
The Distribution Function I
We have seen that the dynamics of our discrete system of N point masses is
given by 6N equations of motion, which allow us to compute 6N unknowns
(~x, ~v) as function of time t.

The system is completely specified by 6N initial conditions (~x0, ~v0)

We can specify these initial conditions by defining the distribution function
(DF), also called the phase-space density

f(~x, ~v, t0) =
∑N
i=1 δ(~x− ~xi,0)

∑N
i=1 δ(~v − ~vi,0)

Once f(~x, ~v, t) is specified at any time t, we can infer f(~x, ~v, t′) at any
other time t′

The DF f(~x, ~v, t) completely specifies a collisionless system

In the case of our smooth density distribution we define the 6 dimensional
phase-space density :

f(~x, ~v, t)d3~xd3~v

NOTE: A necessary, physical condition is that f ≥ 0



The Distribution Function II
The density ρ(~x) follows from f(~x, ~v) by integrating over velocity space:

ρ(~x, t) =
∫ ∫ ∫

f(~x, ~v, t)d3~v

while the total mass follows from

M(t) =
∫ ∫ ∫

ρ(~x, t)d3~x =
∫

d3~x
∫

d3~vf(~x, ~v, t)

It is useful to think about the DF as a probability function (once normalized
byM ), which expresses the probability of finding a star in a phase-space
volume d3~xd3~v. This means we can compute the expectation value for any
quantityQ as follows:

〈Q(~x, t)〉 = 1
ρ(~x)

∫

d3~v Q(~x, ~v) f(~x, ~v, t)

〈Q(t)〉 = 1
M

∫

d3~x
∫

d3~v Q(~x, ~v) f(~x, ~v, t)

EXAMPLES:

RMS velocity: 〈v2
i 〉 = 1

M

∫

d3~x
∫

d3~v v2
i f(~x, ~v, t)

Velocity Profile: L(x, y, vz) =
∫ ∫ ∫

f(~x, ~v, t) dz dvx dvy

Surface Brightness: Σ(x, y) =
∫ ∫ ∫ ∫

f(~x, ~v, t) dz dvx dvy dvz



The Distribution Function III
Each particle (star) follows a trajectory in the 6D phase-space (~x, ~v), which
is completely governed by Newtonian Dynamics (for a collisionless system).

This trajectory projected in the 3D space ~x is called the orbit of the particle.

As we will see later, the Lagrangian time-derivative of the DF, i.e. the
time-derivative of f(~x, ~v, t) as seen when travelling through phase-space
along the particle’s trajectory, is

df
dt

= 0

This simple equation is the single most important equation for collisionless
dynamics. It completely specifies the evolution of a collisionless system, and
is called the Collisionless Boltzmann Equation (C.B.E.) or Vlasov equation.

The flow in phase-space is incompressible.

NOTE: Don’t confuse this with ∂f
∂t

= 0!!!!

This is the Eulerian time-derivative as seen from a fixed phase-space
location, which is only equal to zero for a system in steady-state equilibrium.



Collisionless Dynamics in a Nutshell

ρ(~x) =
∫

f(~x, ~v) d3~v

∇2Φ(~x) = 4πGρ(~x)
df
dt

= 0

The self-consistency problem of finding the orbits that reproduce ρ(~x) is
equivalent to finding the DF f(~x, ~v) which yields ρ(~x).

Problem: For most systems we only have constraints on a 3D projection of
the 6D distribution function.

Recall: L(x, y, vz) =
∫ ∫ ∫

f(~x, ~v, t) dz dvx dvy



Circular & Escape Velocities I
Consider a spherical density distribution ρ(r) for which the Poisson
Equation reads

1
r2

∂
∂r

(

r2 ∂Φ
∂r

)

= 4πGρ(r)

from which we obtain that

r2 ∂Φ
∂r

= 4πG
∫ r

0
ρ(r) r2 dr = GM(r)

withM(r) the enclosed mass. This allows us to write

~Fgrav(~r) = −~∇Φ(~r) = −dΦ
dr
~er = −GM(r)

r2
~er

Because gravity is a central, conservative force, both the energy and angular
momentum are conserved, and a particle’s orbit is confined to a plane.
Introducing the polar coordinates (r, θ) we write

E = 1
2
(ṙ2 + r2θ̇2) + Φ(r)

J = r2θ̇

Eliminating θ̇ we obtain the Radial Energy Equation:

1
2
ṙ2 + J2

2r2
+ Φ(r) = E



Circular & Escape Velocities II
In the co-rotating frame, the equation of motion reduces to a
one-dimensional radial motion under influence of the effective potential

U(r) = J2

2r2
+ Φ(r). The ‘extra’ term arises due to the non-inertial nature

of the reference frame, and corresponds to the centrifugal force

~Fcen = − d
dr

(

J2

2r2

)

