
Collisions & Encounters I
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Let A encounter B with an initial velocity v∞ and an impact parameter b.

A star S (red dot) in A gains energy wrt the center of A due to the fact that
the center of A and S feel a different gravitational force due to B.

Let ~v be the velocity of S wrt A then

dES

dt
= ~v · ~g[~rBS(t)] ≡ ~v ·

(

−~∇ΦB[~rAB(t)] − ~∇ΦB[~rBS(t)]
)

We define ~r0 as the position vector ~rAB of closest approach, which occurs
at time t0.



Collisions & Encounters II
If we increase v∞ then |~r0| → b and the energy increase

∆ES(t0) ≡
t0
∫

0

~v · ~g[~rBS(t)] dt

dimishes, simply because t0 becomes smaller. Thus, for a larger impact
velocity v∞ the star S withdraws less energy from the relative orbit between
A and B.

This implies that we can define a critical velocity vcrit, such that for
v∞ > vcrit galaxy A reaches ~r0 with sufficient energy to escape to infinity.
If, on the other hand, v∞ < vcrit then systems A and B will merge.

If v∞ � vcrit then we can use the impulse approximation to analytically
calculate the effect of the encounter.

In most cases of astrophysical interest, however, v∞ <∼ vcrit and we have
to resort to numerical simulations to compute the outcome of the encounter.
However, in the special case where MA � MB or MA � MB we can
describe the evolution with dynamical friction, for which analytical estimates
are available.



Dynamical Friction I
Consider the motion of a system with mass M through a medium consisting
of many individual ‘particles’ of mass m � M . As an example, think of a
satellite galaxy moving through the dark matter halo of its parent galaxy.
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Due to gravitational focussing M creates an overdensity of particles behind
its path (the wake). The backreaction of this wake on M is called dynamical
friction and causes M to slow down. Consequently, energy is transferred
from the massive to the less massive bodies: dynamical friction is a
manifestation of mass segregation.



Dynamical Friction II
Assuming, for simplicity, a uniform density medium with an isotropic velocity
distribution f(vm) of the particles m � M , then

~Fdf = M d~vM

dt
= −4πG2M2

v2
M

lnΛ ρ(< vM)

with lnΛ the Coulomb logarithm and

ρ(< vM) = 4π
vM
∫

0

f(vm)v2
mdvm

the mass density of background particles with velocities vm < vM .

The derivation of this equation (see B&T Sect. 7.1) is due to Chandrasekhar
(1943), and one therefore often speaks of Chandrasekhar dynamical friction.

Note that ~Fdf ∝ M2: the amount of material that is deflected (i.e., the
‘mass’ of the wake) is proportional to M and the gravitational force that this
wake exerts on M is proportional to M times its own mass.

Note that ~Fdf ∝ v−2
M in the limit of large vM , but ~Fdf ∝ vM in the limit of

small vM [i.e., for sufficiently small vM one may replace f(vm) with f(0)].

Note that ~Fdf is independent of m!



The Coulomb Logarithm
One has that Λ = bmax/bmin with bmin and bmax the minimum and
maximum impact parameters for which encounters can be considered
effective:

Encounters with b > bmax don’t cause a significant deflection, and these
therefore do not contribute significantly to the wake. Encounters with
b < bmin cause a very strong deflection so that these also do not contribute
to the wake.

We can estimate bmin as the impact parameter that corresponds to a close

encounter (see first lecture), and thus bmin ' GM
〈v2〉 with 〈v2〉1/2 the rms

velocity of the background particles.

The maximum impact parameter, bmax, is much harder to estimate (see
White 1976), and one typically simply takes bmax ' L with L the size of the
system.

Typical values that one encounters for the Coulomb Logarithm are
3 <∼ lnΛ <∼ 30.



Dynamical Friction: Local vs. Global
Note that Chandrasekhar Dynamical Friction is a purely local phenomenon:

The dynamical friction force ~Fdf depends only on the local density ρ(< v),
and the backreaction owes to a local phenomenon, namely wake-creation
due to gravitational focussing.

