IC3418 – orbital models

- dIrr galaxy with a tail with H_{α} and UV knots (Hester et al. 2010)
- From observation we know:
 - 1. los-velocity: -1000km/s w.r.t. M87
 - 2. pos-position: 250kpc from M87
 - 3. pos-velocity direction: NW, tail angle of 115°
- Free parameters:
 - 1. los-position
 - 2. tangential velocity
- Model:
 - spherically symmetric β -profile mass distribution truncated at 2Mpc
 - IC3418 represented as a point mass
 - xy = p-o-s; z = l-o-s

IC3418 – orbital models

- In a set of simulations we vary the current
 - 1. z-position in (-500, 500) kpc
 - 2. v_x , v_y -velocities in (500, 1000) km/s
- these values yield radial distances of (250-560) kpc and total velocities of (1200-1700) km/s
- Why we think IC3418 is close to M87:
 - 1. the projected distance from M87 is small
 - 2. moderately high velocity w.r.t. mean cluster velocity
 - 3. presence of stripping tail
 - 4. other rps-galaxies in Virgo occur within 500kpc from M87
- Limits on the tangential velocity:
 - 1. < 500km/s ... too compact orbits
 - 2. >1000km/s ... too prolonged/close-to-unbound orbits

Consistent orbits

IC3418

- peri-to-apocenter distance ratios 1:5 1:20
 - rps galaxies in Virgo typically on 1:10 orbits
- almost all orbits within 350Myr from pericenter
- minimum pericenter distance ~200kpc
- Upper limit of the total velocity ~1700km/s
- Lower limit of the 3D distance ~250kpc
- => upper limit estimate of the current ram pressure ~1400cm⁻³(km/s)²
- We cannot determine whether IC3418 is now before or after closest approach to M87
- Tail angle about 2-times more tangential than radial component of orbital motion in p-o-s

IC3418 – characteristic angles

• Evolution of 3D tail angle, projected tail angle, projection angle, & wind angle

Cluster orbits

- Distribution of orbits in cosmological simulations (Benson 2005)
 - DM halos followed at the time of merging into their host haloes at distances of about one virial radius
 - Significant correlation between tangential and radial velocity components, with a peak of the distribution at vr=0.9vc, vt=0.7vc

- Most of our model orbits are consistent with the distribution
- less likely: rapid orbits with large |z|'s; slow orbits with small |z|'s

IC3418 – orbital statistics

- All modeled orbits consistent with the current state of IC3418. They however differ in the shape and orientation w.r.t. observer
- Evolution of observable parameters along individual orbits
 - Which orbits are more probable to bring the galaxy into its current observed state than the others?
 - Projected tail angle evolution during one orbital period around T=0Gyr

- The minimum of the distribution shifts towards smaller angles for increasing current z's
- => We are likely observing IC3418 near but just AFTER its closest approach to M87

IC3418: pre- or post-peak?

- probability of the projected tail angle along different orbits
 ⇒ probably post-peak
- RPS simulace tails get narrower with time ⇒ post-peak
- Randall et al. (2008) possible orbits of M86
 - Based on the orbital energy analyses they were able to constrain significantly the range of possible orbits
 - Doesn't work for IC3418 mainly due to lower los velocity
- Main results of our calculations:
 - obtuse projected tail angle does not mean that IC3418 is before the closest approach to M87
 - orbits with IC3418 on the far-side of the cluster are pre-peak
 - orbits with z~100kpc are at pericenter
 - IC3418 occurs within ~350Myr of pericenter
 - Minimum pericenter distance ~200kpc, upper-limit total velocity ~1700km/s
 - Maximum estimated current ram pressure ~1400cm⁻³(km/s)²
 - IC3418 is being stripped close to face-on
 - Actual length of the tail is by factor >1.2 larger

Suggestions

- dwarf galaxy => ram pressure at large distances from M87 should be enough to strip it
- at larger distances from M87 pressure from the surrounding ICM might be small to cause compression of the tail and induce SF

Modeling - what?

initial conditions

 free-fall orbit through different ICM distributions
 Corresponding ram pressure profiles

"strictly-radial" orbits may model slightly elliptical orbits with non-zero pericenter distances in higher but narrower ICM distributions

Modeling – how?

tree/SPH code

- 3D tree/SPH code GADGET (Springel et al.) adapted for calculations with ISM-ICM interaction
- SPH has significant problems with contact discontinuities where the density jump is very large
- basic idea: to estimate smoothing length of either ICM or ISM particles separately from neighbors of the corresponding phase
 - pros: reasonable number of particles, full coverage of the disk, ICM particles not shrinking to ISM sizes, ...
 - cons: ISM particles lack pressure gradients, low spatial resolution in ICM, possible slight overestimation of the stripping effect

Process of stripping

effects on ISM & ICM

Process of stripping effects on ICM

Bow-shocks form in the ICM (face-on)

• Velocity vectors of the ICM particles

a 520 1000 1500 V_{ICM} [km/s]

- Compression of the windward edge of the disk
- Re-accretion of the stripped material
 - In the standard cluster model about 20 % of the ISM is re-accreted
- In the edge-on case the disk gets an asymmetric shape
- The tail winds up around the edge-on disk
- Clumps form in the tail

T [Gyr]

Mass fraction within

 $r < R_{i}, |z| < 1 kpc$

Grid of simulations

stripped amount & stripping radius

• Parameter study:

- simulations with varying R_{c,ICM} and $\rho_{0,ICM}$ parameters from large to small ICM distributions
- and varying inclination angle i
- narrow ICM distributions or with low values of density may represent ICM overdensities or debris structures left over in the cluster from recent stripping events

