
Dynamics of Collisionless Systems
Summer Semester 2005, ETH Zürich

Frank C. van den Bosch



Useful Information
TEXTBOOK: Galactic Dynamics, Binney & Tremaine

Princeton University Press Highly Recommended

LECTURES: Wed, 14.45-16.30, HPP H2. Lectures will be in English

EXERSIZE CLASSES: to be determined

HOMEWORK ASSIGNMENTS: ± every other week

EXAM: Verbal (German possible), July/August 2005

GRADING: exam (2/3) plus homework assignments (1/3)

TEACHER: Frank van den Bosch (vdbosch@phys.ethz.ch), HPT G6

SUBSTITUTE TEACHERS:
Peder Norberg (norberg@phys.ethz.ch), HPF G3.1
Savvas Koushiappas (savvas@phys.ethz.ch), HPT G3



Outline

Lecture 1: Introduction & General Overview

Lecture 2: Cancelled

Lecture 3: Potential Theory

Lecture 4: Orbits I (Introduction to Orbit Theory)

Lecture 5: Orbits II (Resonances)

Lecture 6: Orbits III (Phase-Space Structure of Orbits)

Lecture 7: Equilibrium Systems I (Jeans Equations)

Lecture 8: Equilibrium Systems II (Jeans Theorem in Spherical Systems)

Lecture 9: Equilibrium Systems III (Jeans Theorem in Spheroidal Systems)

Lecture 10: Relaxation & Virialization (Violent Relaxation & Phase Mixing)

Lecture 11: Wave Mechanics of Disks (Spiral Structure & Bars)

Lecture 12: Collisions between Collisionless Systems (Dynamical Friction)

Lecture 13: Kinetic Theory I (Fokker-Planck Equation)

Lecture 14: Kinetic Theory II (Core Collapse)



Summary of Vector Calculus I
~A · ~B = scalar = | ~A| | ~B| cosψ = AiBi (summation convention)

~A× ~B = vector = εijk~eiAjBk (with εijk the Levi-Civita Tensor)

Useful to Remember

~A× ~A = 0
~A× ~B = − ~B × ~A
~A · ( ~A× ~B) = 0
~A · ( ~B × ~C) = ~B · ( ~C × ~A) = ~C · ( ~A× ~B)
~A× ( ~B × ~C) = ~B( ~A · ~C) − ~C( ~A · ~B)

( ~A× ~B) · ( ~C × ~D) = ( ~A · ~C)( ~B · ~D) − ( ~A · ~D)( ~B · ~C)

~∇ =vector operator= ( ∂
∂x
, ∂
∂y
, ∂
∂z

)

~∇S = gradS = vector
~∇ · ~A = div ~A = scalar
~∇ × ~A = curl ~A = vector



Summary of Vector Calculus II

Laplacian: ∇2 = ~∇ · ~∇ = scalar operator = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

∇2S = ~∇ · (~∇S) = scalar

∇2 ~A = (~∇ · ~∇) ~A = vector
~∇(~∇ · ~A) 6= ∇2 ~A = vector

~∇ × (~∇S) = 0 curl(gradS) = 0
~∇ · (~∇ × ~A) = 0 div(curl ~A) = 0
~∇ × (~∇ × ~A) = ~∇(~∇ · ~A) − ∇2 ~A

~∇(ST ) = S~∇T + T ~∇S
~∇ · (S ~A) = S(~∇ · ~A) + ~A · ~∇S
~∇ × (S ~A) = S(~∇ × ~A) − ~A× ~∇S
~∇ · ( ~A× ~B) = ~B · (~∇ × ~A) − ~A · (~∇ × ~B)



Integral Theorems I

Gradient Theorem: Let γ be a curve running from ~x0 to ~x1, d~l is the
directed element of length along γ, and φ(~x) is a scalar field then:

~x1
∫

~x0

~∇φ · d~l =
~x1
∫

~x0

dφ = φ(~x1) − φ(~x0)

