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Useful Information

TEXTBOOK: Galactic Dynamics, Binney & Tremaine
Princeton Univer sity Press Highly Recommended

LECTURES: Wed, 14.45-16.30, HPP H2. Lectures will be in English
EXERSIZE CLASSES: to be determined

HOMEWORK ASSIGNMENTS:  every other week

EXAM: Verbal (German possib le), July/August 2005

GRADING: exam (2=3) plus homework assignments (1=3)
TEACHER: Frank van den Bosc h (vdbosc h@phys.ethz.c h), HPT G6

SUBSTITUTE TEACHERS:
Peder Norber g (norber g@phys.ethz.c h), HPF G3.1
Savvas Koushiappas (savvas@phys.ethz.c h), HPT G3
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Intr oduction & General Overview

Cancelled

Potential Theory

Orbits | (Introduction to Orbit Theory)

Orbits 1l (Resonances)

Orbits 1ll (Phase-Space Structure of Orbits)

Equilibrium Systems | (Jeans Equations)

Equilibrium Systems Il (Jeans Theorem in Spherical Systems)

Equilibrium Systems Il (Jeans Theorem in Spheroidal Systems)

. Relaxation & Virialization (Violent Relaxation & Phase Mixing)
: Wave Mechanics of Disks (Spiral Structure & Bars)

. Collisions between Collisionless Systems (Dynamical Friction)
. Kinetic Theory | (Fokker -Planc k Equation)

. Kinetic Theory Il (Core Collapse)



Summaryof VectorCalculusl

A B = scalar = |Aj|jBjcos = AiB; (summation convention)

A B = vector = jk&AjBk (with jj k the Levi-Civita Tensor)
Useful to Remember

A A=0

A B= B A

A (A B)=20

A (B C)=B (C A)=C (A B)

A (B C)=B(A C) C(A B)

(A B) (C D)=(AK C)B D) (A D)B C)

[~ = vector operator = (g ; g : g)
S = gradS = vector
- A = divA = scalar
F A = curl A = vector




Summaryof VectorCalculusl|

Laplacian: I * = = [ = scalar operator = @(@22 + @,@22 + ng
r °S = 1 (rS) = scalar
r °A = (r r)A = vector
r(r A) 6 r?2A = vector
~  (rS) = 0 curl (grad S) = 0
r(r A) =0 div (curl A) = 0
r(r A) = r(r A) r?2AK
~(ST) = SrT+TrS
~ (SA) = S(F A)+ A 7S
~ (SA) = S(r A) A S

- (A B) = B (r A) A (F B)




Integral Theoremd

Gradient Theorem: Let be acurve running from %g to %1, df'is the
directed element of length along ,and (%) is ascalar eld then:

R
I dfr= d = (%1) (%0)

It follo ws that

Divergence Theorem (Gauss' Theorem): Let V be a 3D volume
bounded by a 2D surface S, and let A (%) be a vector eld, then:

D D

N
V

m
- A dSx = < A d2s

Curl Theorem (Stokes' Theorem): Let S be a 2D surface bounded by a
1D curve ,and let A (%) be avector eld, then:

™

R H
S(r~ A) d?2s = A dT




Integral Theoremd|

Since a conser vative force F can always be written as the gradient of
ascalar eld ,we have from the gradient theorem that

H
F dr=0

From the curl theorem we immediatel y see that

r F=0

We immediatel y infer that a conser vative force is curl free, and that the
amount of work done (AW = F dt)is independent of the path taken.

From the diver gence theorem we infer that

R R R
- A d3x = A d?S A d3x
Vv S Vv

whic h is the three-dimensional analog of integration by parts

D D

N dv R N du
ug,dx = d(uv) V 5, dX




Curvi-LinearCoordinateSystemd

In addition to the Cartesian coor dinate system (X; Yy; z), we will often work
with cylindrical (R; ; z) or spherical (r; ; ) coordinate systems

Let (Q1; d2; g3) denote the coor dinates of a point in an arbitrar y coor dinate
system, de ned by the metric tensor hjj . The distance between ((1; 02; 03)

and (g1 + dqi; g2 + ddz2; 03 + dqz) is
ds? = hy dqg; dg (summation convention)

We will only consider orthogonal systems for whichhj = 0ifi 6 J,so
that ds? = h? dg? with

The diff erential vector is
dx = %d% + %d% + %d%

The unit directional vector s are

P
so that dx = hi dq| €; and d3x = hlhzhgdqlqudq;g.



