
The Virial Equations I
We can obtain an important tensor equation relating global properties of the
system, by multiplying the CBE by both vj and xk and then integrating over
the entire phase-space.

The first step of this has already been performed in our derivation of the
Jeans equations, and yielded the momentum equations

∂(ρ〈vj〉)
∂t

+
∂(ρ〈vivj〉)

∂xi
+ ρ ∂Φ

∂xj
= 0

Multiplying all terms with xk and integrating over real space yields

∂
∂t

∫

ρxk〈vj〉d3x = −
∫

xk
∂(ρ〈vivj〉)

∂xi
d3~x −

∫

ρ xk
∂Φ
∂xj

d3~x

Using integration by parts the first term on the r.h.s. becomes
∫

xk
∂(ρ〈vivj〉)

∂xi
d3~x =

∫ ∂(ρxk〈vivj〉)
∂xi

d3~x −
∫

ρ〈vivj〉∂xk

∂xi
d3~x

= −
∫

δkiρ〈vivj〉d3~x

= −
∫

ρ〈vkvj〉d3~x

= −2Kkj

where we have defined the kinetic energy tensor

Kij = 1
2

∫

ρ〈vivj〉d3~x



The Virial Equations II
It is customary to split the kinetic energy tensor into contributions from
ordered and random motions:

Kij ≡ Tij + 1
2
Πij

where

Tij ≡ 1
2

∫

ρ 〈vi〉 〈vj〉 d3~x Πij ≡
∫

ρ σ2
ij d3~x

In addition to the K we also define the potential energy tensor

Wij ≡ −
∫

ρxi
∂Φ
∂xj

d3~x

Combining the above we obtain

∂
∂t

∫

ρ xk〈vj〉d3x = 2Kkj + Wkj

which allows us to write

1
2

d
dt

∫

ρ [xk 〈vj〉 + xj 〈vk〉] = 2Kjk + Wjk

where we have used that K and W are symmetric.



The Virial Equations III
Finally we also define the moment of inertia tensor

Iij ≡
∫

ρ xi xj d3~x

Differentiating with respect to time, and using the continuity equation (i.e.,
the zeroth moment equation of the CBE) yields

dIjk

dt
=

∫

∂ρ
∂t

xj xk d3~x

= −
∫ ∂ρ〈vi〉

∂xi
xj xk d3~x

= −
∫ ∂(ρ〈vi〉xjxk)

∂xi
d3~x +

∫

ρ〈vi〉∂(xjxk)

∂xi
d3~x

=
∫

ρ〈vi〉 [xjδik + xkδij ] d
3~x

=
∫

ρ [xj〈vk〉 + xk〈vj〉] d3~x

so that

1
2

d
dt

∫

ρ [xk 〈vj〉 + xj 〈vk〉] = 1
2

d2Ijk

dt2

which allows us to write the Tensor Virial Theorem as

1
2

d2Ijk

dt2
= 2Tjk + Πjk + Wjk

which relates the gross kinematic and structural properties of gravitational
systems.



The Virial Equations IV
If the system is in a steady-state the moment of inertia tensor is stationary,
and the Tensor Virial Theorem reduces to 2Kij + Wij = 0.

Of particular interest is the trace of the Tensor Virial Theorem, which relates

the total kinetic energy K = 1
2
M〈v2〉 to the total potential energy

W = 1
2

∫

ρ(~x) Φ(~x) d3~x.

tr(K) ≡
3
∑

i=1

Kii = 1
2

∫

ρ(~x)
[

〈v2
1〉(~x) + 〈v2

2〉(~x) + 〈v2
3〉(~x)

