The Galaxy-Dark Matter Connection constraining cosmology & galaxy formation

Frank C. van den Bosch (MPIA)

Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO)

Marcello Cacciato, Surhud More (MPIA)

Outline, Motivation & Techniques

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Outline, Motivation & Techniques

Why study the Galaxy-Dark Matter Connection?

- To constrain the physics of Galaxy Formation
- To constrain Cosmological Parameters

Four Methods to Constrain Galaxy-Dark Matter Connection

- Group Catalogues
- Satellite Kinematics

- Large Scale Structure
- Galaxy-Galaxy Lensing

New Cosmological Constraints

Precision cosmology using non-linear structure

Conditional Luminosity Function

The Conditional Luminosity
 Function

The CLF Model

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

The Conditional Luminosity Function

In order to parameterize the Halo Occupation Statistics we introduce the Conditional Luminosity Function (CLF), $\Phi(L|M)$, which is the direct link between the halo mass function n(M) and the galaxy luminosity function $\Phi(L)$:

$$\Phi(L) = \int_0^\infty \Phi(L|M) \, n(M) \, \mathrm{d}M$$

The CLF contains a wealth of information, such as:

The average relation between light and mass:

$$\langle L
angle (M) = \int_0^\infty \Phi(L|M) \, L \, \mathrm{d}L$$

• The occupation numbers of galaxies:

$$\langle N
angle (M) = \int_{L_{
m min}}^{\infty} \Phi(L|M) \, \mathrm{d}L$$

We constrain CLF using four different, independent techniques
Galaxy Group Catalogues Large Scale Structure
Satellite Kinematics Galaxy-Galaxy Lensing

Conditional Luminosity Function

The Conditional Luminosity
 Function

The CLF Model

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

The CLF Model

We split CLF in central and satellite components

$$\Phi(L|M)dL = \Phi_{c}(L|M)dL + \Phi_{s}(L|M)dL$$

• For centrals we adopt a log-normal distribution

$$\Phi_{
m c}(L|M){
m d}L=rac{1}{\sqrt{2\pi}\,\sigma_{
m c}}{
m exp}\left[-\left(rac{\ln(L/L_{
m c})}{\sqrt{2}\sigma_{
m c}}
ight)^2
ight]rac{{
m d}L}{L}$$

For satellites we adopt a modified Schechter function

$$\Phi_{\mathrm{s}}(L|M)\mathrm{d}L = \frac{\Phi_{\mathrm{s}}}{L_{\mathrm{s}}} \, \left(\frac{L}{L_{\mathrm{s}}}\right)^{lpha_{\mathrm{s}}} \, \exp[-(L/L_{\mathrm{s}})^2]\,\mathrm{d}L$$

Note that $L_{
m c}, L_{
m s}, \sigma_{
m c}, \phi_{
m s}$ and $lpha_{
m s}$ all depend on halo mass M

Free parameters are constrained by fitting data

Use Monte-Carlo Markov Chain to sample the posterior distribution of free parameters, and to put confidence levels on derived quantities

Conditional Luminosity Function

Galaxy Group Catalogues

- Galaxy Groups from Redshift Surveys
- The CLF from SDSS Group Catalogue

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Galaxy Groups from Redshift Surveys

Conditional Luminosity Function

Galaxy Group Catalogues

- Galaxy Groups from Redshift Surveys
- The CLF from SDSS Group Catalogue

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Galaxy Groups from Redshift Surveys

Conditional Luminosity Function

Galaxy Group Catalogues

- Galaxy Groups from Redshift Surveys
- The CLF from SDSS Group Catalogue

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Galaxy Groups from Redshift Surveys

Conditional Luminosity Function

Galaxy Group Catalogues

- Galaxy Groups from Redshift Surveys
- The CLF from SDSS Group Catalogue

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

The CLF from SDSS Group Catalogue

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation
 Functions
- Results
- Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Occupation Statistics from Clustering

- Galaxies occupy dark matter halos.
- CDM: more massive halos are more strongly clustered.
- Clustering strength of given population of galaxies indicates the characteristic halo mass

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation
 Functions
- Results
- Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Occupation Statistics from Clustering

- Galaxies occupy dark matter halos.
- CDM: more massive halos are more strongly clustered.
- Clustering strength of given population of galaxies indicates the characteristic halo mass

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation
 Functions
- Results
- Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Occupation Statistics from Clustering

