## Astrometry

William F. van Altena ARAA (1983)

#### 7. Conclusion

The field of astrometry is in the midst of a major revolution in terms of the accuracy obtained or expected in the near future for positions, proper motions, and parallaxes.

. . .

The Space Telescope should yield parallaxes better than 0.5 mas, and HIPPARCOS will produce around 100,000 parallaxes of the brighter stars good to around 2 mas.

. . .

Finally, radio astrometry offers the potential for obtaining precise positions, motions, and parallaxes for radio sources on an absolute system.

# Radio Astrometry from the Milky Way to Distant Galaxies

Mark J. Reid Harvard-Smithsonian CfA

- Galactic Center Astrometry
- SFR Parallaxes & Proper Motions
- Extra-Galactic Proper Motions
- H<sub>o</sub> from H<sub>2</sub>O Masers



## Micro-arcsec Astrometry with the VLBA



#### Fringe spacing:

 $\theta_f \sim \lambda/D \sim 1$  cm / 8000 km = 250  $\mu$ as

#### **Centroid Precision:**

 $0.5 \theta_f / SNR \sim 10 \mu as$ 

#### Systematics:

path length errors ~ 2 cm (~2  $\lambda$ )

shift position by  $\sim 2\theta_f \sim 500 \ \mu as$ 

#### Relative positions (to QSOs):

 $\Delta\Theta \sim 1 \text{ deg } (0.02 \text{ rad})$ 

cancel systematics:  $\Delta\Theta*2\theta_f \sim 10 \mu as$ 



#### Galactic Center Stellar Orbits

- $M = 4 \times 10^6 M_{sun}$
- R < 50 AU
- Den. >  $10^{17} M_{sun}/pc^3$

Ghez et al / Genzel et al



What can radio observations tell us?...



## Where is the Galactic Center?





#### Where is the Galactic Center?



Combined IR + Radio astrometry shows Sgr A\* at focal position of stellar orbits (+/-10 mas)



All stars there move fast. How fast does Sgr A\* move?

## Sgr A\* Proper Motion





## Proper Motion of Sgr A\*

- Parallel to Galactic Plane:
   6.379 (+/- 0.024) mas/yr →
   ⊕₀/R₀ = 29.5 km/s / kpc
- Perpendicular to Gal. Plane:
   7.2 km/s motion of Sun
- Could re-define Galactic Plane
   Now: HI & Sun in plane
   New: LSR orbit & Sgr A\* in plane
- Sgr A\*'s motion ⊥ to Gal. Plane
   -0.4 +/- 0.9 km/s!



Reid & Brunthaler (2004)



## Latest Results: Sgr A\* Proper Motion

#### IR Stellar Orbits:

 $M_{IR} \sim 4 \times 10^6 M_{sun}$ R < 50 AU

#### Radio Observations:

Sgr A\* motionless →

M > 10% of  $M_{IR}$ 

Observed size:

R < 0.5 AU

#### IR + Radio data combined:

- Dark mass = luminous source
- Density >  $10^{22} M_{sun}/pc^3$

Overwhelming evidence for a Super-Massive Black Hole



#### $\left\{ \left\| \right\| \right\}$

## Must Sgr A\* be a SMBH?

| Object   | Density<br>(M <sub>sun</sub> /pc³) | Method                         | Mass wi<br>(M <sub>sun</sub> ) | thin Radius |
|----------|------------------------------------|--------------------------------|--------------------------------|-------------|
| M 87     | 10 <sup>6</sup>                    | HST                            | 3x10 <sup>9</sup>              | 7 pc        |
| NGC 4258 | 1010                               | VLBA: H <sub>2</sub> O         | $4x10^{7}$                     | 0.1 pc      |
| Sgr A*   | 10 <sup>17</sup>                   | IR Star orbits                 | 4x10 <sup>6</sup>              | 50 AU       |
| Sgr A*   | >10 <sup>22</sup>                  | VLBA p.m.                      | >4x10 <sup>5</sup>             | 0.5 AU      |
| SMBH     | 10 <sup>24</sup>                   | 3R <sub>Sch</sub>              | 4x10 <sup>6</sup>              | 3*0.08 AU   |
|          |                                    | $3R_{Sch} = 30 \mu as @ 8 kpc$ |                                |             |