]

d3~x

= 1
2

∫

ρ(~x) 〈v2〉(~x)d3~x

= 1
2
M〈v2〉 = K

where we have used that
〈v2〉 = 1

M

∫

ρ(~x)〈v2〉(~x)d3~x

Similarly, the trace of the potential energy tensor is equal to the total
potential energy (see next page for derivation):

tr(W) = W = 1
2

∫

ρ(~x) Φ(~x) d3~x

We thus obtain the scalar virial theorem

2K + W = 0



The Potential Energy Tensor I
We have defined the potential energy tensor as

Wij ≡ −
∫

ρxi
∂Φ
∂xj

d3~x

Using that Φ(~x) = −G
∫ ρ(~x)

|~x′−~x|d
3~x we obtain

Wij = G
∫ ∫

ρ(~x) ρ(~x′)
xi(x

′

j−xj)

|~x′−~x|3 d3~x′d3~x

Using that ~x and ~x′ are dummy variables, we may relabel them, and write

Wij = G
∫ ∫

ρ(~x′) ρ(~x)
x′

j(xk−x′

k)

|~x−~x′|3 d3~xd3~x′

Interchanging the order of integration and summing the above two equations
yields the manifestly symmetric expression

Wij = −G
2

∫ ∫

ρ(~x) ρ(~x′)
(x′

j−xj)(x
′

k−xk)

|~x′−~x|3 d3~x′d3~x

This expression allows us to write

tr(W) ≡
3
∑

i=1

Wii = −G
2

∫ ∫

ρ(~x)ρ(~x′) |~x′−~x|2
|~x′−~x|3 d3~x′d3~x

= −G
2

∫

ρ(~x)
∫ ρ(~x′)

|~x′−~x|d
3~x′d3~x = 1

2

∫

ρ(~x)Φ(~x)d3~x = W



The Surface Pressure Term
In our derivation on the previous pages we obtained

∫

xk
∂(ρ〈vivj〉)

∂xi
d3~x =

∫ ∂(ρxk〈vivj〉)
∂xi

d3~x −
∫

ρ〈vivj〉∂xk

∂xi
d3~x

= −
∫

ρ〈vkvj〉d3~x = −2Kkj

where we have used that
∫ ∂(ρxk〈vivj〉)

∂xi
d3~x =

∫

ρxk〈vkvj〉d2S = 0

based on the assumption that ρ(r) = 0 when r → ∞. However, this is
only true for an isolated system with ‘vacuum’ boundary conditions.

In reality, a halo or galaxy is embedded in a cosmological density field, often
with ongoing infall. This yields a non-zero surface pressure. In its most
general form the scalar virial theorem therefore reads

2K + W + Sp = 0

with the surface pressure term

Sp = −
∫

〈v2〉~r · ~nd2~S

As long as Sp 6= 0 we thus expect that 2K/|W | 6= 1.
See Shapiro et al. (astro-ph/0409173) for a detailed discussion.



The Virial Equations V
From a simple dimensional analysis one finds that |W | ∝ GM2/R with
M the system’s mass and R a characteristic radius.

A useful characteristic radius is the so-called gravitational radius defined by

rg ≡ GM2

|W |

One can relate the gravitational radius to the half-mass radius rh, defined as
radius enclosing half the total mass. As shown by Spitzer (1969), typical
stellar systems have rg ' 2.5rh.

Combining this with the scalar virial theorem we can write that

M ' 2.5rh〈v2〉
G

which is a useful equation to obtain a (rough) estimate of the virial mass from
a measure of the half-mass radius and the rms motion



The Virial Equations VI
Using the scalar virial theorem we obtain

E = K + W = −K = 1
2
W

Consider the formation of a virialized object. If the system forms by
collecting material from large radii, the initial conditions are well
approximated by Kinit = Winit = Einit = 0.

Because of gravity the matter starts to collapse. Since W = −GM2/rg

this makes W more negative. At the same time K increases. Initially, during
the early collapse, E = T + W = 0.

After the first shell crossing, the system starts to virialize. When virialization
is complete, 2T + W = 0 and E = W/2.

Therefore, half the gravitational energy released by collapse is invested in
kinetic form. The system somehow disposes of the other half in order to
achieve a binding energy Eb = −E.

QUESTION Where does the other half of the energy go?