- Galaxies occupy dark matter halos.
- CDM: more massive halos are more strongly clustered.
- Clustering strength of given population of galaxies indicates the characteristic halo mass

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation
 Functions
- Results
- Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Occupation Statistics from Clustering

- Galaxies occupy dark matter halos.
- CDM: more massive halos are more strongly clustered.
- Clustering strength of given population of galaxies indicates the characteristic halo mass

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation
 Functions
- Results
- Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Occupation Statistics from Clustering

- Galaxies occupy dark matter halos.
- CDM: more massive halos are more strongly clustered.
- Clustering strength of given population of galaxies indicates the characteristic halo mass

Clustering strength measured by correlation length r_0

CAUTION: Results depend on cosmological parameters

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation Functions
- Results
- Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Luminosity & Correlation Functions

- DATA: More luminous galaxies are more strongly clustered.
- ACDM: More massive haloes are more strongly clustered.

More luminous galaxies reside in more massive haloes

REMINDER: Correlation length r_0 defined by $\xi(r_0)=1$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation
 Functions

Results

Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Results

Model fits data extremely well with $\chi^2_{
m red}\sim 1$ Same model in excellent agreement with results from SDSS galaxy group catalogue of Yang et al. (2008)

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation Functions
- Results

Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Cosmology Dependence

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

- Occupation Statistics from Clustering
- Luminosity & Correlation
 Functions
- Results

Cosmology Dependence

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Cosmology Dependence

Mass-to-Light ratios tightly constrained, but with strong dependence on cosmology

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics:Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Satellite Kinematics: Methodology

Select centrals and their satellites from a redshift survey

Using redshifts, determine $\Delta V = V_{
m sat} - V_{
m cen}$ as function of $L_{
m c}$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics:Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Satellite Kinematics: Methodology

Select centrals and their satellites from a redshift survey

Using redshifts, determine $\Delta V = V_{
m sat} - V_{
m cen}$ as function of $L_{
m c}$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics:Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Satellite Kinematics: Methodology

Select centrals and their satellites from a redshift survey

Using redshifts, determine $\Delta V = V_{
m sat} - V_{
m cen}$ as function of $L_{
m c}$

(More, vdB et al. 2008)

Brighter centrals reside in more massive haloes.

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics: Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Satellite Kinematics: Mass Estimates

Using virial equilibrium and spherical collapse model:

$$\sigma^2 \propto rac{GM}{R}$$

$$M \propto R^3$$

$$\sigma \propto M^{1/3}$$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics: Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Satellite Kinematics: Mass Estimates

Using virial equilibrium and spherical collapse model:

$$\sigma^2 \propto rac{GM}{R} \qquad M \propto R^3 \qquad \sigma \propto M^{1/3}$$

On average only ~ 2 satellites per central ightarrow stacking

Unless $P(M|L_{
m c})$ is a Dirac delta function, stacking means combining halos of different masses

Consequently, one has to distinguish two different weighting schemes:

Satellite Weighting: each satellite receives weight of one

$$\sigma_{\mathrm{sw}}^2 = rac{\int P(M|L_{\mathrm{c}}) \langle N_{\mathrm{sat}}
angle_M \, \sigma_{\mathrm{sat}}^2(M) \, \mathrm{d}M}{\int P(M|L_{\mathrm{c}}) \, \langle N_{\mathrm{sat}}
angle_M \, \mathrm{d}M}$$

Host Weighting: each host receives weight of one

$$\sigma_{
m hw}^2 = rac{\int P(M|L_{
m c})\,\sigma_{
m sat}^2(M)\,{
m d}M}{\int P(M|L_{
m c})\,{
m d}M}$$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics: Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Satellite Kinematics in the SDSS

Based on SDSS volume-limited sample with 3863 centrals & 6101 satellites

Note that $\sigma_{
m sw}
eq \sigma_{
m hw} \Rightarrow$ non-zero scatter in $P(M|L_{
m c})$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics: Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Modeling Methodology & Results

Recall:

$$\sigma_{
m sw}^2 = rac{\int P(M|L_{
m c}) \, \langle N_{
m sat}
angle_M \, \sigma_{
m sat}^2(M) \, {
m d}M}{\int P(M|L_{
m c}) \, \langle N_{
m sat}
angle_M \, {
m d}M}$$
 $\sigma_{
m hw}^2 = rac{\int P(M|L_{
m c}) \, \sigma_{
m sat}^2(M) \, {
m d}M}{\int P(M|L_{
m c}) \, {
m d}M}$