VLBI (JCMT/SMA-ALMA-LMT-SMT-CARMA) @ 0.8 mm →20 μas

Fringes: Hawaii → Arizona @ 1.3mm (60 μas)! (Doeleman et al 2008 Nature 455 78)



## Milky Way Viewed From Inside Sgr A\*



Thomas Lucas Productions, Inc. (www.tlproductions.com)



## Orion Nebular Cluster Parallax



389 +/- 22 pc Sandstrom et al (2007)

437 +/- 19 pc Hirota et al (2007)

414 +/- 7 pc Menten et al (2007)



Menten, Reid, Forbrich & Brunthaler (2007)



## W3OH Parallax



Xu, Reid, Zheng & Menten (2006)

$$\pi = 0.512 + -0.010 \text{ mas}$$



## W3OH Parallax



Schematic Model of Milky Way: Taylor-Cordes / Georgelin & Georgelin

- $D_{photo} \sim D_{parallax}$
- D<sub>k</sub> way off
- In Perseus Arm, not in Outer Arm
- Large peculiar V



#### S 252 Parallax



Reid et al (2008)

$$\pi = 0.480 + /- 0.010 \text{ mas}$$



#### Methanol Maser Parallaxes



Kinematic distances  $(D_k)$ :

Problem:  $D_k > D_{\pi}$ 

Partial fix:

 $R_o < 8.5 \text{ kpc}$  and/or

 $\Theta_{\rm o}$  > 220 km/s

Sgr A\* p.m. requires

 $\Theta_{\rm o}/{\rm R}_{\rm o} = 29.5$  km/s/kpc

= 236 / 8.0

= 251 / 8.5

Brunthaler, Menten, Moscadelli, Reid, Xu, & Zheng

Honma et al; Hachisuka et al



## Peculiar Motions of Star Forming Regions



In rotating frame:

 $R_0 = 8.5 \text{ kpc}$ 

 $\Theta_0 = 220 \text{ km/s}$ 

Clear systematic motions

Update Galaxy model:

 $R_0 = 8.5 \text{ kpc}$ 

 $\Theta_{\rm o}$  = 251 km/s

Systematic motions smaller, but significant



## Peculiar Motions of Star Forming Regions



Galactic model:

 $R_0 = 8.5 \text{ kpc}$ 

 $\Theta_0 = 251 \text{ km/s}$ 

& Solar Motion:

U = 8 km/s

V = 18 km/s

W = 10 km/s

Residual motions considerably smaller



## Solar Motion

V → Gal. Rot.

"Asymmetric Drift:"

V appears larger when measured against older stars with higher dispersion

Maser  $\pi$  & p.m.



Dehnen & Binney (1998) Hipparcos data in black

Massive stars born rotating ~13 km/s slower than Galaxy spins; as they age, first speed up and then slow down again.



#### Massive Star Birth

#### Possible Sequence:

- 1. Molecular cloud in circular orbit
- 2. Hit by Spiral shock
- 3. Goes into elliptical orbit (near apocenter)
- 4. Compression triggers star formation



#### 1

## **Extreme Supergiants**

Extreme red supergiants with L  $\rightarrow$  10<sup>6</sup> L<sub>sun</sub>

"Fabulous 4": NML Cyg, S Per, VY CMa, VX Sgr

H<sub>2</sub>O and SiO masers in circumstellar envelopes

#### VY CMa

0.4 < D < 1.8 kpc

Association with NGC 2362  $\rightarrow$  D = 1.5 kpc (M-S fitting)

Parallax measured to be 1.1 kpc...

 $L = 3 \times 10^5 L_{sun}$  (quite reasonable)

NGC 2362 cluster closer than thought?