~er = J2

r3
~er = vθ

2

r
~er

For a circular orbit we have that ~Fcen = −~Fgrav, so that we obtain the
circular speed.

vc(r) =
√

r dΦ
dr

=
√

GM(r)
r

Thus, rv2
c(r) measures the mass enclosed within radius r (in spherical

symmetry). Note that for a point mass vc(r) ∝ r−1/2, which is called a
Keplerian rotation curve

Escape Speed: The speed a particle needs in order to ‘escape’ to infinity

vesc(r) =
√

2|Φ(r)|

Recall: The energy per unit mass isE = 1
2
v2 + Φ(r). In order to escape to

infinity we needE ≥ 0, which translates into v2 ≥ 2|Φ(r)|



Projected Surface Density
Consider a spherical system with intrinsic, 3D luminosity distribution ν(r).
An observer, at large distance, observes the projected, 2D surface brightness
distribution Σ(R)

= distance along line−of−sight

= projected radius from centerR

z

To observer

r

z

R

Σ(R) = 2
∞
∫

0

ν(r)dz = 2
∞
∫

R

ν(r) r dr√
r2−R2

This is a so-called Abel Integral, for which the inverse is:

ν(r) = − 1
π

∞
∫

r

dΣ
dR

dR√
R2−r2

Thus, an observed surface brightness distribution Σ(R) of a spherical
system can be deprojected to obtain the 3D light distribution ν(r). However,
because it requires the determination of a derivative, it can be fairly noisy.



Spherical Potential-Density Pairs
To compute the potential of a spherical density distribution ρ(r) we can
make use of Newton’s Theorems

First Theorem A body inside a spherical shell of matter experiences
no net gravitational force from that shell.

Second Theorem The gravitational force on a body that lies outside a

closed spherical shell of massM is the same as that
of a point massM at the center of the shell.

Based on these two Theorems, we can compute Φ(r) by splitting ρ(r) in
spherical shells, and adding the potentials of all these shells:

Φ(r) = −4πG

[

1
r

r
∫

0

ρ(r′) r′2 dr′ +
∞
∫

r

ρ(r′) r′ dr′
]

Using the definition of the enclosed massM(r) = 4π
∫ r

0
ρ(r′) r′2 dr′

this can be rewritten as

Φ(r) = −GM(r)
r

− 4πG
∞
∫

r

ρ(r′) r′ dr′



Power-law Density Profiles I
Consider a spherical system with a simple power-law density distribution

ρ(r) = ρ0

(

r
r0

)−α

Σ(R) = 2
∞
∫

R

ρ(r) r dr√
r2−R2

= ρ0 r
α
0 B(α

2
− 1

2
, 1

2
)R1−α

M(< r) = 4π
r
∫

0

ρ(r′) r′2 dr′ =
4πρ0r

α
0

3−α r3−α (α < 3)

M(> r) = 4π
∞
∫

r

ρ(r′) r′2 dr′ =
4πρ0r

α
0

α−3
r3−α (α > 3)

NOTE: For α ≥ 3 the enclosed mass is infinite, while for α ≤ 3 the total
mass (r → ∞) is infinite: A pure power-law system can not exist in nature!

A more realistic density distribution consists of a double power-law:

At small radii: ρ ∝ r−α with α < 3

At large radii: ρ ∝ r−β with β > 3

B(x, y) is the so-called Beta-Function, which is related to the Gamma Function Γ(x)

B(x, y) = Γ(x) Γ(y)
Γ(x+y)

= B(y, x)



Power-law Density Profiles II
The potential of a power-law density distribution is:

Φ(r) =

{

4πGρ0r
α
0

(α−3)(α−2)
r2−α if 2 < α < 3

∞ otherwise

The circular and escape velocities of a power-law density distribution are:

v2
c(r) = r dΦ

dr
= GM(r)

r
=

4πGρ0r
α
0

3−α r2−α

v2
esc(r) = 2

α−2
v2
c (r)

α = 2: Singular Isothermal Sphere vc = constant (flat rotation curve)

α = 0: Homogeneous Sphere vc ∝ r (solid body rotation)

NOTE: For α > 3 you find that vc(r) falls off more rapidly than Keplerian.
How can this be? After all, a Keplerian RC corresponds to a delta-function
density distribution (point mass), which is the most concentrated mass
distribution possible....

answer: the circular velocity is defined via the gradient of the potential. As shown above,

Φ is only defined for 2 < α < 3, and therefore so does vc



Power-law Density Profiles II
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c(r) = r dΦ
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r
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α
0

3−α r2−α

v2
esc(r) = 2
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v2
c (r)
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Power-law Density Profiles: Summary

It is very useful to remember the following scaling relations:

ρ(r) ∝ r−α

Σ(R) ∝ R1−α

Φ(r) ∝ r2−α (2 < α < 3)

v2
c (r) ∝ r2−α (2 < α < 3)

M(< r) ∝ r3−α (α < 3)

M(> r) ∝ r3−α (α > 3)



Double Power-law Density Profiles
As we have seen, no realistic system can have a density distribution that is
described by a single power-law. However, many often used density
distributions have a double power-law.