Application: M/L of Spherical Systems
As an application of the Virial Theorem, consider spherical, non-rotating
systems (spherical galaxies or globulars)

If the mass-to-light ratio Υ does not depend on radius then

Kxx =
∫

1
2
ρ(~x)〈v2

x〉d3~x = Υ
2

∫

ν(~x)〈v2
x〉d3~x

where ν(~x) = ρ(~x)/Υ is the 3D luminosity distribution, and Kxx is the
kinetic energy associated with motion in the x-direction

Since a spherical, non-rotating system is isotropic we have that

K = Kxx + Kyy + Kzz = 3Kxx

If one has observationally determined the surface brightness profile Σ(R)

and the line-of-sight velocity dispersion σ2
p(R) then it is easy to see that

K = 3Υ
2

2π
∫

0

dφ
∞
∫

0

dRRΣ(R)σ2
p(R) = 3πΥ

∞
∫

0

dRRΣ(R)σ2
p(R) ≡ ΥJ

where we defined the observationally accessible J = J(Σ, σ2
p)



Application: M/L of Spherical Systems

As seen in exersizes, for spherical system: W = −G
2

∞
∫

0

M2(r)
r2

dr

Using that M(r) = 4π
r
∫

0

ρ(r′)r′2dr′

where the density profile is related to Σ(R) according to

ρ(r) = −Υ
π

∞
∫

r

dΣ
dR

dR√
R2−r2

we obtain that

W = −8Υ2
∞
∫

0

dr
r2

[

r
∫

0

dr′ r′2
∞
∫

r′

dΣ
dR

dR√
R2−r2

]2

≡ Υ2J̃

where we have defined the observationally accessible integral J̃ = J̃(Σ)

According to the virial theorem 2K + W = 0, and thus −2K/W = 1.

Substituting K = ΥJ and W = Υ2J̃ we thus obtain that

Υ = −2J

J̃



Flattening of Oblate Spheroids I
As another application of the virial theorem we relate the flattening of an
oblate spheroid to its kinematics.

Consider an oblate system with it’s symmetry axis along the z-direction.
Because of symmetry considerations we have that

〈vR〉 = 〈vz〉 = 0 〈vRvφ〉 = 〈vzvφ〉 = 0

If we write that

〈vx〉 = 〈vφ〉 sin φ 〈vy〉 = 〈vφ〉 cos φ

we obtain

Txy = 1
2

∫

ρ〈vx〉〈vy〉d3~x

= 1
2

2π
∫

0

dφ sin φ cos φ
∞
∫

0

dR
∞
∫

−∞
dzρ(R, z)〈vφ〉2(R, z)

= 0

A similar analysis shows that all other non-diagonal elements of T , Π, and
W have to be zero.

In addition, because of symmetry considerations we must have that
Txx = Tyy , Πxx = Πyy , and Wxx = Wyy .



Flattening of Oblate Spheroids II
Given these symmetries, the only independent, non-trivial virial equations are

2Txx + Πxx + Wxx = 0, 2Tzz + Πzz + Wzz = 0

Taking the ratio we find that

2Txx+Πxx

2Tzz+Πzz
= Wxx

Wzz

The usefulness of this equation lies in the fact that, for density distributions
that are constant on similar concentric spheroids, i.e., ρ = ρ(m2), the ratio
Wxx/Wzz depends only on the axis ratio c/a of the spheroids, and is
independent of the density profile! For an oblate body, to good approximation

Wxx

Wzz
'

(

c
a

)−0.9

Let us start by considering isotropic, oblate rotators.

Then Πxx = Πzz = Mσ̃2, Tzz = 0 and Txx + Tyy = 2Txx = 1
2
Mṽ2.

Here M is the total mass, σ̃2 is the mass-weighted rms-average of the
intrinsic one-dimensional velocity dispersion, and ṽ2 is the mass-weighted
rms rotation velocity.



