
Orbits in Central Force Fields I
Consider the central force field F (r) associated with a spherical density
distribution ρ(r).

As we have seen before, the orbits are planar, so that we consider the polar
coordinates (r, θ)

The equations of motion are: d2~r
dt2

= F (r)~er

Solving these requires a careful treatment of the unit vectors in polar
coordinates:

~er = − cos θ~ex + sin θ~ey

~eθ = − sin θ~ex + cos θ~ey

d~r
dt

= d
dt

(r cos θ~ex + r sin θ~ey)

= ṙ cos θ~ex − rθ̇ sin θ~ex + ṙ sin θ~ey + rθ̇ cos θ~ey

= ṙ~er + rθ̇~eθ

and similarly one obtains that

d2~r
dt2

= (r̈ − rθ̇2)~er + (2ṙθ̇ + rθ̈)~eθ



Orbits in Central Force Fields II
We thus obtain the following set of equations of motions:

r̈ − rθ̇2 = F (r) = −dΦ
dr

2ṙθ̇ + rθ̈ = 0

Multiplying the second of these equations with r yields, after integration, that
d
dt

(r2θ̇) = 0. This simply expresses the conservation of the orbit’s angular

momentum L = r2θ̇, i.e., the equations of motion can be written as

r̈ − rθ̇2 = −dΦ
dr

r2θ̇ = L = constant

In general these equations have to be solved numerically. Despite the very
simple, highly symmetric system, the equations of motion don’t provide
much insight. As we’ll see later, more direct insight is obtained by focussing
on the conserved quantities. Note also that the equations of motion are
different in different coordinate systems: in Cartesian coordinates (x, y):

ẍ = Fx = −∂Φ
∂x

ÿ = Fy = −∂Φ
∂y



Orbits in Central Force Fields III
As shown before, one can use the second equation of motion (in polar

coordinates) to eliminate θ̇ in the first, which yields the radial energy
equation

1
2
ṙ2 + J2

2r2 + Φ(r) = E

which can be rewritten as

dr
dt

= ±
√

2[E − Φ(r)] − J2

2r2

where the ± sign is required because r can both increase and decrease.
Solving for the turn-around points, where dr/dt = 0, yields

1
r2 = 2[E−Φ(r)]

−J2

which has two solutions: the apocenter r+ and the pericenter r− ≤ r+.
These radii reflect the maximum and minimum radial extent of the orbit.

It is customary to define the orbital eccentricity as

e =
r+ − r−

r+ + r−

where e = 0 and e = 1 correspond to circular and radial orbits, resp.



The Lagrangian
The equations of motion as given by Newton’s second law depend on the
choice of coordinate system

Their derivation involves painful vector calculus when curvi-linear
coordinates are involved

In the Lagrangian formulation of dynamics, the equations of motion are valid
for any set of so-called generalized coordinates (q1, q2, .., qn), with n the
number of degrees of freedom

Generalized coordinates are any set of coordinates that are used to describe
the motion of a physical system, and for which the position of every particle
in the system is a function of these coordinates and perhaps also time:
~r = ~r(qi, t). If ~r = ~r(qi) the system is said to be natural.

Define the Lagrangian function: L = T − V

with T and V the kinetic and potential energy, respectively.

In Cartesian coordinates, and setting the mass m = 1, we have

L = 1
2
(ẋ2 + ẏ2 + ż2) − Φ(x, y, z)

In Generalized coordinates we have that L = L(qi, q̇i).



Actions and Hamilton’s Principle

Define the action integral (also just called the action)

I =
∫ t1

t0
L dt

which is the integral of the Lagrangian along a particle’s trajectory as it
moves from time t0 to t1.

Hamilton’s Principle, also called Principle of least action: The equations of
motion are such that the action integral is stationary (i.e., δI = 0) under
arbitrary variations δqi which vanish at the limits of integration t0 to t1.

Note that these stationary points are not necessarily minima. They may also
be maxima or sadle points.

