The Astrometric Promise of Large $A*\Omega$

Dave Monet

U.S. Naval Observatory - Flagstaff Station
September 21, 2008

Executive Summary

Is anything left to do?

- Gaia and SIM promise to do everything:
 - Microarcsecond astrometry down to 20th.
 - Sub-microarcsecond astrometry for planets.
 - Francois Mignard is a tough act to follow.

Ground vs. Space

- Reasons to go to space:
 - Ultimate in astrometric accuracy.
 - Big teams of clever folks.
 - Lots of money and glamour.
- Reasons to stay on the ground:
 - Useful astrometric accuracy.
 - . Big apertures.
 - High data rates.
 - Long duration missions.

A*Ω Astrometry

- $A^*\Omega$ is etendue (meter² degree²):
 - Metric for telescope efficiency sort of.
 - New optical designs deliver large useful fields.
 - New CCD mosaics offer many 10⁸ to 10⁹ pixels.
 - · Parallel electronics to read in a few seconds.
- 4 projects are in construction or planning:
 - Pan-STARRS (U. Hawaii + USAF).
 - SkyMapper (Australian National University).
 - SST (DARPA + MIT/LL + USAF).
 - . LSST (LSST Corporation).
- Astrometric utility of any/all of these systems?
 - Several visits to all available sky per lunation!
 - Astrometry for all 10**9 (or maybe 10**10) objects.
 - No selection effect other than photons.
- Photography enabled motion $A^*\Omega$ enables parallax.

Pan-STARRS - PS1

- On Haleakala (Maui).
- First light: Aug 2007.
- ORR: Dec 2008.
- 3π survey: 15 visits in a total of 6 colors from δ =-30 to δ =+90.
- 1.8-m aperture.
- 1.4 billion pixel camera.
- PS-2, PS-4.

SkyMapper

- Siding Springs (Australia)
- First Light: Sep 2008?
- 6 visits in each of 6 colors from δ =-90 to δ =0.
- 1.3-m aperture.
- 256 million pixel camera.

LSST

- Cerro Pachon (Chile).
- First Light: 2014?
- \$50M raised already.
- 3 visits of entire visible sky every lunation.
- 8.4-m aperture.
- 3.4 billion pixel camera.

Astrometric Utility?

- Not much legacy for huge field, short exposure astrometry.
- Data from Subaru, Gemini, SOAR, others.
- My expectation:
 - 10 milliarcseconds per star per visit differential.
 - Limited by photons or seeing.
 - Differential chromatic refraction is big issue.
 - Solve sky chunk at a time messy.
 - Not sure about trying to solve for the sphere:
 - Why bother when Gaia will do this for us, much better.
 - Faint correction from relative to absolute is small.
- Real data starting to appear right now!

Summary

- Astrometry at 10 Tbytes/night is fun!
 - Starting now!
- Expect milliarcsecond results before Gaia.
- LSST will go much fainter than Gaia.
 - Astrometry at r = 26?

Synergy between ground and space.

Kepler Astrometry - SNR→∞

Say Hello to the new

iPhone ATM

- All the functionality of the original iPhone™
- Unlimited local and long distance calls at no charge
- · No bank account necessary
- Unlimited withdrawals
- Genuine U.S. currency with unique serial numbers
- Never needs recharging, batteries, ink, or paper
- Unlimited iTunes Music Store
 downloads at no additional cost

iPhone ATM. A guided tour.

Watch sided y

iPhone ATM keyboard.

Watch Video p.

Where to buy.

Find a store y
Buy ordinus
prosti = 600 NY APPLE

