Open Clusters:

Open Windows on

Stellar Dynamics

Robert D. Mathieu
University of Wisconsin - Madison

Overview

- WIYN Open Cluster Study
- 30,000 Radial Velocity Measurements
- Stellar Dynamics, Binaries, and Stellar Collisions
- Blue Stragglers, Sub-Subgiants, and Stars that Shouldn't Be
- Conclusions

"Separating the Sheep from the Goats"

1	965	Membership of the open cluster IC 1805
• <u>1</u>	970	Membership of the intermediate-age open cluster NGC 2420
1	970	Membership of the open cluster NGC 7062
1	972	Membership of the open cluster IC 4665
. 1	972	Membership in the extremely young open cluster NGC 6530 (M8)
1	981	Membership of the old open cluster NGC 2506
1	982	
1	987	Membership in the young cluster Trumpler 37
1	989	Relative proper motions of the open cluster M67
. 1	995	A proper-motion study of the open cluster NGC 3680
1	996	A Proper-Motion Membership Study of the Old Open Cluster NGC 188
2	001	WIYN Open Cluster Study. VII. NGC 2451A
2	003	WOCS. XVII. Astrometry and Membership to V=21 in NGC 188

WIYN Open Cluster Study

- Comprehensive and definitive astrometric, photometric, and spectroscopic databases for new fundamental open clusters.
- A body of investigations which address critical astrophysical problems through study of open clusters.

WOCS Senior Scientists

•	C. Deliyannis	IU	photometry, spectroscopy, abundances
•	P. Demarque	Yale	theoretical stellar evolution
•	T. Girard	Yale	astrometry, proper motions
•	K. Honeycutt	IU	photometric monitoring, compact binaries
•	S. Kafka	SSC	photometric monitoring, compact binaries
•	D. Latham	CfA	radial velocities, photometric monitoring
•	R. Mathieu	UW	radial velocities, binary populations
•	S. Meibom	CfA	photometric monitoring, radial velocities
•	I. Platais	JHU	astrometry, proper motions, photometry
•	A. Sarajedini	Florida	photometry, stellar evolution
•	W. van Altena	Yale	astrometry, proper motions
•	T. von Hippel	Siena	photometry, luminosity functions

WOCS Publications

••••

- Giampapa, M. S., Hall, J. C., Radick, R. R., & Baliunas, S. L. 2006, "A Survey of Chromospheric Activity in the Solar-Type Stars in the Open Cluster M67," ApJ, 651, 444 (WIYN Open Cluster Study XXVIII)
- Meibom, S., Mathieu, R. D., Stassun, K. G. 2006, "An Observational Study of Tidal Synchronization in Solar-Type Binary Stars in the Open Clusters M35 and M34," ApJ, 653, 621 (WIYN Open Cluster Study XXIX)
- Jeffery, E. J.; von Hippel, T.; Jefferys, W. H.; Winget, D. E.; Stein, N.; DeGennaro, S. 2007, "New Techniques to Determine Ages of Open Clusters Using White Dwarfs," ApJ, 658, 391 (WIYN Open Cluster Study XXX)
- Meibom, S., Mathieu, R. D., & Stassun, K. G. 2007, "The Effect of Binarity on Stellar Evolution Beyond the Reach of Tides," ApJ, 655, L155 (WIYN Open Cluster Study XXXI)
- Geller, A., Mathieu, R. D., Harris, H. C. & McClure, R. D., 2008, "WIYN Open Cluster Study. XXXII. Stellar Radial Velocities in the Old Open Cluster NGC 188", AJ, 135, 2264
- Meibom, S., Mathieu, R. D., & Stassun, K. G. 2007, "Stellar Rotation in M35: Mass-Period Relations, Spin-Down Rates, and Gyrochronology," ApJ, in press (WIYN Open Cluster Study XXXIII
- Geller, A., Mathieu, R. D., Harris, H. C. & McClure, R. D., 2008, "WIYN Open Cluster Study. XXXIV. Spectroscopic Binary Orbits in NGC 188, AJ, submitted

WIYN Open Cluster Study

Stellar Radial Velocities

• NGC 2168

- 1597 stars

- 7104 measurements

- 102 binaries

(0.15 Gyr)