In order to derive these equations of motion, we first familiarize ourselves
with the calculus of variations



Calculus of Variations I
We are interested in finding the stationary values of an integral of the form

I =
x1
∫

x0

f(y, ẏ)dx

where f(y, ẏ) is a specified function of y = y(x) and ẏ = dy/dx.

x(0)

x(1)
y

x

y(x)δy

Consider a small variation δy(x), which vanishes at the endpoints of the
integration interval: δy(x0) = δy(x1) = 0



Calculus of Variations II
Using that

δf = ∂f

∂y
δy + ∂f

∂ẏ
δẏ

with δẏ = d
dx

δy(x), the stationary values obey

δI =
x1
∫

x0

[

∂f

∂y
δy + ∂f

∂ẏ
d
dx

δy
]

dx = 0

Using integration by parts, and δy(x0) = δy(x1) = 0, this reduces to

δI =
x1
∫

x0

[

∂f

∂y
+ d

dx

(

∂f

∂ẏ

)]

δy dx = 0

which yields the so-called Euler-Lagrange equations

∂f

∂y
− d

dx

(

∂f

∂ẏ

)

= 0

These are second-order differential equations for y(x), whose solutions
contain two arbitrary constants that may be determined form the known
values of y at x0 and x1.



The Lagrangian Formulation I
Application of the Euler-Lagrange equations to the Lagrangian L(qi, q̇i)
yields

∂L

∂qi
− d

dt

(

∂L

∂q̇i

)

= 0

which are the Lagrange equations (one for each degree of freedom), which
represent the equations of motion according to Hamilton’s principle. Note
that they apply to any set of generalized coordinates

In addition to the generalized coordinates we also define the generalized
momenta pi (also called conjugate momenta) and the generalized forces Fi:

pi ≡ ∂L

∂q̇i
Fi ≡ ∂L

∂qi

With these definitions the Lagrange equations reduce to

ṗi = ∂L

∂qi
= Fi

NOTE: in general pi and Fi are not components of the momentum vector ~p

or the force vector ~F !!! Whenever qi is an angle, the conjugate momentum
pi is an angular momentum.



The Lagrangian Formulation II
As an example, let’s consider once again motion in a central force field. Our
generalized coordinates are the polar coordinates (r, θ), and the Lagrangian
is

L = 1
2
ṙ2 + 1

2
r2θ̇2 − Φ(r)

The Lagrange equations are

∂L

∂r
− d

dt

(

∂L

∂ṙ

)

= 0 ⇒ rθ̇2 − ∂Φ
∂r

− d
dt

(ṙ) = 0 ⇒ r̈ − rθ̇2 = −∂Φ
∂r

∂L

∂θ
− d

dt

(

∂L

∂θ̇

)

= 0 ⇒ − d
dt

(r2θ̇) = 0 ⇒ r2θ̇ = L = cst

Note that the Lagrangian formulation allows you to write down the equations
of motion much faster than using Newton’s second law!



The Hamiltonian Formulation I
The Hamiltonian H(qi, pi) is related to the Lagrangian L(qi, q̇i) via a
Legendre Transformation

In general, a Legendre Transformation is a transformation of a function

f(x, y) to g(u, y), where u = ∂f

∂x
and ∂g

∂u
= x

g(u, y) = f − u x

NOTE: You might be familiar with Legendre Transformations from
Thermodynamics where they are used to compute different thermodynamic
potentials from the internal energy U = U(S, V ), such as

enthalpy: H = H(S, p) = U + p V

Helmholtz free energy: F = F (T, V ) = U − T S

Using a similar Legendre transformation we write the Hamiltonian as

H(~q, ~p, t) =
n
∑

i=1

pi q̇i(~q, ~p) − L(~q, ~̇q(~q, ~p), t)

To compute H(~q, ~p, t), first compute L(~q, ~̇q, t), next compute the

conjugate momenta pi = ∂L/∂q̇i, compute H = ~p · ~̇q − L(~q, ~̇q, t) and
finally express the q̇i in terms of ~p and ~q



The Hamiltonian Formulation II
Differentiating H with respect to the conjugate momenta yields

∂H

∂pj
= q̇j +

n
∑

i=1

pi
∂q̇i

∂pj
−

n
∑

i=1

∂L

∂q̇i

∂q̇i

∂pj

The second and third terms vanish since pi = ∂L/∂q̇i, so that we obtain
that ∂H/∂pj = q̇j . Similarly we obtain that

∂H

∂qj
=

n
∑

i=1

pi
∂q̇i

∂qj
− ∂L

∂qj
−

n
∑

i=1

∂L

∂q̇i

∂q̇i

∂qj

Here the first and third terms cancel, and since the Lagrange equations tell
us that ∂L/∂qj = ṗj , we obtain that ∂H/∂qj = −ṗj .