It follows that
∮

~∇φ · d~l = 0

Divergence Theorem (Gauss’ Theorem): Let V be a 3D volume

bounded by a 2D surface S, and let ~A(~x) be a vector field, then:

∫

V
~∇ · ~A d3~x =

∫

S
~A · d2~S

Curl Theorem (Stokes’ Theorem): Let S be a 2D surface bounded by a

1D curve γ, and let ~A(~x) be a vector field, then:

∫

S
(~∇ × ~A) d2~S =

∮

γ
~A · d~l



Integral Theorems II

NOTE: Since a conservative force ~F can always be written as the gradient of
a scalar field φ, we have from the gradient theorem that

∮

~F · d~l = 0

From the curl theorem we immediately see that

~∇ × ~F = 0

We immediately infer that a conservative force is curl free, and that the

amount of work done (dW = ~F · d~r) is independent of the path taken.

From the divergence theorem we infer that

∫

V

φ~∇ · ~A d3~x =
∫

S

φ ~A · d2~S −
∫

V

~A · ~∇φ d3~x

which is the three-dimensional analog of integration by parts

∫

udv
dx

dx =
∫

d(uv) −
∫

v du
dx

dx



Curvi-Linear Coordinate Systems I
In addition to the Cartesian coordinate system (x, y, z), we will often work
with cylindrical (R,φ, z) or spherical (r, θ, φ) coordinate systems

Let (q1, q2, q3) denote the coordinates of a point in an arbitrary coordinate
system, defined by the metric tensor hij . The distance between (q1, q2, q3)

and (q1 + dq1, q2 + dq2, q3 + dq3) is

ds2 = hij dqi dqj (summation convention)

We will only consider orthogonal systems for which hij = 0 if i 6= j, so

that ds2 = h2
i dq2

i with

hi ≡ hii = | ∂~x
∂qi

|
The differential vector is

d~x = ∂~x
∂q1

dq1 + ∂~x
∂q2

dq2 + ∂~x
∂q3

dq3

The unit directional vectors are

~ei = ∂~x
∂qi
/| ∂~x
∂qi

| = 1
hi

∂~x
∂qi

so that d~x =
∑

i

hi dqi ~ei and d3~x = h1h2h3dq1dq2dq3.



Curvi-Linear Coordinate Systems II
The gradient:

~∇ψ = 1
hi

∂ψ
∂qi
~ei

The divergence:

~∇ · ~A = 1
h1h2h3

[

∂
∂q1

(h2h3A1) + ∂
∂q2

(h3h1A2) + ∂
∂q3

(h1h2A3)
]

The curl (only one component shown):

(~∇ × ~A)3 = 1
h1h2

[

∂
∂q1

(h2A2) − ∂
∂q2

(h1A1)
]

The Laplacian:

∇2ψ = 1
h1h2h3

[

∂
∂q1

(

h2h3

h1

∂ψ
∂q1

)

+ ∂
∂q2

(

h3h1

h2

∂ψ
∂q2

)

+ ∂
∂q3

(

h1h2

h3

∂ψ
∂q3

)]



Cylindrical Coordinates
For cylindrical coordinates (R,φ, z) we have that

x = R cosφ y = R sinφ z = z

The scale factors of the metric are:

hR = 1 hφ = R hz = 1

and the position vector is ~x = R~eR + z~ez

Let ~A = AR~eR +Aφ~eφ +Az~ez an arbitrary vector, then

AR = Ax cosφ−Ay sinφ

Aφ = −Ax sinφ+Ay cosφ

Az = Az

Velocity: ~v = Ṙ~eR +R~̇eR + ż~ez = Ṙ~eR +Rφ̇~eφ + ż~ez

Gradient & Laplacian:

~∇ · ~A = 1
R

∂
∂R

(RAR) + 1
R

∂Aφ

∂φ
+ ∂Az

∂z

∇2ψ = 1
R

∂
∂R

(

R ∂ψ
∂R

)