Flattening of Oblate Spheroids III
Thus, for an isotropic, oblate rotators we have that

1

2
Mṽ2+Mσ̃2

Mσ̃2
'

(

c
a

)−0.9

which reduces to

ṽ
σ̃

'
√

2[(c/a)−0.9 − 1]

This specifies the relation between the flattening of the spheroid and the
ratio of streaming motion to random motion. Note that you need a rather
large amount of rotation to achieve only modest flattening: c/a = 0.7
requires ṽ ∼ 0.9σ̃

Next consider a non-rotating, anisotropic, oblate system:

In this case Πxx = Mσ̃2
xx and Πzz = Mσ̃2

zz , and the virial theorem
gives that

σ̃zz

σ̃xx
'

(

c
a

)0.45

Now a flattening of c/a = 0.7 requires only a small anisotropy of
σ̃zz/σ̃xx ' 0.85



Flattening of Oblate Spheroids IV
Finally, consider the general case of rotating, anisotropic, oblate systems

Now we have Πzz = (1 − δ)Πxx = (1 − δ)Mσ̃2, Tzz = 0 and

2Txx = 1
2
Mṽ2, where we have introduced the anistropy parameter δ < 1.

In this case the virial theorem gives

ṽ
σ̃

'
√

2[(1 − δ) (c/a)−0.9 − 1]

This shows that observations of ṽ/σ̃ and the ellipticity ε = 1 − (c/a)
allow us to test whether elliptical galaxies are supported by rotation or by
anisotropic presssure.

A potential problem is that we can not directly measure ṽ nor σ̃. Rather, we
measure properties that are projected along the line-of-sight. Furthermore, in
general we don’t see a system edge-on but under some unknown inclination
angle i. Note that i also affects the measured v and σ. As shown in Binney
& Tremaine, the overall effect is to move a point on the oblate rotator line
mainly along that line.



Flattening of Oblate Spheroids V
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Oblate Isotropic Rotators

Solid Circles:   low−luminosity ellipticals
Open Circles:  luminous ellipticals

(from: Davies et al. 1983)

Observations reveal a dichotomy: luminous ellipticals are supported by
anisotropic pressure, while fainter ellipticals (and bulges) are consistent with
being oblate, isotropic rotators.

NOTE: If luminous ellipticals are anisotropic, there is no good reason why
they should be axisymmetric: massive ellipticals are triaxial



The Jeans Theorem I
RECALL: An integral of motion is a function I(~x, ~v) of the phase-space
coordinates that is constant along all orbits, i.e.,

dI
dt

= ∂I
∂xi

dxi

dt
+ ∂I

∂vi

dvi

dt
= ~v · ~∇I − ~∇Φ · ∂I

∂~v
= 0

Compare this to the CBE for a steady-state (static) system:

~v · ~∇f − ~∇Φ · ∂f
∂~v

= 0

Thus the condition for I to be an integral of motion is identical with the
condition for I to be a steady-state solution of the CBE. Hence:

Jeans Theorem Any steady-state solution of the CBE depends on the
phase-space coordinates only through integrals of motion. Any function of
these integrals is a steady-state solution of the CBE.

PROOF: Let f be any function of the n integrals of motion I1, I2, ...In then

df
dt

=
n
∑

k=1

∂f
∂Ik

dIk

dt
= 0

which proofs that f satisfies the CBE.



The Jeans Theorem II
More useful than the Jeans Theorem is the Strong Jeans Theorem, which is
due to Lynden-Bell (1962).

Strong Jeans Theorem The DF of a steady-state system in which almost all

orbits are regular can be written as a function of the independent isolating
integrals of motion, or of the action-integrals.

Note that a regular orbit in a system with n degrees of freedom is uniquely,
and completely, specified by the values of the n isolating integrals of motion
in involution. Thus the DF can be thought of as a function that expresses the
probability for finding a star on each of the phase-space tori.

We first consider an application of the Jeans Theorem to Spherical Systems
As we have seen, any orbit in a spherical potential admits four isolating
integrals of motion: E, Lx, Ly, Lz .

Therefore, according to the Strong Jeans Theorem, the DF of any†

steady-state spherical system can be expressed as f = f(E, ~L).