This yields the Hamiltonian equations of motion

∂H

∂pi
= q̇i

∂H

∂qi
= −ṗi

Note that whereas Lagrange’s equations are a set of n second-order
differential equations, Hamilton’s equations are a set of 2n first-order
differential equations. Although they are easier to solve, deriving the
Hamiltonian itself is more involved.



The Hamiltonian Formulation III
The Hamiltonian description is especially useful for finding conserved
quantities, which will play an important role in describing orbits.

If a generalized coordinate, say qi, does not appear in the Hamiltonian, then
the corresponding conjugate momentum pi is a conserved quantity!!!

In the case of motion in a fixed potential, the Hamiltonian is equal to the total
energy, i.e., H = E

DEMONSTRATION: for a time-independent potential Φ = Φ(~x) the

Lagrangian is equal to L = 1
2
~̇x2 − Φ(~x). Since ~p = ∂L/∂~̇x = ~̇x we

have that H = ~̇x · ~̇x − 1
2
~̇x2 + Φ(~x) = 1

2
~̇x2 + Φ(~x) = E

The 2n-dimensional phase-space of a dynamical system with n degrees of
freedom can be described by the generalized coordinates and momenta
(~q, ~p). Since Hamilton’s equations are first order differential equations, we
can determine ~q(t) and ~p(t) at any time t once the initial conditions
(~q0, ~p0) are given. Therefore, through each point in phase-space there
passes a unique trajectory Γ[~q(~q0, ~p0, t), ~p(~q0, ~p0, t)]. No two trajectories
Γ1 and Γ2 can pass through the same (~q0, ~p0) unless Γ1 = Γ2.



The Hamiltonian Formulation IV
As an example, let’s consider once more the motion in a central force field.
Our generalized coordinates are the polar coordinates (r, θ), and, as we

have seen before the Lagrangian is L = 1
2
ṙ2 + 1

2
r2θ̇2 − Φ(r)

The conjugate momenta are pr = ∂L

∂ṙ
= ṙ and pθ = ∂L

∂θ̇
= r2θ̇

so that the Hamiltonian becomes

H = 1
2
p2

r + 1
2

p2
θ

r2 + Φ(r)

Hamilton’s equations now become

∂H

∂r
= −

p2
θ

r3 + ∂Φ
∂r

= −ṗr
∂H

∂θ
= 0 = −ṗθ

∂H

∂pr
= pr = ṙ ∂H

∂pθ
= pθ

r2 = θ̇

which reduce to

r̈ − rθ̇2 = −∂Φ
∂r

pθ = r2θ̇ = cst

Note that θ does not appear in the Hamiltonian: consequently pθ is a
conserved quantity



Noether’s Theorem
In 1915 the German mathematician Emmy Noether proved an important
theorem which plays a trully central role in theoretical physics.

Noether’s Theorem: If an ordinary Lagrangian posseses some continuous,
smooth symmetry, then there will be a conservation
law associated with that symmetry.

• Invariance of L under time translation → energy conservation

• Invariance of L under spatial translation → momentum conservation

• Invariance of L under rotational translation → ang. mom. conservation

• Gauge Invariance of electric potential → charge conservation

Some of these symmetries are immediately evident from the Lagrangian:

• If L does not explicitely depend on t then E is conserved

• If L does not explicitely depend on qi then pi is conserved



Poisson Brackets I
DEFINITION: Let A(~q, ~p) and B(~q, ~p) be two functions of the generalized
coordinates and their conjugate momenta, then the Poisson bracket of A
and B is defined by

[A, B] =
n
∑

i=1

[

∂A
∂qi

∂B
∂pi

− ∂A
∂pi

∂B
∂qi

]

Let f = f(~q, ~p, t) then

df = ∂f

∂qi
dqi + ∂f

∂pi
dpi + ∂f

∂t
dt

where we have used the summation convention. This differential of f ,
combined with Hamilton’s equations, allows us to write

df

dt
= ∂f

∂t
+ ∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

which reduces to

df

dt
= ∂f

∂t
+ [f, H]

This is often called Poisson’s equation of motion. It shows that the
time-evolution of any dynamical variable is governed by the Hamiltonian
through the Poisson bracket of the variable with the Hamiltonian.