+ 1
R2

∂2ψ
∂φ2 + ∂2ψ

∂z2



Spherical Coordinates
For spherical coordinates (r, θ, φ) we have that

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ

The scale factors of the metric are:

hr = 1 hθ = r hφ = r sin θ

and the position vector is ~x = r~er

Let ~A = Ar~er +Aθ~eθ +Aφ~eφ an arbitrary vector, then

Ar = Ax sin θ cosφ+Ay sin θ sinφ+Az cos θ

Aθ = Ax cos θ cosφ+Ay cos θ sinφ−Az sin θ

Aφ = −Ax sinφ+Ay cosφ

Velocity: ~v = ṙ~er + r~̇er = ṙ~er + rθ̇~eθ + r sin θφ̇~eφ

Gradient & Laplacian:

~∇ · ~A = 1
r2

∂
∂r

(r2Ar) + 1
r sin θ

∂
∂θ

(sin θAθ) + 1
r sin θ

∂Aφ

∂φ

∇2ψ = 1
r2

∂
∂r

(

r2 ∂ψ
∂r

)

+ 1
r2 sin θ

∂
∂θ

(

sin θ ∂φ
∂θ

)

+ 1
r2 sin2 θ

∂2ψ
∂ψ2



Introduction
COLLISIONLESS DYNAMICS: The study of the motion of large numbers of
point particles orbiting under the influence of their mutual self-gravity

EAMPLES OF COLLISIONLESS SYSTEMS

• Galaxies (ellipticals & disk galaxies) N ∼ 106 − 1011

• Globular clusters N ∼ 104 − 106

• Galaxy clusters N ∼ 102 − 103

• Cold Dark Matter haloes N � 1050

MAIN GOALS

• Infer mass distribution from observed kinematics. Comparison with
light distribution ⇒ learn about dark matter and black holes

• Understand observed structure of galaxies:

1. Galaxies formed this way ⇒ learn about Galaxy Formation

2. Galaxies evolved this way ⇒ learn about Stability of galaxies
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Weird Stuff...
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     Groups



Newtonian Gravity
Newton’s First Law: A body acted on by no forces moves with

uniform velocity in a straight line

Newton’s Second Law: ~F = md~v
dt

= d~p
dt

(equation of motion)

Newton’s Third Law: ~Fij = −~Fji (action = reaction)

Newton’s Law of Gravity: ~Fij = −G mimj

|~xi−~xj |3
(~xi − ~xj)

G = 6.67 × 10−11Nm2 kg−2 = 4.3 × 10−9( km s−1)2 M�
−1 Mpc

Gravity is a conservative Force. This implies that:

• ∃ scalar field V (~x) (potential energy), so that ~F = −~∇V (~x)

• The total energyE = 1
2
mv2 + V (~x) is conserved

• Gravity is a curl-free field: ~∇ × ~F = 0

Gravity is a central Force. This implies that:

• The moment about the center vanishes: ~r × ~F = 0

• Angular momentum ~J = m~r × ~v is conserved: (d ~J
dt

= ~r × ~F = 0)



The Gravitational Potential

Potential Energy: ~F (~x) = −~∇V (~x)

Gravitational Potential: Φ(~x) = V (~x)
m

Gravitational Field: ~g(~x) =
~F (~x)
m

= −~∇Φ(~x)

From now on ~F is the force per unit mass so that ~F (~x) = −~∇Φ(~x)

For a point massM at ~x0: Φ(~x) = − GM
|~x−~x0|

For a density distribution ρ(~x): Φ(~x) = −G
∫ ρ(~x′)

|~x′−~x|
d3~x′

The density distribution ρ(~x) and gravitational potential Φ(~x) are related to
each other by the Poisson Equation

∇2Φ = 4πGρ

For ρ = 0 this reduces to the Laplace equation: ∇2Φ = 0.
see B&T p.31 for derivation of Poisson Equation



Gauss’s Theorem & Potential Theorem
If we integrate the Poisson Equation, we obtain

4πG
∫

ρ d3~x = 4πGM =
∫

V
∇2Φ d3~x =

∫

S
~∇Φd2~s

Gauss’s Theorem:
∫

S
~∇Φ d2~s = 4πGM

Gauss’s Theorem states that the integral of the normal component of the

gravitational field [~g(~r) = ~∇Φ] over any closed surface S is equal to 4πG
times the total mass enclosed by S.

cf. Electrostatics:
∫

S
~E · ~n d2~s = Qint

ε0

For a continuous density distribution ρ(~x) the total potential energy is:

W = 1
2

∫

ρ(~x) Φ(~x) d3~x

(see B&T p.33 for derivation)

NOTE: Here we follow B&T and use the symbolW instead of V .