† except for point masses and uniform spheres, which have five isolating
integrals of motion



Jeans Theorem & Spherical Systems
If the system is spherically symmetric in all its properties, then

f = f(E, L2) rather than f = f(E, ~L): ie., the DF can only depend on
the magnitude of the angular momentum vector, not on its direction.

Contrary to what one might naively expect, this is not true in general. In fact,
as beautifully illustrated by Lynden-Bell (1960), a spherical system can rotate
without being oblate.

Consider a spherical system with f(E, ~L) = f(E, −~L). In such a system,
for each star S on a orbit O, there is exactly one star on the same orbit O
but counterrotating with respect to S. Consequently, this system is perfectly
spherically symmetric in all its properties.

Now consider all stars in the z = 0-plane, and revert the sense of all those
stars with Lz < 0. Clearly this does not influence ρ(r), but it does give the
system a net sense of rotation around the z-axis.

Thus, although a system with f = f(E, L2) is not the most general case,

systems with f = f(E, ~L) are rarely considered in galactic dynamics.



Isotropic Spherical Models I
An even simpler case to consider is the one in which f = f(E).

Since E = Φ(~r) + 1
2
[v2

r + v2
θ + v2

φ] we have that

〈v2
r〉 = 1

ρ

∫

dvrdvθdvφ v2
r f

(

Φ + 1
2
[v2

r + v2
θ + v2

φ]
)

〈v2
θ〉 = 1

ρ

∫

dvrdvθdvφ v2
θ f

(

Φ + 1
2
[v2

r + v2
θ + v2

φ]
)

〈v2
φ〉 = 1

ρ

∫

dvrdvθdvφ v2
φ f

(

Φ + 1
2
[v2

r + v2
θ + v2

φ]
)

Since these equations differ only in the labelling of one of the variables of
integration, it is immediately evident that 〈v2

r〉 = 〈v2
θ〉 = 〈v2

φ〉.

Assuming that f = f(E) is identical to assuming that the system is isotropic

Note that from

〈vi〉 = 1
ρ

∫

dvrdvθdvφ vi f
(

Φ + 1
2
[v2

r + v2
θ + v2

φ]
)

it is also immediately evident that 〈vr〉 = 〈vθ〉 = 〈vφ〉 = 0. Thus, similar

as for a system with f = f(E, L2) a system with f = f(E) has no net
sense of rotation.



Isotropic Spherical Models II
In what follows we define the relative potential Ψ ≡ −Φ + Φ0 and relative

energy E = −E + Φ0 = Ψ − 1
2
v2. In general one chooses Φ0 such that

f > 0 for E > 0 and f = 0 for E ≤ 0

Now consider a self-consistent, spherically symmetric system with
f = f(E). Here self-consistent means that the potential is due to the
system itself, i.e.,

∇2Ψ = −4πGρ = −4πG
∫

f(E)d3~v

(note the minus sign in the Poisson equation), which can be written as

1
r2

d
dr

(

r2 dΨ
dr

)

= −16π2G
Ψ
∫

0

f(E)
√

2(Ψ − E) dE

Note: Here we have chosen Φ0 so that Ψ(r → ∞) = 0. In systems with
infinite total mass, such as the logarithmic potential or the isothermal
sphere, the system is more conveniently normalized such that

Ψ(r → ∞) = −∞. In that case
∫ Ψ

0
dE needs to be replace by

∫ Ψ

−∞ dE .



Isotropic Spherical Models III
This relation may be regarded either as non-linear equation for Ψ(r) given
f(E), or as linear equation for f(E) given Ψ(r).

“from ρ to f ”

As an example, consider a stellar-dynamical system with a DF

f(E) = ρ1

(2πσ2

0
)3/2

exp
(

Ψ− 1

2
v2

σ2

0

)

The corresponding density is

ρ(Ψ) = 4π

√
2Ψ
∫

0

f(E)v2dv = 4π
Ψ
∫

0

f(E)
√

2(Ψ − E)dE = ρ1e
Ψ/σ2

0

The Poisson equation reads

1
r2

d
dr

(

r2 dΨ
dr

)

= −4πGρ1e
Ψ/σ2

0 ⇒ dΨ
dr

= −4πGρ1

r2

r
∫

0

r2eΨ/σ2

0dr

Inspection shows that the solution for Ψ(r) and the corresponding ρ(r) are

Ψ(r) = −2σ2
0lnr ρ(r) =

σ2

0

2πGr2

which is the potential-density pair of a singular isothermal sphere.