Poisson Brackets II
Using the Poisson brackets we can write

dH

dt
= ∂H

∂t
+ [H, H] = ∂H

∂t
= ∂L

∂t

where the latter equality follows from H = ~p · ~̇q − L.

For an equilibrium system with a time-independent potential, ∂Φ/∂t = 0,
we have that ∂H/∂t = 0 and thus also dH/dt = 0. Since in this case the
Hamiltonian is equal to the total energy, this simply reflects the energy
conservation. Note that for any conservative system, H does not explicitely
depend on time, and thus dH/dt = 0

With the help of the Poisson brackets we can write Hamilton’s equations in a
more compact form

q̇i = [qi, H] ṗi = [pi, H]

Note that it is explicit that these equations of motion are valid in any system
of generalized coordinated (q1, q2, .., qn) and their conjugate momenta
(p1, p2, .., pn). As we will see next, in fact Hamilton’s equations hold for
any so-called canonical coordinate system.



Canonical Coordinate Systems
If we write wi = qi and wn+i = pi with i = 1, .., n and we define the
symplectic matrix c as

cαβ ≡ [wα, wβ] =

{

±1 if α = β ∓ n

0 otherwise

with α, β ∈ [1, 2n], then

[A, B] =
2n
∑

α,β=1

cαβ
∂A

∂wα

∂B
∂wβ

DEFINITION: Any set of 2n phase-space coordinates {wα, α = 1, .., 2n}
is called canonical if [wα, wβ] = cαβ .

Hamilton’s equations can now be written in the extremely compact form:

ẇα = [wα, H]

which makes it explicit that they hold for any canonical coordinate system.

Note that the generalized coordinates and momenta (~q, ~p) form a canonical
coordinate system, since they obey the canonical commutation relations

[qi, qj] = [pi, pj ] = 0 [pi, qj ] = δij



Canonical Transformations I
Canonical Transformation: a transformation (~q, ~p) → (~Q, ~P ) between two
canonical coordinate systems that leaves the equations of motion invariant.

In order to reveal the form of these transformations, we first demonstrate the
non-uniqueness of the Lagrangian.

Consider a transformation L → L′ = L + dF
dt

where F = F (~q, t)

Under this transformation the action integral becomes

I′ =
t1
∫

t0

L′dt =
t1
∫

t0

Ldt +
t1
∫

t0

dF
dt

dt = I + F (t1) − F (t0)

Recall that the equations of motion correspond to δI = 0 (i.e., the action is
stationary). Since the addition of dF/dt only adds a constant, namely
F (t1) − F (t0) to the action, it leaves the equations of motion invariant.



Canonical Transformations II
Now consider our transformation (~q, ~p) → (~Q, ~P ) with corresponding

Lagrangians L(~q, ~̇q, t) and L′(~Q, ~̇Q, t).

We start by writing the Lagrangians in terms of the corresponding
Hamiltonians:

L(~q, ~p, t) = ~p · ~̇q − H(~q, ~p, t)

L′(~Q, ~P , t) = ~P · ~̇Q − H′(~Q, ~P , t)

In order for the equations of motion to be invariant, we have the requirement
that

L(~q, ~p, t) = L′(~Q, ~P , t) + dF
dt

⇔ dF
dt

= ~p · ~̇q − H(~q, ~p, t) −
[

~P · ~̇Q − H′(~Q, ~P , t)
]

⇔ dF = pidqi − PidQi + (H′ − H)dt

If we take F = F (~q, ~Q, t) then we also have that

dF = ∂F
∂qi

dqi + ∂F
∂Qi

dQi + ∂F
∂t

dt



Canonical Transformations III
Equating the two expressions for the differential dF yields the
transformation rules

pi = ∂F
∂qi

Pi = − ∂F
∂Qi

H′ = H + ∂F
∂t

The function F (~q, ~Q, t) is called the generating function of the canonical

transformation (~q, ~p) → (~Q, ~P )

In order to transform (~q, ~p) → (~Q, ~P ) one proceeds as follows:

• Find a function F (~q, ~Q) so that pi = ∂F/∂qi. This yields Qi(qj, pj)

• Substitute Qi(qj , pj) in Pi = ∂F/∂Qi to obtain Pi(qj, pj)

As an example consider the generating function F (~q, ~Q) = qiOi.
According to the transformation rules we have that

pi = ∂F
∂qi

= Qi Pi = − ∂F
∂Qi

= −qi

We thus have that Qi = pi and Pi = −qi: the canonical transformation
has changed the roles of coordinates and momenta, eventhough the
equations of motion have remained invariant! This shows that there is no
special status to either generalized coordinates or their conjugate momenta



Canonical Transformations IV
For reasons that will become clear later, in practice it is more useful to

consider a generating function of the form S = S(~q, ~P , t), i.e., one that
depends on the old coordinates and the new momenta.