The DiscreteN -body Problem

The gravitational force on particle i due to particle j is:

~Fi,j =
Gmimj

|~xi−~xj |3
(~xi − ~xj)

(Newton’s Inverse Square Law)

Equations of Motion: ~F = md~v
dt

For particle i, the equations of motion are:

dvk,i

dt
= G

N
∑

j=1,j 6=i

mj

(xk,i−xk,j)2

dxk,i

dt
= vk,i (k = 1, 3)

This corresponds to a closed set of 6N equations, for a total of 6N
unknowns (x, y, z, vx, vy, vz)

SinceN is typically very, very large, we can’t make progress studying the
dynamics of these systems by solving the 6N equations of motion.

Even with the most powerful computers to date, we can only run N -body
simulations withN <∼ 106



From Discrete to Smooth
The density distribution and gravitational potential ofN -body system are:

ρN(~x) =
N
∑

i=1

mi δ(~x− ~xi)

with δ(~x) the Dirac delta function (B&T p.652), and

ΦN(~x) = −
N
∑

i=1

Gmi

|~x−~xi|

~Fi = G
N
∑

j=1,j 6=i

mj

|~xj−~xi|3
(~xj − ~xi)

= G
N
∑

j=1,j 6=i

∫ (~xj−~xi)

|~xj−~xi|3
mjδ(~xj − ~x)d3~x

= G
∫ (~xj−~xi)

|~xj−~xi|3
ρN(~x)d3~x

We will replace ρN(~x) and ΦN(~x) with smooth and continuous functions
ρ(~x) and Φ(~x)



From Discrete to Smooth
For systems with largeN , it is useful to try to use statistical descriptions of
the system (cf. Thermodynamics)

Replacing a discrete density distribution by a continuous density distribution
is familiar to us from fluid dynamics and plasma physics

However, there is one important difference:

Plasma & Fluid ⇐⇒ short range forces

Gravitational System ⇐⇒ long range forces

Plasma: electrostatic forces are long-range forces, but because of Debye
schielding the total charge → 0 at large r: short-range forces dominate.
Plasma may be collisionless.

Fluid: collisional system dominated by short-range van der Waals forces
between dipoles of molecules. Always attractive, but for large r dipoles
vanish. For very small r force becomes strongly repulsive.

For both plasma and fluid energy is an extensive variable: total energy is
sum of energies of subsystems.

For gravitational systems, energy is a non-extensive variable: sub-systems
influence each other by long-range gravitational interaction.



From Discrete to Smooth

FLUID

• mean-free path of molecules � size of system

• molecules collide frequently, giving rise to a well defined collisional
pressure. This pressure balances gravity in hydrostatic equilibrium.

• Pressure related to density by equation of state. Ie, the EOS determines
the (hydrostatic) equilibrium.

GRAVITATIONAL SYSTEM

• mean-free path of particles � size of system

• No collisional pressure, although kinetic energy of particles act as a
source of ‘pressure’, balancing the potential energy in virial equilibrium.

• No equivalent of equation of state. Pressure follows from kinetic
energy, but kinetic energy follows from the actual orbits within
gravitational potential, which in turn follows from the spatial distribution
of the particles (Self-Consistency Problem)



The Self-Consistency Problem
Given a density distribution ρ(~x), the Poisson equation yields the
gravitational potential Φ(~x). In this potential I can integrate orbits using
Newton’s equations of motion. The self-consistency problem is the problem
of finding that combination of orbits that reproduces ρ(~x).

PotentialDensity

Orbits

?

Poisson Eq.