Isotropic Spherical Models IV
Note that the DF of the singular isothermal sphere implies that

f(v) ∝ e
− v2

2σ2

0

which is identical to a Maxwell-Boltzmann distribution, if we set σ2
0 = kBT

m
.

Therefore, the structure of a singular isothermal sphere is identical to that of
an isothermal self-gravitating sphere of gas.

The isothermal nature of this system becomes evident if we consider the
Jeans equation. For a system with f = f(E) there is only one non-trivial
Jeans equation:

1
ρ

dρσ2

dr
= dΨ

dr

where σ2 ≡ 〈v2
r〉 = 〈v2

θ〉 = 〈v2
φ〉.

Substituting the expressions for ρ and Ψ this yields

σ2(r) = σ2
0

thus the local velocity dispersion, which is related to the “temperature”, is
independent of r.



Eddington’s Formula
“from f to ρ”

Using that Ψ is a monotonic function of r, so that ρ can be regarded as a
function of Ψ, we have

ρ(Ψ) =
∫

fd3~v = 4π
Ψ
∫

0

f(E)
√

2(Ψ − E)dE

differentiating both sides with respect to Ψ yields

1√
8π

dρ
dΨ

=
Ψ
∫

0

f(E) dE√
Ψ−E

which is an Abel integral equation, whose solution is

f(E) = 1√
8π2

d
dE

E
∫

0

dρ
dΨ

dΨ√E−Ψ

This is called Eddington’s formula, which may also be written in the form

f(E) = 1√
8π2

[

E
∫

0

d2ρ
dΨ2

dΨ√E−Ψ
+ 1√

E

(

dρ
dΨ

)

Ψ=0

]



Eddington’s Formula
Given a spherically symmetric density distribution, which can be written as
ρ = ρ(Ψ) (which is not always possible), Eddington’s formula yields a
corresponding DF f = f(E).

Note, however, that there is no guarantee that the solution for f(E) satisfies
the physical requirement that f ≥ 0 for all E .

Using Eddington’s formula

f(E) = 1√
8π2

d
dE

E
∫

0

dρ
dΨ

dΨ√E−Ψ

we see that the requirement f(E) ≥ 0 is identical to the the requirement
that the function

E
∫

0

dρ
dΨ

dΨ√E−Ψ

is an increasing function of E .

If a density distribution ρ(r) does not satisfy this requirement, then the
model obtained by setting the anisotropy parameter β = 0 [i.e., by
assuming that f = f(E)] and solving the Jeans Equations is unphysical.



Anisotropic Spherical Models I
In the more general case, spherical systems (with spherical symmetry in all
their properties) have f = f(E, L2).

These models are anisotropic, in that 〈v2
r〉 6= 〈v2

θ〉 = 〈v2
φ〉.

Anisotropic spherical models are non-unique: many different f(E, L2) can
correspond to a given ρ(r) and Ψ(r). These models differ, though, in their
dynamic properties. No equivalent of the Edddington Formula thus exists,
that allows to compute f(E, L2) given ρ(r).

Additional assumptions need to be made. For example, Kent & Gunn (1982)

discussed models with f(E, L2) = g(E)L−2β , which have a constant
anisotropy, i.e., β(r) = β.

An other example are the so called Osipkov-Merritt models (Osipkov 1979;
Merritt 1985) were the assumption is made that f(E, L2) = f(Q) with

Q = E − L2

2r2
a

Here ra is the so-called anisotropy radius.