## Local Group Proper Motions

- 1920s van Maanen claimed to see M33 spin!
- mas/yr motions → Spiral nebulae nearby (Galactic)
- Hubble argued more distant (extra-galactic)
- van Maanen's error not found





## Extragalactic Proper Motions

- Parallax accuracy:
   σ<sub>D</sub> ~ 10% at 10 kpc
   can't do galaxies yet
- Proper motion: same techniques, but  $\sigma_{\mu} \sim T^{-3/2}$
- M33 & IC10
  - 1) see spin (van Maanen)
  - 2) see galaxy's motion



Andreas Brunthaler's PhD Thesis



## Extragalactic Proper Motions

M33/IC133 – M33/19 masers

VLBA: 
$$\Delta \mu_x = 30 + /- 2$$
,  $\Delta \mu_y = 10 + /- 5 \mu as/yr$ 

HI: 
$$\Delta v_x = 106 + /-20$$
,  $\Delta v_y = 35 + /-20 \text{ km/s}$ 

$$D = 750 + /- 50 + /- 140 \text{ kpc}$$

$$\sigma_{\mu} \qquad \sigma_{\nu}$$

 Improvements in Rotation Model & 3<sup>rd</sup> maser source:

$$\sigma_D$$
 < 10% possible

Brunthaler, Reid & Falcke





## Extragalactic Proper Motions



## Tidal Heating of M33

Plane:

 Try M31 proper motions; then calculate orbits

Tidal heating of M33 for trial proper motions of M31:

$$\mu_{M31}$$
 = (100,-100) km/s  
(-50, -50) km/s  
( 0, 0) km/s

km/s →M33 destroyed

 $\mu_{M31}$  ~100 km/s  $\rightarrow$  M33 OK



x-z

Y-Z

#### NGC 4258





- Seyfert galaxy
- H<sub>2</sub>O masers in an edge-on, sub-parsec disk
- Rotation speed ~1000 km/s
- M ~  $3 \times 10^7 M_{sun}$
- Geometric model → D = 7.2 +/- 0.5 Mpc
- Used by Hubble Key Project to re-calibrate Cepheid PL relation

Herrnstein, Moran, Greenhill et al (1999)

#### **AGN Maser Distance Measurements**





Drift of systemic masers over time

## Maser Distance Measurements (2)





## Maser Cosmology Project

Braatz, Condon, Greenhill, Henkel, Lo & Reid

- Goal: H<sub>o</sub> accurate to 3%; constain Dark Energy Eq. of State
- How: Geometric Distances to H<sub>2</sub>O masers in Hubble Flow

GBT finds masers



VLBA maps them



## **UGC 3789**



 $V_{CMB} = 3385 \text{ km/s} \rightarrow D \sim 50 \text{ Mpc}$ 

## UGC 3789: VLBA + GBT



Interferometer spectrum: rms noise ~1 mJy

## UGC 3789 map

Similar to NGC 4258

Edge-on disk

Systemic vel. masers between red and blue high vel. masers

~7 times smaller angle

~7 times more distant



## **UGC 3789 Position-Velocity Diagram**

Keplerian high vel. masers
 ~10<sup>7</sup> M<sub>sun</sub> SMBH

Systemic maser P-V ~ linear
 (slight "bend" → changing R)

•  $V = 625 \text{ km/s}, \theta = 0.52 \text{ mas}$ 



## **UGC 3789**

- Accelerations ~ 3.4 km/s/year
- D =  $V^2 / A \theta$  ...Preliminary Analysis

V ~ 625 km/s  

$$\theta$$
 ~ 0.52 mas  
A ~ 3.4 km/s/yr

•  $H_o = V_{cmb}/D = 3385 \text{ km/s} / 47 \text{ Mpc}$ 

= 72 +/- 7 +/- 4 from 
$$\sigma_D$$
  $\sigma_{Vcmb}$ ~200 km/s

Comparable to Hubble Key Project!





#### The Next 5 Years

- R<sub>o</sub> & ⊙<sub>o</sub> from parallax & p.m. data with 3% accuracy
- Map of Milky Way spiral structure
- Proper motions of ~4 Local Group Galaxies
- H<sub>o</sub> with 3% accuracy from 5 to 10 AGN H<sub>2</sub>O masers