_{\text{LSS}}(\boldsymbol{x},\chi') (\chi_S - \chi')$$

- Expand Φ_{LSS} about x=0 (Barkana 1996)
- Calculate fractional standard deviation of $1/\mu$

 $\frac{\sigma_{1/\mu}}{|\langle \mu^{-1}\rangle|}$

- $\bullet\,$ LSS encapsulated in matter power spectrum, P(k).
- Illustrative purposes: NFW lens.

PD96 = Peacock & Dodds 1996 Halofit1= Smith et. al. 2003 Halofit2 = Takahashi et. al. 2012

LSS ("Blank Field") and Cluster Separately

LSS only

Cluster only

Simple NFW model (Bartelmann 1996) with $M_{200}=2\times10^{15} M_{\odot}$, $c_{200}=4$

LSS and Cluster Combined

Results here from Halofit2 power spectrum

Contribution of "Small-Scale" Structure

Conclusion

- For cluster-lenses at $z_{\rm L} \sim 0.5$, fluctuations in the μ of sources (from LSS) at redshifts $z_{\rm S} > 6$ are ~10-20(20-30)% for typical $\mu \sim 5(10)$.
- LSS tends to have its largest impact on the most magnified images (greater than order unity fluctuations in μ near critical curves!).
- These numbers do NOT represent µ-measurement errors.
- These results do NOT preclude accurate µ-measurements, e.g. may be possible to model LSS by extending existing methods to case with multiple source redshifts.
- Motivates future numerical work towards quantifying effects of LSS in cluster-lens reconstruction (e.g. Frontier Fields Comparison Project).

LSS and Cluster Combined

Results here from Halofit2 power spectrum