N
ew

to
n’

s 2
nd

 la
w

Think of self-consistency problem as follows: Given Φ(~x), integrate all
possible orbits Oi(~x), and find the orbital weightswi such that
ρ(~x) =

∑

wiOi(~x). Here Oi(~x) is the density contributed to ~x by orbit i.



Timescales for Collisions
Following fluid dynamics and plasma physics, we replace our discrete
ρN(~x) with a smooth, continuous ρ(~x). Orbits are then integrated in the
corresponding smooth potential Φ(~x).

In reality, the true orbits will differ from these orbits, because the true
potential is not smooth.

In addition to direct collisions (‘touching’ particles), we also have long-range
collisions, in which the long-range gravitational force of the granularity of the
potential causes small deflections.

Over time, these deflections accumulate to make the description based on
the smooth potential inadequate.

It is important to distinguish between long-range interactions, which only
cause a small deflection per interaction, and short-range interactions, which
cause a relatively large deflection per interaction.



Direct Collisions
Consider a system of sizeR consisting ofN identical bodies of radius r

The cross section for a direct collision is σ = 4πr2

The mean free path of a particle is λ = 1
nσ

, with n = 3N
4πR3 the number

density of bodies

λ
R

= 4πR3

3N 4πr2R
'

(

R
r

)2 1
N

It takes a crossing time tcross ∼ R/v to cross the system, so that the time
scale for direct collisions is

tcoll =
(

R
r

)2 1
N
tcross

Example: A Milky Way like galaxy hasR = 10 kpc = 3.1 × 1017 km,

v ' 200 km s−1,N ' 1010, and r is roughly the radius of the Sun
(r = 6.9 × 105 km). This yields λ = 2 × 1013R. In other words, a direct
collision occurs on average only once per 2000 billion crossings! The
crossing time is tcross = R/v = 5 × 107 yr, so that tcoll ' 1021 yr.

This is about 1011 times the age of the Universe!!!



Relaxation Time I
Now that we have seen that direct collisions are completely negligble, let’s
focus on encounters

Consider once again a system of sizeR consisting ofN identical particles
of massm. Consider one such particle crossing the system with velocity v.
As we will see later, a typical value for the velocity is

v =
√

GM
R

=
√

GNm
R

We want to calculate how long it takes before the cumulative effect of many
encounters has given our particle a kinetic energyEkin ∝ v2 in the
direction perpendicular to its original motion of the order of its its initial
kinetic energy.

Note that for a sufficiently close encounter, this may occur in a single
encounter. We will treat this case seperately, and call such an encounter a
close encounter.



Relaxation Time II
First consider a single encounter

x

b

v

m

θF

Here b is the impact parameter, x = v t, with t = 0 at closest approach,

and cos θ = b√
x2+b2

=
[

1 +
(

vt
b

)2
]−1/2

At any given time, the gravitational force in the direction perpendicular to the
direction of the particle is

F⊥ = G m2

x2+b2
cos θ = Gm2

b2

[

1 +
(

vt
b

)2
]−3/2

This force F⊥ causes an acceleration in the ⊥-direction: F⊥ = mdv⊥

dt

We now compute the total ∆v⊥ integrated over the entire encounter, where
we make the simplifying assumption that the particle moves in a straight line.
This assumption is OK as long as ∆v⊥ � v



Relaxation Time III
∆v⊥ = 2

∞
∫

0

Gm
b2

[

1 +
(

vt
b

)2
]−3/2

dt

= 2Gm
b2

b
v

∞
∫

0

(1 + s2)−3/2ds

= 2Gm
bv

As discussed above, this is only valid as long as ∆v⊥ � v. We define the
minimum impact parameter bmin, which borders long- and short-range
interactions as: ∆v⊥(bmin) = v

bmin = 2Gm
v2

' R/N

For a MW-type galaxy, withR = 10 kpc andN = 1010 we have that
bmin ' 3 × 107 km ' 50 R�

In a single, close encounter ∆Ekin ∼ Ekin. The time scale for such a close
encounter to occur can be obtained from the time scale for direct collisions,
by simply replacing r by bmin.

tshort =
(

R
bmin

)2
tcross
N

= N tcross



Relaxation Time IV
Now we compute the number of long-range encounters per crossing. Here
we use that (∆v⊥)2 adds linearly with the number of encounters. (Note:
this is not the case for ∆v⊥ because of the random directions).

