New Results from WMAP

Spergel et al., astro-ph/0603449

CMB Primer

IMPORTANCE OF POLARIZATION: There is a strong degeneracy between the optical depth for reionization τ and the tensor-to-scalar ratio r, which can only be broken by polarization measurements.

- $E \gg B$ Scalar modes dominate
- $E \ll B$ Vector modes dominate
- $E \sim B$ Tensor modes dominate

Three-Year Data Release: What's new?

- Improved models for instrument gain & beam response
- Noise variance a factor three lower
- Improved foreground model and subtraction
- Measurements of **E** *E* and **B** *B* polarization

IMPLICATIONS

- Λ CDM models with power-law power-spectrum fit all data.
- No evidence for non-Gaussianity; weak indication for axis-of-evil
- Problems at low *l* have largely dissapeared
- High reionization redshifts ruled out: reduction in au, Ω_m , σ_8 and n_s !

Three-Year Data Release: What's new?

- Improved models for instrument gain & beam response
- Noise variance a factor three lower
- Improved foreground model and subtraction
- Measurements of **E** *E* and **B** *B* polarization

IMPLICATIONS

- Λ CDM models with power-law power-spectrum fit all data.
- No evidence for non-Gaussianity; weak indication for axis-of-evil
- Problems at low *l* have largely dissapeared
- High reionization redshifts ruled out: reduction in au, Ω_m , σ_8 and n_s !

I was right!
$$\Omega_m=0.23\pm0.04$$
 $\sigma_8=0.76\pm0.05$

The TT Maps

Difference at low *l* mainly due to improved gain model of instrument

Foregrounds

Left: input prior maps. Right: Output WMAP maps

Foregrounds

Left: input prior maps. Right: Output WMAP maps

Polarization Masks

The TT, TE, EE, and BB Power Spectra

Only upper limit for BB mode

Improved Constraints

The mean Ω_m , σ_8 , n_s and τ have all become smaller:

$oldsymbol{\Omega}_{oldsymbol{m}}$	0.29 ightarrow 0.23
σ_8	0.92 ightarrow 0.76
n_s	0.99 ightarrow 0.96
au	0.17 ightarrow 0.09

NOTE: these values correspond to 6-parameter power-law Λ CDM models

Reionization

Due to polarization measurements au much better constrained

Without polarization measurements strong degeneracy between τ and n_s , impacting also on Ω_m and σ_8

Reionization

No meaningful constraints on detailed reionization history

Maximum Likelihood peak: $z_{\rm reion} = 10.9^{+2.7}_{-2.3}$

Different Models

Table 3: Goodness of Fit, $\Delta \chi^2_{eff} \equiv -2 \ln \mathcal{L}$, for WMAP data only relative to a Power-Law ACDM model. $\Delta \chi^2_{eff} > 0$ is a worse fit to the data.

	Model	$-\Delta(2 \ln \mathcal{L})$	N_{par}
M1	Scale Invariant Fluctuations $(n_s = 1)$	8	5
M2	No Reionization $(\tau = 0)$	8	5
M3	No Dark Matter $(\Omega_c = 0, \Omega_\Lambda \neq 0)$	248	6
M4	No Cosmological Constant $(\Omega_{c}\neq 0,\Omega_{\Lambda}=0)$	0	6
M5	Power Law ACDM	0	6
M6	Quintessence $(w \neq -1)$	0	7
M7	Massive Neutrino $(m_{\nu} > 0)$	0	7
M8	Tensor Modes $(r > 0)$	0	7
M9	Running Spectral Index $(dn_s/d\ln k \neq 0)$	-3	7
M10	Non-flat Universe $(\Omega_k \neq 0)$	-6	7
M11	Running Spectral Index & Tensor Modes	-3	8
M12	Sharp cutoff	-1	7
M13	Binned $\Delta_R^2(k)$	-22	20

- Harrison-Zeldovich spectrum $n_s = 1$ does not fit data well
- Strong evidence for CDM = strong evidence against MOND
- $\Omega_{\Lambda} = 0$ is consistent with the data, but it implies that $H_0 = 30 \ {
 m km \, s^{-1} \, Mpc^{-1}}$ and $\Omega_m = 1.3$
- No need for quintessene, RSI, massive neutrinos tensor modes, sharp cut-off: significant constraints on inflationary models

Comparison with other CMB experiments

Best fit Λ CDM model accurately fits all other CMB data

Comparison with Large Scale Structure

Powerspectrum of best-fit ΛCDM model accurately fits galaxy power spectra of 2dFGRS and SDSS

Comparison with Weak Lensing

Poor agreement with CFTHLS weak lensing survey. Similar results from RCS and VIRMOS-DESCART surveys

However, 75° CTIO survey finds lower σ_8 , in better agreement with WMAP.

Comparison with Supernovae

luminosity distance-redshift relation measured from SN Ia in perfect agreement with best-fit $\Lambda \rm CDM$ WMAP model.

Big Bang Nucleosynthesis

Observed Lithium abundances inconsistent with WMAP, Helium and Deuterium.

Power-Spectrum Shape

No need for running spectral index.

Constraints on Inflation

Constraints on Power-Spectrum shape and tensor-to-scalar ratio yield significant constraints on Inflation models.

We are starting to taste a hint of non-Vanilla

Dark Energy & Neutrino Masses

Constraints based on WMAP+2dFGRS+SDSS+SN.

 $\sum m_{
u} < 1.0 {
m eV}$ (95% CL) and $w = -1.06^{+0.13}_{-0.10}$ (68% CL)

Power-Law Λ CDM cosmologies with Gaussian, adiabatic primordial fluctuations fit a large amount of data.

Mean Likelihoods, Power-Law Λ CDM, WMAP only

 $egin{array}{lll} \Omega_m = 0.238 & h = 0.734 & \sigma_8 = 0.744 \ \Omega_b = 0.042 & au = 0.088 & n_s = 0.951 \end{array}$

- WMAP + other CMB experiments
- Large Scale Structure from 2dFGRS and SDSS
- Big Bang Nucleosynthesis (except Lithium)
- Galaxy Motions & PVDs
- Cluster Abundances
- Supernovae la

The following two data sets are marginally inconsistent with the above mentioned ΛCDM concordance cosmology:

- Weak Lensing: $\sigma_8 \sim 0.9$???
- Ly α forest: $\sigma_8 \sim 0.9$???