However, a system A can also experience dynamical friction due to a system
B when it is located outside of B (Lin & Tremaine 1983). Clearly, this friction
can not arise from a wake. Instead, it arises from torques between A and
stars/particles in B that are in resonance with A (Tremaine & Weinberg
1984).

(Weinberg 1989)

The extent to which dynamical friction is a local (wake) versus a global
(resonant-coupling) effect is still being debated.



Orbital Decay I
Consider a singular, isothermal sphere with density and potential given by

ρ(r) =
V 2

c

4πGr2 Φ(r) = V 2
c lnr

If we further assume that this sphere has, at each point, an isotropic and
Maxwellian velocity distribution, then

f(vm) = ρ(r)
(2πσ2)3/2 exp

[

− v2
m

2σ2

]

with σ = Vc/
√

2. Now consider a test-particle of mass M moving on a
circular orbit (i.e., vM = Vc) through this sphere. The Chandrasekhar
dynamical friction that this particle experiences is

Fdf = −4πlnΛG2M2ρ(r)
V 2

c

[

erf(1) − 2√
π
e−1

]

' −0.428 lnΛ GM2

r2

The test-particle has an angular momentum L = rvM , which it looses, due
to dynamical friction, at a rate

dL
dt

= r ∂vM

∂t
= r Fdf

M
= −0.428 lnΛ GM

r

Due to this angular momentum loss the test-particle moves to a smaller
radius, while it continues on circular orbits with vM = VC .



Orbital Decay II
The rate at which the radius changes follows from

Vc
dr
dt

= −0.428 lnΛ GM
r

Solving this differential equation subject to the initial condition r(0) = ri

one finds that the test-particle reaches the center after a time

tdf = 1.17
lnΛ

r2
i Vc

GM

As an example, consider the LMC. Assume for simplicity that the LMC moves
on a circular orbit at ri = 50 kpc, that the mass of the LMC is
M = 2 × 1010 M�, and that the MW can be approximated as a singular

isothermal sphere with Vc = 220 km s−1 and with a radius of
r = 200 kpc.

We then find that the LMC will reach the center of the MW halo after a time
tdf ' 7.26

lnΛ
Gyr. Using the approximation for Λ discussed before we find

that lnΛ ' 6, and thus tdf ' 1.2 Gyr.



Orbital Decay III
The derivation on the previous pages was for a circular orbit. We now focus
on the orbital decay of an eccentric orbit, whose eccentricity is defined as

e =
r+ − r−

r+ + r−

with r+ and r− the apo- and pericenter, respectively.

For simplicity, we once again focus on a singular isothermal sphere, for
which the radius of a circular orbit with energy E is given by

rc(E) = 1√
e
exp

(

E
V 2

c

)

We can express the angular momentum of an eccentric orbit in terms of the
orbit’s circularity

η ≡ L
Lc(E)

= L
rc(E)Vc

The circularity η is uniquely related to the orbital eccentricity e, with
de/dη < 0:

Circular orbit: η = 1 and e = 0

Radial orbit: η = 0 and e = 1

We now investigate how dynamical friction influences the orbit’s evolution.



Orbital Decay IV
Dynamical friction transfers both energy and angular momentum from the
test-particle to the particle’s that make up the halo. Let’s examin how this
influences the orbit’s eccentricity

de
dt

= de
dη

dη
dt

Using the definition of the orbital circularity we obtain

dη
dt

= d
dt

(

L
Lc(E)

)

= 1
Lc(E)

dL
dt

− L
L2

c(E)
∂Lc(E)

∂E
dE
dt

= η
[

1
L

dL
dt

− 1
V 2

c

dE
dt

]

where we have used that Lc(E) = rc(E)Vc. Using that L = rv⊥, with
v⊥ the velocity in the direction perpendicular to the radial vector, we find that

dE
dt

= v dv
dt

dL
dt

= r dv⊥

dt
= L

v
dv
dt

Combining all the above we finally find that

de
dt

= η
v

de
dη

[

1 −
(

v
Vc

)2
]

dv
dt

where dv/dt = Fdf/M < 0 (see van den Bosch et al. 1999).