- lacksquare Jeans equations yield $\sigma^2_{
 m sat}(M)$ for NFW halos
- $lacksquare P(M|L_{
 m c})$ and $\langle N_{
 m sat}
 angle_M$ follow from CLF
- lacktriangle Constrain CLF model parameters by fitting the observed $\sigma_{
 m sw}(L_{
 m c})$ and $\sigma_{
 m hw}(L_{
 m c})$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics: Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Modeling Methodology & Results

Recall:

$$\sigma_{
m sw}^2 = rac{\int P(M|L_{
m c}) \left\langle N_{
m sat}
ight
angle_M \sigma_{
m sat}^2(M) \, {
m d}M}{\int P(M|L_{
m c}) \left\langle N_{
m sat}
ight
angle_M \, {
m d}M}$$
 $\sigma_{
m hw}^2 = rac{\int P(M|L_{
m c}) \, \sigma_{
m sat}^2(M) \, {
m d}M}{\int P(M|L_{
m c}) \, {
m d}M}$

- lacksquare Jeans equations yield $\sigma^2_{
 m sat}(M)$ for NFW halos
- $lacksquare P(M|L_{
 m c})$ and $\langle N_{
 m sat}
 angle_M$ follow from CLF
- lacktriangle Constrain CLF model parameters by fitting the observed $\sigma_{
 m sw}(L_{
 m c})$ and $\sigma_{
 m hw}(L_{
 m c})$

The 68 and 95 percent confidence levels from MCMC

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

- Satellite Kinematics: Methodology
- Satellite Kinematics: Mass Estimates
- Satellite Kinematics in the SDSS
- Modeling Methodology & Results

Galaxy-Galaxy Lensing

Conclusions

Extra Material

Modeling Methodology & Results

Recall:

$$\sigma_{
m sw}^2 = rac{\int P(M|L_{
m c}) \, \langle N_{
m sat}
angle_M \, \sigma_{
m sat}^2(M) \, {
m d}M}{\int P(M|L_{
m c}) \, \langle N_{
m sat}
angle_M \, {
m d}M}$$
 $\sigma_{
m hw}^2 = rac{\int P(M|L_{
m c}) \, \sigma_{
m sat}^2(M) \, {
m d}M}{\int P(M|L_{
m c}) \, {
m d}M}$

- lacksquare Jeans equations yield $\sigma_{\mathrm{sat}}^2(M)$ for NFW halos
- $lacksquare P(M|L_{
 m c})$ and $\langle N_{
 m sat}
 angle_M$ follow from CLF
- lacktriangle Constrain CLF model parameters by fitting the observed $\sigma_{
 m sw}(L_{
 m c})$ and $\sigma_{
 m hw}(L_{
 m c})$

Good agreement with CLF clustering results

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Galaxy-Galaxy Lensing

- The Measurements
- How to interpret the signal?
- Comparison with CLF Predictions
- WMAP3 vs. WMAP1
- Cosmological Constraints

Conclusions

Extra Material

Galaxy-Galaxy Lensing

The mass associated with galaxies lenses background galaxies

Lensing causes correlated ellipticities, the tangential shear, γ_t , which is related to the excess surface density, $\Delta \Sigma$, according to

$$\gamma_{
m t}(R)\Sigma_{
m crit} = \Delta\Sigma(R) = ar{\Sigma}(< R) - \Sigma(R)$$

 $\Sigma(R)$ is line-of-sight projection of galaxy-matter cross correlation:

$$\Sigma(R) = ar
ho \int_0^{D_{
m S}} \left[1 + \xi_{
m g,dm}(r)
ight] d\chi$$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Galaxy-Galaxy Lensing

The Measurements

- How to interpret the signal?
- Comparison with CLF Predictions
- WMAP3 vs. WMAP1
- Cosmological Constraints

Conclusions

Extra Material

The Measurements

- Number of background sources per lens is limited.
- ullet Measuring $\gamma_{
 m t}$ with sufficient S/N requires stacking of many lenses
- ullet $\Delta\Sigma(R|L_1,L_2)$ has been measured using the SDSS by Mandelbaum et al. (2005) for different bins in lens luminosity

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

- Galaxy-Galaxy Lensing
- The Measurements

• How to interpret the signal?

