Predicting 'analytically' stripped and re-accreted mass fraction

Observatoire astronomique de Strasbourg Joachim Köppen

A gas parcel in the galactic disk

Gunn & Gott criterion

What happens after a short force pulse?

Taking RPS as a collision

Momentum balance

 $\Sigma_{\text{ISM}} * v_{\text{AFTER}} = \Sigma_{\text{ICM}} * v_{\text{ICM}}$

• Stripping if

 $v_{AFTER} > v_{ESC}$

 Works well to explain stripped mass fractions in Pavel's SPH models

How to predict the re-accretable fraction?

Simulations with test particle models

Remember the ballistic galvanometer?

 If an undamped harmonic oscillator is kicked by a pulse shorter than its natural period, it will oscillate with an amplitude which is proportional to the time-integrated force i.e. the momentum transferred to it.
NB: The amplitude is independent of the form of the pulse.

Period of vertical oscillations

Let's apply it to face-on RPS

- Equation of motion $d(\Sigma_{\rm ISM}v)/dt = \rho_{\rm ICM} (v_{\rm ICM}-v)^2 - \Sigma_{\rm ISM} d\Phi/dz$
- Solution: (a) during the kick (z = v = 0)

 $\Sigma_{\text{ISM}} \mathbf{v}_{\text{AFTER}} = \rho_{\text{ICM}} \mathbf{v}_{\text{ICM}}^2 \Delta t$

- Solution: (b) after the kick (Force=0; v = v_{AFTER}) d(Σ_{ISM} v)/dt = - $\Sigma_{ISM} d\Phi/dz$
 - ➔ (harmonic) oscillation with amplitude corresponding to initial kick ...
- the important parameter:

 $\rho_{\text{ICM}} v_{\text{ICM}}^2 \Delta t = v_{\text{ICM}} (\rho_{\text{ICM}} v_{\text{ICM}} \Delta t) = v_{\text{ICM}} \Sigma_{\text{ICM}}$

Given the speed after the kick

- ... and the potential, we can compute how high above the disk the gas packet can move
- ... and hence we can predict which parts of the disk will be displaced by some minimum height, say 1 kpc

Compare with Pavel's SPH models

Summary

- Momentum transfer determines the fate of a gas parcel
- The primary parameter is the column density $\Sigma_{\rm ICM}$ of the accumulated ICM
- For the reaccreted fraction we can give only an upper limit
- For slow stripping, the efficiency of momentum transfer will be less!