Curvi-LinearCoordinateSystemd|

The gradient:

—~

|
=R

€

Ble

The diver gence:

h
|

m A= e @ (h2hsAn) + g2 (hshiAg) + g2 (hihaAs)

The curl (only one component shown):
h
|

(F A)s= 5 @?1(th2) %(hlAl)

The Laplacian:
Kh

11
r2 = 1 @ hyh; @ + @ hsh, @ + @ hihy, @
hihohs @ h: @i @y h, @2 @gs hs @us




Cylindrical Coordinates

For cylindrical coordinates (R; ; Z) we have that

[
N

X = R cos y = R sin Z
The scale factor s of the metric are;

hg = 1 h =R h, = 1

and the position vector is ¥ = Rer + ze,

Let A = Arer + A © + A€, an arbitrar y vector, then

Ar = A, cOos Ay sin
A = Aysin + Ay cos
A, = A,

Velocity: ¥ = Rer + Regr + ze, = Rer + R e + ze,
Gradient & Laplacian:

r A= A& (RAR)+

+
2

(@)4
2 _ 1 @ @



SphericalCoordinates

For spherical coordinates (r; ; ) we have that
X = rsin cos y = rsin sin Z = r cos
The scale factor s of the metric are:

hy = 1 h = h = rsin

and the position vector is X = I €,

let A = A, + A € + A € an arbitrar y vector, then

A, = Aysin cos + Aysin sin + A;cos
A = Ayxcos cos + Ay cos sin A sin
A = Ay sin + Ay cos

Velocity: ¥ = re, + re, = re, + r£ + rsin _€

Gradient & Laplacian:

~ - 1 @(,2 1 @ (i 1 @A

r - r_Z@(r Ar) + rsin @ (Sin A )+ rsin @

2 - 1 @ 2@ 1 @ oip @ 1 @
" T ize ""e Trzsn @ SN @ T iTsn? @



Introduction

COLLISIONLESS DYNAMICS: The study of the motion of large number s of
point particles orbiting under the inuence of their mutual self-gra vity

EAMPLES OF COLLISIONLESS SYSTEMS

Galaxies (ellipticals & disk galaxies) N 10° 10

Globular cluster s N 104  10°

Galaxy cluster s N 102 10°

Cold Dark Matter haloes N 10°0
MAIN GOALS

Infer mass distrib ution from obser ved kinematics . Comparison with
light distrib ution learn about dark matter and black holes

Under stand obser ved structure of galaxies:

1. Galaxies formed this way learn about Galaxy Formation
2. Galaxies evolved this way learn about Stability of galaxies



i oy B Globular Clusters
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Disk Galaxies .




Ellipticals

.




Weird Stuff...



Clusters &
Groups



NewtonianGravity

Newton's First Law: A body acted on by no forces moves with
unif orm velocity in a straight line

Newton's Second Law: F=m ﬂ—? = ‘3—? (equation of motion)

Newton's Third Law: Fi = Fji (action = reaction)

Newton's Law of Gravity: Fjj = G m(x. % )

G=667 10 *Nm?kg “= 43 10 % kms 1H)2M ‘Mpc
Gravity is a conser vative Force. This implies that:

O scalar eld V (%) (potential energy),sothat F = 1V (%)

The total energy E = %mv 2 + V(%) is conser ved

Gravity is a curl-free eld: I~ F=20

Gravity is a central Force. This implies that:

The moment about the center vanishes: F =

0
dJ —
- F F

I
o
~

Angular momentum J = m#f ¥ is conser ved: (



The Gravitational Potential

Potential Energy: F(x)= T1V(x)

Gravitational Potential: ( %) = Vrfnx)

Gravitational Field: g(x) = FrEnX) = 1 ( %)

From now on F is the force per unit mass so that F (%) = 1 ( %)
For a point mass M at %q: ( %)= ijMxoj

For adensity distrib ution (%): ( %)= G J.X(()iijdsxo

The density distrib ution (%) and gravitational potential ( %) are related to
each other by the Poisson Equation

rz =4 G

For = O this reduces to the Laplace equation: r 2 = 0.



Gausss Theorem& PotentialTheorem

If we integrate the Poisson Equation , we obtain

R R R
4 G dx=4GM = ,r? dx= _rd?s

o

Gauss's Theorem: o d?s = 4 GM

Gauss's Theorem states that the integral of the normal component of the

gravitational eld [g(f) = ™ ] over any closed surface S is equal to 4 G
times the total mass enclosed by S.

[}

N

cf. Electr ostatics: <E nrd°s= Qint o

For a contin uous density distrib ution (%) the total potential energy is:

D

W =1 (%) (%) d

NOTE: Here we follow B&T and use the symbol W instead of V .



TheDiscreteN -bodyProblem

The gravitational force on particle I due to particle | is:

- — Gm im; _ _
Fl'j — W(X' XJ)

(Newton's Inverse Square Law)
Equations of Motion: F = m i_\:

For particle I, the equations of motion are:

d Vi — G R m

dt =16 (Xki  Xkj )2
d X ki _ _ .
= vy (k = 1;3)

This corresponds to a closed set of 6N equations, for a total of 6N
unknowns (X; Y; Z; Vx; Vy;Vz)

Since N is typicall y very, very large, we can't make progress studying the
dynamics of these systems by solving the 6N equations of motion.