Orbital Decay V
At pericenter we have that v > Vc. Since η > 0, de

dη
< 0, and dv

dt
< 0 we

thus have that de
dt

< 0; the eccentricity decreases and the orbit becomes
more circular.

However, at apocenter v < Vc and therefore de
dt

> 0: the orbit becomes
more eccentric during an apocentric passage.

The overall effect of dynamical friction on the orbit’s eccentricity, integrated
over an entire orbit, can not be obtained from inspection: numerical
simulations are required.

For realistic density distributions one finds that de
dt

∼ 0: contrary to what is
often claimed in the literature, dynamical friction does (in general) not lead to
circularization of the orbit (see van den Bosch et al. 1999).

As an example of an orbit that circularizes, consider a space-ship on an
eccentric orbit around the Earth. It only experiences a friction, due to the
Earth’s atmosphere, during a pericentric passage, and this causes the
‘grazing’ orbit of the space-ship to circularize.

Numerical simulations have shown that tdf ∝ η0.53.



Orbital Decay VI

van den Bosch et al. (1999)



Orbital Decay VII

van den Bosch et al. (1999)



The Impulse Approximation I
There are two kinds of encounters between collisionless systems that can be
treated analytically:

• Encounters of very unequal mass B Dynamical Friction

• Encounters of very high speed B Impulse Approximation

As we have seen before, when v∞ becomes larger, the effect of the
encounter diminishes. Therefore, for sufficiently large v∞ we can treat the
encounter as a perturbation.

The crucial assumption of the impulse approximation is that the tidal forces
due to the perturber act on a timescale � orbital time scale of the perturbed
stars, so that we may consider the star stationary during the encounter.

B No resonant effects

B Instantaneous change in velocity of each star

B Magnitude of ∆~v depends on location of star but not on its velocity

B If the encounter speed is sufficiently large then perturber moves in

B straight line with vp(t) = v∞~ey ≡ vp~ey and ~R(t) = (b, vpt, 0).

Note that the equations for vp(t) and ~R(t) define the coordinate system
that we will adopt in what follows.



The Impulse Approximation II
Consider a system P , which we call the perturber, encountering another

system S with an impact parameter b and an initial velocity v∞. Let ~R(t) be
the position vector of P from S and vp(t) the velocity of P wrt S.

z

y

x

S

θ

b’
b

R

P

In the large-v∞ limit we have the b′ ' b and vp(t) ' v∞~ey ≡ vp~ey so

that ~R(t) = (b, vpt, 0).

A star in S experiences a gravitational force due to P given by

~a∗(t) =
GMpf(R)~R

R3

with f(R) the fraction of P ’s mass that falls within R.



The Impulse Approximation III
We consider the case with b > max[Rp, Rs] with Rp and Rs the sizes of
P and S, respectively.

In this distant encounter approximation we have that f(R) = 1, and

∆~v∗ =
∞
∫

−∞
~a(t)dt

= GMp

∞
∫

−∞

(b,vpt,0)dt

(b2+v2
pt2)3/2

=
GMp

vp

(

∞
∫

−∞

b ds
(s2+b2)3/2 ,

∞
∫

−∞

s ds
(s2+b2)3/2 , , 0

)

=
GMp

vp

(

2
b
, 0, 0

)

=
2GMp

vpb
~ex

The ratio Mp/vp is called the collision strength. In impulse approximation
the mass and velocity of the perturber only enter through this ratio.

We can split this ∆~v∗ in two components: the component ∆~vS which
describes change in center of mass velocity of S, and the component ∆~v
wrt the systematic velocity of S.



The Impulse Approximation IV
Since we are interested in how P modifies the internal structure of S, we are
only interested in ∆~v.