When the particle crosses the system once, it has n(< b) encounters with
an impact parameter less than b, where

n(< b) = N πb2

πR2 = N
(

b
R

)2

Differentiating with respect to b yields

n(b)db = 2Nb
R2

db

Thus the total (∆v⊥)2 per crossing due to encounters with impact
parameter b, b+ db is

(∆v⊥)2(b)db =
(

2Gm
bv

)2 2Nb
R2 db = 8N

(

Gm
Rv

)2 db
b

Integrating over the impact parameter yields

(∆v⊥)2 = 8N
(

Gm
Rv

)2 R
∫

bmin

db
b

≡ 8N
(

Gm
Rv

)2
lnΛ

with lnΛ = ln
(

R
bmin

)

= lnN the Coulomb logarithm



Relaxation Time V
We thus have that

(∆v⊥)2 =
(

GNm
R

)2 1
v2

8lnN
N

Substituting the characteristic value for v then yields that

(∆v⊥)2

v2 ' 10lnN
N

Thus it takes of the order of N/(10lnN) crossings for (∆v⊥)2 to become

comparable to v2. This defines the relaxation time

trelax = N
10lnN

tcross



Summary of Time Scales
LetR be the size of the system, r the size of a particle (e.g., star), v the
typical velocity of the particles, andN the number of particles in the system.

Hubble time: The age of the Universe. tH ' 1/H0 ' 1010 yr

Formation time: The time it takes the system to form. tform = Ṁ
M

' tH

Crossing time: The typical time needed to cross the system. tcross = R/v

Collision time: The typical time between two direct collisions.

tcoll =
(

R
r

)2 tcross
N

Relaxation time: The time over which the change in kinetic energy due to the
long-range collisions has accumulated to a value that is
comparable to the intrinsic kinetic energy of the particle.

trelax = N
10lnN

tcross

Interaction time: The typical time between two short-range interactions that
cause a change in kinetic energy comparable to the
intrinsic kinetic energy of the particle.

tshort = Ntcross

For Trully Collisionless systems:

tcross � tH ' tform � trelax � tshort � tcoll



Some other useful Time Scales
NOTE: Using that v =

√

GM
R

and ρ̄ = 3M
4πR3 we can write

tcross =
√

3
4πGρ̄

Dynamical time: the time required to travel halfway across the system.

tdyn =
√

3π
16Gρ

= π
2
tcross

Free-fall time: the time it takes a sphere with zero pressure to collapse to
a point.

tff =
√

3π
32Gρ

= tdyn/
√

2

Orbital time: the time it takes to complete a (circular) orbit.

torb =
√

3π
Gρ

= 2πtcross

NOTE: All these timescales are the same as the crossing time, except for
some pre-factors

tcross <∼ tff <∼ tdyn
<∼ torb



Example of Time Scales
System Mass Radius Velocity N tcross trelax

M� kpc km s−1 yr yr

Galaxy 1010 10 100 1010 108 > 1015

DM Halo 1012 200 200 > 1050 109 > 1060

Cluster 1014 1000 1000 103 109 ∼ 1010

Globular 104 0.01 2 104 5 × 106 5 × 108

• Dark Matter Haloes and Galaxies are collisionless

• Collisions may or may not be important in clusters of galaxies

• Relaxation is expected to have occured in (some) globular clusters

NOTE: For a self-gravitating system, the typical velocities are v '
√

GM
R

For the crossing time this implies: tcross = R
v

=
√

R3

GM
=

√

3
4πGρ

Useful to remember: 1 km/ s ' 1 kpc/Gyr

1 yr ' π × 107 s

1 M� ' 2 × 1030 kg

1 pc ' 3.1 × 1013 km
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