 $(0.8 M_{o} < M_{*} < 1.2 M_{o}) (V < 16.5, B-V > 0.4)$

 $(\sigma = 0.4 \text{ km s}^{-1})$

 $(P < 1000^d)$

• NGC 6819

- 1517 stars
- 7698 measurements
- 133 binaries

(2 **Gyr**)

• NGC 188

- 1092 stars
- 8570 measurements
- 124 binaries

(7 **Gyr**)

The Open Star Cluster M67

Stellar Dynamics, Binaries, and Stellar Collisions

M67

4.5 Gyr

 $\approx 1000 \text{ M}_{\odot}$

 $\approx 1000 \, \mathrm{M}_{\mathrm{o}}$

Stellar Dynamics

Stellar Dynamics

Binary Stars

Stellar Dynamics

Sills et al. 2006

Initial Conditions

- 12,000 single stars $(0.1 50 \text{ M}_{\odot})$
- 12,000 binaries (a: flat-log, e: thermal, q: uniform)
- Solar metallicity (Z = 0.02)
- Plummer sphere in virial equilibrium
- Circular orbit at R_{gc}= 8 kpc
 - $M \sim 18700 M_{\odot}$
 - tidal radius 32 pc
 - $T_{rh} \sim 400 \text{ Myr}$
 - \rightarrow $\sigma \sim 3$ km/s
 - $n_c \sim 200 \text{ stars/pc}^3$

M67 Observed CMD

N-body Model CMD

- 29 blue stragglers
- $N_{\rm BS}/N_{\rm ms,2to} = 0.15$
- $R_{h,BS} = 1.6pc$

- 25 blue stragglers
- $N_{\rm BS}/N_{\rm ms,2to} = 0.18$
- $R_{h,BS} = 1.1pc$

Primordial Binary

Period: 47,860 days

Eccentricity: 0.8

2.089 Gyr later

4-body interaction

Period: 1.1 days
Eccentricity 0.8

0.42 M_o 1.46 M_o

circularized

mass transfer event

merger 1.88 M_o Blue Straggler

But wait...there's more

The Open Star Cluster M67

S1082 Blue Straggler

S1082 Evolutionary Scenario

4 M_o in the close binary suggests a collisional scenario At least 3 stars involved, likely 4 or more

Binary-Binary encounter

- 1. Two stars collide and merge into the secondary
- 2. Third star becomes the primary
- 3. Fourth star becomes the tertiary in wide orbit

Challenges

- 1. Primary and tertiary are blue stragglers
 - a) Already present in the binaries?
 - b) Subsequently exchanged into the system?
- 2. The secondary of the close binary is not in thermal equilib.
 - a) Can only be subluminous for a thermal timescale

S1113 Sub-Subgiant

S1063 P=18.4 d e = 0.21 $\gamma = 34.3 \text{ km/s}$ pm = 97%

S1113 Sub-Subgiant

Sub-Subgiant S1113 - Geometric

4 Gyr

Sub-Subgiant S1113 - Photometric

Mid-Course Conclusions

- 1. N-body simulations with initial binary populations predict stellar collisions.
- 3. N-body simulations with initial binary populations reproduce open cluster CMDs, including anomalous stars.
- 4. Evidence for encounter and collision products are being found in open clusters; require non-equilibrium stellar models.

Evolved Hard-Binary Population Periods

Initial Hard-Binary Population Periods

NGC 2168

(0.15 Gyr)

M67 simulation

(4.5 Gyr)

Evolved Hard-Binary Population Eccentricities

Evolved Hard-Binary Population Blue Stragglers

(B-V)

Angular Momentum of Blue Stragglers

Angular Momentum of Blue Stragglers

Angular Momentum of Blue Stragglers

Conclusions

- 1. Evidence for encounter and collision products are being found in open clusters.
- 2. N-body simulations with initial binary populations reproduce open cluster CMDs, including anomalous stars, but with initial and final binary populations much too high.
- 3. Blue straggler angular momenta distributions orbital and rotational are distinguishing clues to formation process.

Concluding Thoughts.

We are on the verge of *detailed* comparisons of N-body simulations and open clusters, *including binaries*.

Given the significance of dissipative processes between stars, we already may be limited by physics rather than computing power.

Fundamental stellar astrophysics still to be understood: blue stragglers, sub-subgiants, non-equilibrium stellar evolution? - an exciting time for students!