Note that ∆~v arises due to the tidal forces on S, which arise from the fact
that the gravitational attraction of P is not uniform over S.

We define a rotating coordinate frame (x′, y′, z′) centered on the center of
S, and with the x′-axis pointing towards the instantaneous location of P .

Let ~r′ be the position vector of a star in S, and ~R = R~ex′ the position
vector of P .

The potential at ~r′ due to P is Φ(~r′) = − GMp

|~r′− ~R| .

R

r’ r’−R

ϕ

From the above figure one can see that

|~r′ − ~R|2 = (R − r′ cos φ)2 + r′2 sin2 φ = R2 − 2rR cos φ + r′2



The Impulse Approximation V
Using the series expansion 1√

1+x
= 1 − 1

2
x + 1·3

2·4x2 − 1·3·5
2·4·6x3 + ... this

yields

1

|~r′− ~R| = 1
R

[

1 − 1
2

(

−2r′

R
cos φ + r′2

R2

)

+ 3
8

(

−2r′

R
cos φ + r′2

R2

)2

+ ...

]

which allows us to write

Φ(~r′) = −GMp

R
− GMpr′

R2 cos φ − GMpr′2

R3

(

3
2
cos2 φ − 1

2

)

− ...

The first term is a constant and foes not yield any force.

The second term yields a uniform acceleration GMp

R2 ~ex′ directed towards P .

This is the term that causes the center of mass of S to change its velocity,
and is not of interest to us.

In the tidal approximation one considers the third term:

Φ3(~r
′) = −GMp

R3

(

3
2
r′2 cos2 φ − 1

2
r′2)

Using that r′ cos φ = x′ and that r′2 = x′2 + y′2 + z′2 we obtain

Φ3(x
′, y′, z′) = −GMp

2R3

(

2x′2 − y′2 − z′2)



The Impulse Approximation VI
The above allows us to write the tidal forces on S as

Fx′ =
2GMpx′

R3 Fy′ = −GMpy′

R3 Fz′ = −GMpz′

R3

These are related to the tidal forces in the (x, y, z) coordinate system:

Fx = Fx′ cos θ − Fy′ sin θ

Fy = Fx′ sin θ + Fy′ cos θ

Fz = Fz′

while (x′, y′, z′) are related to (x, y, z) according to

x′ = x cos θ − y sin θ

y′ = −x sin θ + y cos θ

z′ = z

so that we obtain, after some algebra

Fx = dvx

dt
=

GMp

R3

[

x (2 − 3 sin2 θ) + 3 y sin θ cos θ
]

Fy =
dvy

dt
=

GMp

R3

[

y (2 − 3 cos2 θ) + 3 x sin θ cos θ
]

Fz = dvz

dt
= −GMpz

R3



The Impulse Approximation VII
Integrating these equations over time yields the cumulative velocity changes

wrt the center of S. Using that ~R(t) = (b, vpt, 0), and thus cos θ = b/R

and sin θ = vpt/R we obtain

∆vx =
2GMpx

vpb2 ∆vy = 0 ∆vz = −2GMpz

vpb2

We thus have that ∆~v =
2GMp

vpb2 (x, 0, −z), and

∆E = 1
2

(~v + ∆~v)2 + Φ(~r′) − 1
2
~v2 − Φ(~r′) = ~v · ∆~v + 1

2
(∆v)2

Note that, in the impulse approximation, the potential energy does not
change during the encounter.

We are interested in computing ∆Etot which is obtained by integrating ∆E
over the entire system S.

First we note that the integral of the first term of ∆E typically is equal to
zero, by symmetry. Therefore

∆Etot = 1
2

∫

ρ(~r′)|∆~v|2d3~r′

=
2G2M2

p

v2
pb4

∫

ρ(~r′)(x2 + z2)d3~r′

=
2G2M2

p

v2
pb4 Ms〈x2 + z2〉



The Impulse Approximation VIII
Assuming spherical symmetry for S, so that

〈x2 + z2〉 = 2
3
〈x2 + y2 + z2〉 = 2

3
〈r2〉 we finally obtain

∆Etot = 4
3
G2Ms

(

Mp

vp

)2 〈r2〉
b4

As shown by Aguilar & White (1985), this derivation, which is originally due
to Spitzer (1958), is surprisingly accurate for encounters with
b >∼ 5max[rp, rs] (with rp and rs the median radii of P and S), even for

relatively slow collisions with v∞ ' 〈v2
s〉1/2.