Anisotropic Spherical Models II
The usefulness of the Osipkov-Merritt models becomes apparent from

ρQ(r) ≡
(

1 + r2

r2
a

)

ρ(r) = 4π
Ψ
∫

0

f(Q)
√

2(Ψ − Q)dQ

Thus [ρQ(r), f(Q)] are similarly related as [ρ(r), f(E)] so that we may
use Eddington’s formula to write

f(Q) = 1√
8π2

d
dQ

Q
∫

0

dρQ

dΨ
dΨ√
Q−Ψ

For Osipkov-Merritt models one can show that

β(r) = r2

r2+r2
a

Thus, these models are isotropic for r � ra, become radially anisotropic at
around ra, and become competely radial at large r.

Since purely radial orbits contribute density at the center, models with
constant density cores can only have DFs of the Osipkov-Merritt form, i.e.,
f = f(E, L2) = f(Q), for sufficiently large ra. Alternatively, if ra is
relatively small, the (self-consistent) ρ(r) needs to have a central cusp.



Anisotropic Spherical Models III
Next we consider the family of Quasi-Separable DFs (Gerhard 1991):

f(E, L2) = g(E) h(x) x = L
L0+Lc(E)

with L0 a constant, and Lc(E) the angular momentum of the circular orbit
with energy E .

Here g(E) controls the distribution of stars between energy surfaces, while
the circularity function h(x) describes the distribution of stars over orbits of
different angular momenta on surfaces of constant E .

Depending on the choise for h(x) one can construct models with different
anisotropies. If h(x) decreases with increasing x, the model will be radially
anisotropic, and vice versa.

Once a choise for h(x) is made, one can (numerically) obtain g(E) for a
given ρ(r).

All these various models are useful to explore how different orbital
anisotropies impact on observables, such as the line-of-sight velocity
distributions (LOSVDs).



Anisotropic Spherical Models IV

Velocity profiles, L(v), for the outer parts of spherical f(E, L2) models.
Results are shown for β = ∞ (circular orbits), −1, 0 (isotropic model), 0.5,
and 1 (radial orbits). The unit of velocity is the velocity dispersion, which is
different for each curve. (from: van der Marel & Franx 1993)

Velocity profiles are not expected to be Gaussian



Spherical Models: Summary I
In its most general form, the DF of a static, spherically symmetric model has

the form f = f(E, ~L). From the symmetry of individual orbits one can see
that one always has to have

〈vr〉 = 〈vθ〉 = 0 〈vrvφ〉 = 〈vrvθ〉 = 〈vθvφ〉 = 0

This leaves four unknowns: 〈vφ〉, 〈v2
r〉, 〈v2

θ〉, and 〈v2
φ〉

If one makes the assumption that the system is spherically symmetric in all

its properties then f(E, ~L) → f(E, L2) and

〈vφ〉 = 0 〈v2
θ〉 = 〈v2

φ〉

In this case the only non-trivial Jeans equation is

1
ρ

∂(ρ〈v2

r〉)
∂r

+ 2
β〈v2

r〉
r

= −dΦ
dr

with the anisotropy parameter defined by

β(r) = 1 − 〈v2

r〉(r)

〈v2
r〉(r)



Spherical Models: Summary II
Many different models, with different orbital anisotropies, can correspond to
the same density distribution. Examples of models are:

• f(E, L2) = f(E) isotropic model, i.e., β = 0

• f(E, L2) = g(E)δ(L) radial orbits only, i.e. β = 1

• f(E, L2) = g(E)δ[L − Lc(E)] circular orbits only, i.e., β = −∞
• f(E, L2) = g(E)L−2β constant anisotropy, i.e. β(r) = β

• f(E, L2) = g(E)h(L) anisotropy depends on circularity function h

• f(E, L2) = f(E + L2/2r2
a) center isotropic, outside radial

Suppose I have measured the surface brightness profile Σ(R) and the

line-of-sight velocity dispersion σ2
p(R). Depending on the assumption

regarding β(r) these data imply very different mass distributions M(r).
One can (partially) break this mass-anisotropy degeneracy by using
information regarding the LOSVD shapes.
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