To derive the corresponding transformation rules, we start with the

generating function F = F (~q, ~Q, t), and recall that

dF = pidqi − PidQi + (H′ − H)dt

using that PidQi = d(QiPi) − QidPi, we obtain

d(F + QiPi) = pidqi + QidPi + (H′ − H)dt

Defining the new generator S(~q, ~Q, ~P , t) ≡ F (~q, ~Q, t) + ~Q · ~P , for which

dS = ∂S
∂qi

dqi + ∂S
∂Qi

dQi + ∂S
∂Pi

dPi + ∂S
∂t

dt

Equating this to the above we find the transformation rules

pi = ∂S
∂qi

Qi = ∂S
∂Pi

∂S
∂Qi

= 0 H′ = H + ∂S
∂t

Note that the third of these rules implies that S = S(~q, ~P , t) as intended.



Canonical Transformations V
The potential strength of canonical transformations becomes apparent from
the following: Suppose one can find a canonical transformation

(~q, ~p) → (~Q, ~P ) such that H(~q, ~p) → H′( ~P ), i.e., such that the new
Hamiltonian does not explicitely depend on the new coordinates Qi.

Hamilton’s equation of motion then become

∂H
′

∂Qi
= −Ṗi = 0 ∂H

′

∂Pi
= −Q̇i

Thus, we have that all the conjugate momenta Pi are constant, and this in

turn implies that none of Q̇i can depend on time either. The equations of
motion in our new, canonical coordinate system are therefore extremely
simple:

Qi(t) = Ωit + ki Pi = constant

Here Ωi = ∂H′/∂Pi are constants and ki are integration constants. Any
generalized coordinate whose conjugate momentum is a conserved quantity,
is called a cyclic variable. The question that remains now is how to find the

generator S(q, P, t) of the canonical transformation (~q, ~p) → (~Q, ~P )
which leads to only cyclic variables Qi.



The Hamilton-Jacobi Equation I
Recall the transformation rules for the generator S(~q, ~P , t):

pi = ∂S
∂qi

Qi = ∂S
∂Pi

H′ = H + ∂S
∂t

If for simplicity we consider a generator that does not explicitely depend on

time, i.e., ∂S/∂t = 0 then we have that H(~q, ~p) = H′(~P ) = E. If we
now substitute ∂S/∂qi for pi in the original Hamiltonian we obtain

H
(

∂S
∂qi

, qi

)

= E

This is the Hamilton-Jacobi equation, which is a partial differential equation.

If it can be solved for S(~q, ~P ) than, as we have seen above, basically the
entire dynamics are solved.

Thus, for a dynamical system with n degrees of freedom, one can solve the
dynamics in one of the three following ways:

• Solve n second-order differential equations (Lagrangian formalism)

• Solve 2n first-order differential equations (Hamiltonian formalism)

• Solve a single partial differential equation (Hamilton-Jacobi equation)



The Hamilton-Jacobi Equation II
Although it may seem an attractive option to try and solve the
Hamilton-Jacobi equation, solving partial differential equations is in general
much more difficult than solving ordinary differential equations, and the
Hamilton-Jacobi equation is no exception.

However, in the specific case where the generator S is separable, i.e., if

S(~q, ~P ) =
n
∑

i=1

fi(qi)

with fi a set of n independent functions, then the Hamilton-Jacobi equation
splits in a set of n ordinary differential equations which are easily solved by
quadrature. The integration constants are related to the (constant) conjugate
momenta Pi.

A Hamiltonian is called ‘integrable’ if the Hamilton-Jacobi equation is separable

Integrable Hamiltonians are extremely rare. Mathematically speaking they
form a set of measure zero in the space of all Hamiltonians. In what follows,
we establish the link between so-called isolating integrals of motion and
whether or not a Hamiltonian is integrable.
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