The above shows that fast encounters pump energy into the systems
involved. This energy originates from the kinetic energy associated with the
orbit of P wrt S. Note that ∆Etot ∝ b−4, so that close encounters are far
more important that distant encounters.

As soon as the amount of energy pumped into S becomes comparable to its
binding energy, the system S will become tidally disrupted.

Some stars can be accelerated to velocities that exceed the local escape
velocity B encounters, even those that do not lead to tidal disruption, may
cause mass loss of S. In this case, the first terms of ∆E is not zero, and the
above impulse approximation has to be handled with care.



Return to Equilibrium
As we have seen, a fast encounter transfers orbital energy to the two systems
involved in the encounter, whose kinetic energy has subsequently increased.

After the encounter the systems are therefore no longer in virial equilibrium.
The systems now need to readjust themselves to find a new virial
equilibrium. Interestingly, this process changes the internal kinetic energy
more than did the encounter itself.

Let the initial kinetic and total energies of a system be T0 and E0,
respectively. According to the virial theorem we have that E0 = −T0.

Due to the encounter T0 → T0 + δT , and thus also E0 → E0 + δT .

Applying the virial theorem we obtain that after the relaxation the new kinetic
energy is

T1 = −E1 = −(E0 + δT ) = T0 − δT

Thus, the relaxation process decreases the kinetic energy by 2δT from
T0 + δT to T0 − δT0.

Similarly, the gravitational energy becomes less negative:

W1 = 2E1 = 2E0 + 2δT = W0 + 2δT

Since the gravitational radius rg = GM2/|W | the system will expand!



Heat Capacity of Gravitating Systems
As we have seen on the previous page, by pumping energy (‘heat’) into the
system, it has actually grown ‘colder’. This is a consequence of the negative
heat capacity of gravitational systems.

By analogy with an ideal gas we defined the temperature of a self-gravitating
system as

1
2
m〈v2〉 = 3

2
kBT

Unlike an isothermal gas, the temperature in a self-gravitating system is
typically a function of position. Therefore, we define the mean temperature as

〈T 〉 ≡ 1
M

∫

ρ(~x)T (~x)d3~x

and the total kinetic energy of a system of N particles is then

K = 3
2
NkB〈T 〉. According to the virial theorem we thus have that

E = −3
2
NkB〈T 〉.

This allows us to define the heat capacity of the system as

C ≡ dE
d〈T 〉 = −3

2
NkB

which is thus negative: by losing energy the system becomes hotter!



Heat Capacity of Gravitating Systems
Note that all systems in which the dominant forces are gravitational have a
negative heat capacity. This includes the Sun, where the stability of nuclear
burning is a consequence of C < 0: If the reaction rates become ‘too high’,
the excess energy input into the core makes the core expand and cool. This
makes the reaction rates drop, bringing the system back to equilibrium.

The negative specific heat also results in fascinating phenomena in
stellar-dynamical systems.

Consider a central density cusp. If the cusp is sufficiently steep one has that
σ(r) increases with radius: the center is colder than its surroundings.

Two-body interactions tend towards thermal equilibrium, which means that
they transport heat from outside to inside.

Since C < 0 ⇒ σ0 ↓ , i.e., the center becomes colder!

As a consequence ~∇T ↑ , and the heat flow becomes larger.

This leads to run-away instability, known as Gravothermal Catastrophe.

Thus, if radial temperature gradient exists, and two-body relaxation time is
sufficiently short (e.g., in globular clusters), the system can undergo core
collapse.
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