ρ(r) = C
rγ(1+r1/α)(β−γ)α

At small radii, ρ ∝ r−γ , while at large radii ρ ∝ r−β. The parameterα
determines the ‘sharpness’ of the break.

NOTE: In order for the mass to be finite, γ < 3 and β > 3

(α, β, γ) Name Reference
(1, 3, 1) NFW Profile Navarro, Frenk & White, 1997, ApJ, 490, 493

(1, 4, 1) Hernquist Profile Hernquist, 1990, ApJ, 356, 359

(1, 4, 2) Jaffe Profile Jaffe, 1983, MNRAS, 202, 995

(1, 4, 3
2
) Moore Profile Moore et al., 1999, MNRAS, 310, 1147

(1
2
, 2, 0) Modified Isothermal Sphere Sacket & Sparke, 1990, ApJ, 361, 409

(1
2
, 3, 0) Modified Hubble Profile Binney & Tremaine, p. 39

(1
2
, 4, 0) Perfect Sphere de Zeeuw, 1985, MNRAS, 216, 273

(1
2
, 5, 0) Plummer Model Plummer, 1911, MNRAS, 71, 460



Ellipsoids I
Thus far we have only considered spherical systems. However, only very few
systems in nature are trully spherical. A more general, though still not fully
general, form to consider is the ellipsoid.

Without loosing generality, we will use the following definition of the
ellipsoidal radius

m2 = a2
1

3
∑

i=1

x2
i

a2
i

a1 ≥ a2 ≥ a3

Note that we have taken the three principal axes to be aligned with our
Cartesian coordinate system (x, y, z). If a1 > a2 > a3 then the ellipsoid
is said to be triaxial

A body whose isodensity surfaces are concentric ellipsoids is called an
ellipsoidal body.

Triaxiality Parameter: T ≡ 1−(a2/a1)
2

1−(a3/a1)2

A spheroid is an axisymmetric ellipsoid with two equal principal axes:

• Oblate Spheroid: a1 = a2 > a3 (T = 0) (i.e. Earth)

• Prolate Spheroid: a1 > a2 = a3 (T = 1) (i.e. Cigar)



Ellipsoids II
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For an oblate spheroid with axis ratio q = a3/a1, we define:

Ellipticity: ε = 1 − q

Eccentricity: e =
√

1 − q2



Ellipsoids III
A shell of similar, concentric ellipsoids is called a homoeoid. Note that the
perpendicular distance d between the two ellipsoids is a function of the
angular position.

In what follows we consider the family of ellipsoidal bodies whose density
distribution is the sum of thin homoeoids.

Homoeoid Theorem: The exterior isopotential surface of a homoeoidal
shell of negligble thickness are the spheroids that are confocal with the shell
itself. Insider the shell the potential is constant.

This implies that:

• The equipotentials of a homoeoid become spherical at large radii.

• The equipotential of a thin homoeoid has the same shape as the
homoeoid at the location of the homoeoid.

NOTE: the Homoeoid Theorem applies only to thin homoeoids. However, for
any homoeoid of any thickness we have:

Newton’s Third Theorem: A mass that is inside a homoeoid experiences

no net gravitational force from the homoeoid. Φinside = constant



Ellipsoids IV

Consider a spheroidal density distribution ρ(R, z) = ρ(m2) with

m2 = R2 + z2/q2, then the potential is:

Φ(R, z) = −2πGq arcsine
e

ψ(∞) + πGq
∞
∫

0

ψ(m) dτ

(τ+1)
√
τ+q2

Here e =
√

1 − q2 is the eccentricity,

m2 = R2

τ+1
+ z2

τ+q2

and

ψ(m) ≡
∫m2

0
ρ(m′2) dm′2

The corresponding circular velocity in the equatorial plane z = 0 is

v2
c(R) = R∂Φ

∂R
= 4πGq

R
∫

0

ρ(m2)m2 dm√
R2−m2e2



Ellipsoids V
• In general one finds that vc(R) increases with larger flattening q:

Flatter systems with the same spheroidal, enclosed mass have larger
circular speeds at givenR.