- Comparison with CLF Predictions
- WMAP3 vs. WMAP1
- Cosmological Constraints

Conclusions

Extra Material

How to interpret the signal?

Because of stacking the lensing signal is difficult to interpret In order to model the data, what is required is:

$$P_{
m cen}(M|L) \qquad P_{
m sat}(M|L) \qquad f_{
m sat}(L)$$

These can all be computed from the CLF

Using $\Phi(L|M)$ constrained from clustering data, we can predict the lensing signal $\Delta\Sigma(R|L_1,L_2)$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

- Galaxy-Galaxy Lensing
- The Measurements
- How to interpret the signal?
- Comparison with CLF Predictions
- WMAP3 vs. WMAP1
- Cosmological Constraints

Conclusions

Extra Material

Comparison with CLF Predictions

NOTE: This is not a fit, but a prediction based on CLF

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

- Galaxy-Galaxy Lensing
- The Measurements
- How to interpret the signal?
- Comparison with CLF Predictions
- WMAP3 vs. WMAP1
- Cosmological Constraints

Conclusions

Extra Material

Comparison with CLF Predictions

NOTE: This is not a fit, but a prediction based on CLF

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

- Galaxy-Galaxy Lensing
- The Measurements
- How to interpret the signal?
- Comparison with CLF Predictions

WMAP3 vs. WMAP1

Cosmological Constraints

Conclusions

Extra Material

WMAP3 vs. WMAP1

WMAP3 cosmology clearly preferred over WMAP1 cosmology

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

- Galaxy-Galaxy Lensing
- The Measurements
- How to interpret the signal?
- Comparison with CLF Predictions
- WMAP3 vs. WMAP1
- Cosmological Constraints

Conclusions

Extra Material

Cosmological Constraints

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

- Galaxy-Galaxy Lensing
- The Measurements
- How to interpret the signal?
- Comparison with CLF Predictions
- WMAP3 vs. WMAP1
- Cosmological Constraints

Conclusions

Extra Material

Cosmological Constraints

Precision Cosmology using non-linear structure!!

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

- Galaxy-Galaxy Lensing
- The Measurements
- How to interpret the signal?
- Comparison with CLF Predictions
- WMAP3 vs. WMAP1

Cosmological Constraints

Conclusions

Extra Material

Cosmological Constraints

Precision Cosmology using non-linear structure!!

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Conclusions

- Conclusions
- Conclusions
- Conclusions
- Cosmological Conclusions

Extra Material

Conclusions

Four methods to statistically constrain P(M|L)

Group Catalogues

Clustering

Satellite Kinematics

Galaxy-Galaxy Lensing

- Requires somewhat arbitrary group-finder
- We used well-tested Halo Based Group Finder of Yang et al (2005)
- Ideal for studying environment dependence of galaxy formation
- Mass assignments is cosmology-dependent
- Correlation function of groups is direct reflection of that of dark matter haloes

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

- Conclusions
- Conclusions
- Conclusions
- Conclusions
- Cosmological Conclusions

Extra Material

Conclusions

Four methods to statistically constrain P(M|L)

Group Catalogues

Clustering

Satellite Kinematics

Galaxy-Galaxy Lensing

- lacksquare Straightforward to constrain P(M|L) with CLF
- Accurate constraints from large galaxy redshift surveys
- Results are strongly cosmology-dependent

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

- Conclusions
- Conclusions

Conclusions

- Conclusions
- Cosmological Conclusions

Extra Material

Conclusions

Four methods to statistically constrain P(M|L)

Group Catalogues

Clustering

Satellite Kinematics

Galaxy-Galaxy Lensing

- Requires selection of centrals and satellites from redshift surveys
- lacktriangle Requires stacking and is therefore sensitive to scatter in P(M|L)
- Using satellite weighting and host weighting simultaneously constrains both mean and scatter of P(M|L)
- Even with large redshift surveys such as SDSS, statistics are limited
- Data not sufficient to discriminate between WMAP1 and WMAP3

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

- Conclusions
- Conclusions
- Conclusions

Conclusions

Cosmological Conclusions

Extra Material

Conclusions

Four methods to statistically constrain P(M|L)