. List o ig inclin	f performed simulations – results. From left to right ation, stripped mass fraction estimate of GG72 criterio						GG72 not correct, p _{ram,max} is not the parameter					simulatio stimate of
run	${M^{90^\circ}_{ m strip} \over (\%)}$	$M_{ m strip}^{70^{\circ}}$ (%)	${M_{ m strip}^{45^\circ} \over (\%)}$	$M^{20^{\circ}}_{ m strip}$ (%)	${M_{ m strip}^{0^\circ} \over (\%)}$	$M^{ m GG72}_{ m strip}_{ m (\%)}$	$r_{ m strip}^{90^\circ}$ (kpc)	$r_{ m strip}^{70^\circ}$ $(m kpc)$	$r_{ m strip}^{450}$ (kpc)	$r_{ m strip}^{20^{\circ}}$ (kpc)	$r_{ m strip}^{0^{\circ}}$ (kpc)	$r_{\rm strip}^{ m GG72}$ (kpc)
$R4\rho 8$	93	- 91	80	80	70	93	1.5	0.9	1.4	0.8	1.2	1.5
R4p4	85	85	80	72	52	83	1.6	1.8	1.6	1.6	2.0	2.4
$R4\rho1$	59	56	48	34	24	57	2.5	2.6	2.6	3.7	5.1	4.5
$R4\rho0$	26	25	18	10	6	36	6.0	6.2	6.5	6.5	7.1	6.8
$R1\rho 8$	79	77	70	54	36	92	1.5	1.6	1.6	2.2	2.7	1.6
R1p4	63	61	50	30	19	81	2.1	2.5	3.1	3.2	4.0	2.5
R1p1	30	27	20	10	5	57	5.5	6.3	6.5	7.2	8.0	4.5
$R1\rho0$	9	8	6	2	1	36	8.6	9.0	9.3	9.9	10.3	6.8
$R0\rho 8$	37	35	27	13	7	92	5.5	4.6	6.1	6.5	7.2	1.6
$R0\rho4$	22	21	14	6	3	81	6.8	7.7	8.0	9.2	9.2	2.5
$R0\rho1$	5	5	3	1	1	57	9.8	9.9	10.2	10.6	10.7	4.5
R000	1	1	0	0	0	36	11.1	11.1	11.2	11.4	11.5	6.8

Role of inclination

in our standard cluster

- galaxy rotation plays a role:
 - hydrodynamical shielding is more important in edge-on
 - asymmetry of the disk
 - paradox of inclined stripping (co-rotating disk side is more easily stripped although experiencing a lower ram pressure)
 - wound tail
- ISM column density seen by the wind is higher
- ⇒ stripping declines for inclinations decreasing towards edge-on
- "stripping rate", i.e. the flow of the ISM through the boundary of the evaluation zone, exceeds from face-on galaxy almost 400 $M_{\odot}yr^{-1}$, and its peak value decreases towards ~ 50 $M_{\odot}yr^{-1}$ in the edge-on case

Stripped mass fraction:

Striping/re-accretion rate:

Face-on vs. edge-on

Stripped amount

& stripping efficiency

- Stripped amount: M_{strip} = M_{fin} M_{ini}
 - almost no difference between face-on and 70°
 - for large pressure peaks, stripping amount is almost independent of inclination
 - dependence on inclination is more pronounced for smaller ram pressure peaks
 - runs with the same value of $R_{c,ICM} \cdot \rho_{0,ICM}$ quantity show close profiles of the $M_{strip}(i)$ curves
- Stripping efficiency: $\eta(i) = M_{\text{strip},i} / M_{\text{strip},\text{face-on}}$
 - η characterizes the relative strength of a given ram pressure profile to strip ISM from an inclined galaxy with respect to face-on case
 - stripping efficiency always declines for inclinations decreasing towards edge-on
 - both wider and higher ram pressure peaks yield higher efficiencies

The parameter is Σ_{ICM}

Amount of encountered ICM along orbit

- with increasing amount of encountered ICM $(\Sigma_{\rm ICM})$ the stripped mass fraction and the efficiency increase
- for high Σ_{ICM} , these relations saturate towards complete stripping
- for lower $\Sigma_{\rm ICM}$, edge-on stripping is reduced with respect to face-on by a constant factor
- $\Rightarrow \Sigma_{\rm ICM}$ is the key parameter determining the stripping outcome
- ⇒ it is much more important than the maximum value of the ram pressure experienced along the orbit (Gunn & Gott 1972 criterion)

$$\frac{M_{\rm strip}}{M_{\rm ini}} = 1 - \exp\left[-0.01\,\Sigma_{\rm ICM}(1+6\sin^{1.5}i)\right]$$

$$\upsilon_{\text{after}} = \langle \upsilon \rangle_{\rho_{\text{ICM}}} \frac{\Sigma_{\text{ICM}}}{\Sigma_{\text{ISM}}}; \quad \upsilon_{\text{after}} \ge \upsilon_{\text{esc}}$$

Stripping projection effect

Atlas of model galaxies

- Our approach treats well the stripped/shifted gas in close-to-disk distances
- For our grid of simulations with different inclinations and ICM profiles, in combination with different I-o-s views, and different stages of stripping
 => create a model "VIVA" atlas – spectra and PVDs
- Look at observed galaxies in Virgo
 - Fraction of pre-peak, post-peak, peak
 - Decide on corresponding time-step in simulations

Spectra of galaxies

from our simulation grid

Figure 1: Velocity spectra (in km/s) of the ISM in galaxies stripped face-on in R1p1, R1p4, R4p1, and R4p4 simulations