• Let ερ = 1 − q the ellipticity of the density distribution. One always
has that εΦ ≤ ερ. At a few characteristic radii, a reasonable rule of

thumb is that εΦ ∼ 1
3
ερ

We can generalize the equations on the previous page for a triaxial,
ellipsoidal density distribution ρ(~x) = ρ(m2) with

m2 = a2
1

3
∑

i=1

x2
i

a2
i

The corresponding potential is

Φ(~x) = −πG
(

a2 a3

a1

) ∞
∫

0

[ψ(∞)−ψ(m)] dτ√
(τ+a2

1)(τ+a
2
2)(τ+a

2
3)

with

m2

a2
1

=
3
∑

i=1

x2
i

τ+a2
i



Multipole Expansion I
In order to calculate the potential of an arbitrary density distribution, it is
useful to consider a Multipole expansion.
Using separation of variables, Φ(r, θ, φ) = R(r)P (θ)Q(φ), one can
write

Φ(r, θ, φ) = −4πG
∞
∑

l=0

l
∑

m=−l

Y m
l (θ,φ)

2l+1
[

1
r(l+1)

r
∫

0

ρlm(r′)r′(l+2)dr′ + rl
∞
∫

r

ρlm(r′) dr′

r′(l−1)

]

Here

ρlm(r) =
π
∫

0

sin θdθ
2π
∫

0

Ŷ ml (θ, φ)ρ(r, θ, φ)

and

Y ml (θ, φ) =
√

2l+1
4π

(l−|m|)!
(l+|m|)! P

|m|
l (cos θ)eimφ

with Pl(x) the associated Legendre functions, and Ŷ ml (θ, φ) the complex

conjugate of Y ml (θ, φ)



Multipole Expansion II
Monopole l = 0 1 term

Dipole l = 1 3 terms
Quadrupole l = 2 5 terms

Octopole l = 3 7 terms
Hexadecapole l = 4 9 terms

The monopole term describes the potential of a spherical system with

ρ(r, θ, φ) = ρ(r). Since Y 0
0 (θ, φ) = 1/

√
4π and ρ00 =

√
4πρ(r), the

(l = m = 0)-term of the multipole expansion is simply the equation for the
potential of a spherical system:

Φ(r) = −4πG

[

1
r

r
∫

0

ρ(r′) r′2 dr′ +
∞
∫

r

ρ(r′) r′ dr′
]

In electrostatics you have both positive and negative charges. Consequently,
the monopole term of the electrostatic potential often vanishes at large radii,
while the dipole terms comes to dominate.

In gravity we have only positive charges (mass). Consequently, the monopole
term always dominates at large radii, while the dipole term vanishes. The
quadrupole term depends on the flattening of the density distribution.



Potentials of Disks
Since many galaxies have a dominant, thin disk component, it is useful to
consider the potentials of infinitessimally thin disks.

There are three methods to compute the potential of an infinitesimally thin
disk:

• Use the formalism for ellipsoids, and apply the limit q → 0.
Cumbersome! involving complicated double integrals...this method is
seldomly used.

• Use the general definition of the potential, which results in an
expression in terms of Elliptic Integrals.

• Use the Laplace equation subject to appropriate boundary conditions
on the disk and at infinity.



Disk Potentials via Elliptic Integrals
The potential of a thin disk with surface density Σ(R) can be written as

Φ(~x) = −G
∫ ρ(~x′)

|~x−~x′|d
3~x′ = −G

∞
∫

0

Σ(R′)R′dR′
2π
∫

0

dφ′

|~x−~x′|

Expressing |~x− ~x′| in (R,φ = 0, z) and (R′, φ′, z′ = 0) yields

Φ(R, z) = − 2G√
R

∞
∫

0

K(k) kΣ(R′)
√
R′ dR′

with k2 ≡ 4RR′/[(R+R′)2 + z2]. The corresponding circular velocity
can be obtained from

R ∂φ
∂R

(R, z) = G√
R

∞
∫

0

dR′ kΣ(R′)
√
R′×

[

K(k) − 1
4

(

k2

1−k2

) (

R′

R
− R

R′
+ z2

RR′

)

E(k)
]

withK(k) andE(k) so called complete elliptic integrals. In principle the
evaluation at z = 0 is complicated (contains integrable singularity); in
practice it often suffices to approximate the above at small z



Disk Potentials via Bessel Functions
The potential of a thin disk with surface density Σ(R) can be written as

Φ(R, z) =
∞
∫

0

S(k) J0(kR) e−k|z|dk

with

S(k) = −2πG
∞
∫

0

J0(kR) Σ(R)R dR

Here J0(x) is the cylindrical Bessel function of order zero.
The corresponding circular velocity is given by

v2
c(R) = R

(

∂Φ
∂R

)

z=0
= −R

∞
∫

0

S(k) J1(kR) k dk

This method is simple, and most of the time well behaved. For an exponential

disk with Σ(R) = Σ0e
−R/Rd one finds

v2
c (R) = 4πGΣ0Rdy

2 [I0(y)K0(y) − I1(y)K1(y)]

with y = R
2Rd

and In(x) andKn(x) modified Bessel functions of the first

and second kinds
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