Group Catalogues

Clustering

Satellite Kinematics

Galaxy-Galaxy Lensing

- Lensing probes masses directly
- lacktriangle Requires stacking and is therefore sensitive to scatter in P(M|L)
- lacktriangle Also very sensitive to satellite fractions $f_{\mathrm{sat}}(L)$
- lacktriangle Most easily interpreted with use of CLF $\Phi(L|M)$
- Combination of lensing and clustering holds potential to tightly constrain cosmological parameters

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

- Conclusions
- Conclusions
- Conclusions
- Conclusions
- Cosmological Conclusions

Extra Material

Cosmological Conclusions

Cosmological constraints obtained from non-linear structure (clustering + lensing + group catalogue) are in excellent agreement with CMB constraints

Current (preliminary) results suggest

$$\Omega_{
m m} = 0.21 \pm 0.01$$
 (95% CL) $\sigma_8 = 0.73 \pm 0.03$ (95% CL)

This technique is competative with and complementary to BAO, cosmic shear, SNIa and Ly α forest

If anything, our results indicate that our model for structure formation is accurate on non-linear scales

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

- Galaxy Formation in a Nutshell
- Satellite Weighting or Host Weighting?
- Implications for Galaxy
 Formation Stochasticity
- Comparison with other Constraints
- Halo Occupation Numbers

Galaxy Formation in a Nutshell

- Perturbations grow due to gravitational instability and collapse to produce (virialized) dark matter halos
- Dark matter halos merge, causing hierarchical growth
- Halo mergers create satellite galaxies that orbit halo

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

- Galaxy Formation in a Nutshell
- Satellite Weighting or Host Weighting?
- Implications for Galaxy
 Formation Stochasticity
- Comparison with other
- Constraints

 Halo Occupation Numbers

Satellite Weighting or Host Weighting?

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

- Galaxy Formation in a Nutshell
- Satellite Weighting or Host Weighting?
- Implications for Galaxy
 Formation Stochasticity
- Comparison with other
- Constraints
- Halo Occupation Numbers

Satellite Weighting or Host Weighting?

The combination of $\sigma_{
m sw}$ and $\sigma_{
m sw}$ allows one to determine mean and scatter of $P(M|L_{
m c})$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

- Galaxy Formation in a Nutshell
- Satellite Weighting or Host Weighting?
- Implications for Galaxy
 Formation Stochasticity
- Comparison with other Constraints
- Halo Occupation Numbers

Implications for Galaxy Formation Stochasticity

ullet The scatter in $P(L_{
m cen}|M)$ is independent of M

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

- Galaxy Formation in a Nutshell
- Satellite Weighting or Host Weighting?
- Implications for Galaxy
 Formation Stochasticity
- Comparison with other Constraints
- Halo Occupation Numbers

Implications for Galaxy Formation Stochasticity

- ullet The scatter in $P(L_{
 m cen}|M)$ is independent of M
- ullet The scatter in $P(M|L_{
 m cen})$ increases strongly with $L_{
 m cen}$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

- Galaxy Formation in a Nutshell
- Satellite Weighting or Host Weighting?
- Implications for Galaxy
 Formation Stochasticity
- Comparison with other Constraints
- Halo Occupation Numbers

Implications for Galaxy Formation Stochasticity

- ullet The scatter in $P(L_{
 m cen}|M)$ is independent of M
- ullet The scatter in $P(M|L_{
 m cen})$ increases strongly with $L_{
 m cen}$

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

- Galaxy Formation in a Nutshell
- Satellite Weighting or Host Weighting?
- Implications for Galaxy
 Formation Stochasticity
- Comparison with other Constraints
- Halo Occupation Numbers

Comparison with other Constraints

- Probability Distribution from Satellite Kinematics
- Constraints from Galaxy Group Catalogue (Yang et al. 2008)
- Constraints from Clustering Analysis

(Cooray 2006)

Predictions from Semi Analytical Model (Croton et al. 2006)

Conditional Luminosity Function

Galaxy Group Catalogues

Large Scale Structure

Satellite Kinematics

Galaxy-Galaxy Lensing

Conclusions

Extra Material

- Galaxy Formation in a Nutshell
- Satellite Weighting or Host Weighting?
- Implications for Galaxy
 Formation Stochasticity
- Comparison with other Constraints
- Halo Occupation Numbers

Halo Occupation Numbers

- Unlike 2dFGRS, the SDSS reveals clear shoulders at $\langle N \rangle_M = 1$
- Most likely this is an 'artefact' of the functional form of the CLF