Even with the most powerful computer s to date, we can only run N -body
simulations with N < 10°



FromDiscreteto Smooth

The density distrib ution and gravitational potential of N -body system are:

R
N (%) = mi (x xi)
=1
with (%) the Dirac delta function , and
R
— Gm
N (%) = jx %]
=1
— R m
o= 6 o ki %)
]=1 ;6
R R, .
= G j(:j’—:i'jlmj (%j %)d3x
j=16i

R x x,
= G Pk n(x)d3x

We will replace N (%) and § (%) with smooth and contin uous functions
(%) and ( %)



FromDiscreteto Smooth

For systems with large N , it is useful to try to use statistical descriptions of
the system (cf. Thermod ynamics)

Replacing a discrete density distrib ution by a contin uous density distrib ution
Is familiar to us from uid dynamics and plasma physics

However, there is one impor tant diff erence:

Plasma & Fluid () short range forces
Gra vitational System () long range forces

Plasma: electr ostatic forces are long-rang e forces, but because of Debye
schielding the total charge! O atlarge r: shor t-rang e forces dominate .
Plasma may be collisionless.

Fluid: collisional system dominated by shor t-rang e van der Waals forces
between dipoles of molecules. Always attractive , but for large I dipoles
vanish. For very small  force becomes strongly repulsive .

For both plasma and uid energy is an extensive variable: total energy is
sum of energies of subsystems.

For gravitational systems , energy is a non-e xtensive variable: sub-systems
in uence each other by long-rang e gravitational interaction.



FromDiscreteto Smooth

FLUID

mean-free path of molecules size of system

molecules collide frequentl y, giving rise to a well de ned collisional
pressure . This pressure balances gravity in hydrostatic equilibrium .

Pressure related to density by equation of state. le, the EOS determines
the (hydrostatic) equilibrium.

GRAVITATIONAL SYSTEM

mean-free path of particles size of system

No collisional pressure , although kinetic energy of particles act as a
sour ce of "pressure’, balancing the potential energy in virial equilibrium .

No equiv alent of equation of state. Pressure follo ws from kinetic
energy, but kinetic energy follows from the actual orbits within
gravitational potential, whic h in turn follo ws from the spatial distrib ution
of the particles (Self-Consistenc y Problem)



The Self-Consisteng Problem

Given a density distrib ution (%), the Poisson equation yields the
gravitational potential ( ). In this potential | can integrate orbits using
Newton's equations of motion. The self-consistenc y problem is the problem
of nding that combination of orbits that reproduces ().

Poisson Eq.

Density = Potential

Orbits

Think of self-consistenc y problem as follows: Given ( %), integrate all
possib le gybits O;(*),and nd the orbital weights W; such that
(%) = Wi O (%). Here O; () is the density contrib uted to % by orbit 1.



Timescalesgor Collisions

Following uid dynamics and plasma physics, we replace our discrete
N (%¢) with a smooth, contin uous (). Orbits are then integrated in the

corresponding smooth potential ( %).

In reality , the true orbits will diff er from these orbits, because the true
potential is not smooth.

In addition to direct collisions (‘touching' particles), we also have long-rang e
collisions , in whic h the long-rang e gravitational force of the granularity of the
potential causes small de ections.

Over time, these de ections accum ulate to make the description based on
the smooth potential inadequate .

It is impor tant to distinguish between long-rang e interactions, whic h only
cause a small de ection per interaction , and shor t-rang e interactions, whic h
cause a relativel y large de ection per interaction .



Direct Collisions

Consider a system of size R consisting of N identical bodies of radius r

The cross section for a direct collision is = 4 r?

The mean free path of a particleis = ni with N = % the number

density of bodies

- _4R* .+ R 21
R 3N 4 r2R r N
It takes a crossing time {¢ross R =V to cross the system, so that the time
scale for direct collisions s
_ R 21
CO - v N “Cross
tcoll - N t

Example: A Milky Way like galaxy has R = 10kpc = 3:1 10" km,
v' 200km s 1 N ' 10 andr is roughly the radius of the Sun

(r = 6:9 10°km) . This yields = 2 10'3R. In other words, a direct
collision occur s on average only once per 2000 billion crossings! The
crossing time is teoss = R=v =5 107 yr,sothat teop ' 1021 yr.

This is about 10! times the age of the Univer se!l!



RelaxationTimel

Now that we have seen that direct collisions are completel y negligb le, let's
focus on encounter s

Consider once again a system of size R consisting of N identical particles
of mass M. Consider one such particle crossing the system with velocity V.
As we will see later, a typical value for the velocity is

qGM G N
—_ —_ m
V= R R

We want to calculate how long it takes before the cumulative effect of many
encounter s has given our particle a kinetic energy Eyin / vZ2 in the
direction perpendicular to its original motion of the order of its its initial
kinetic energy.

Note that for a suf cientl y close encounter , this may occur in a single
encounter . We will treat this case seperatel y, and call such an encounter a
close encounter .



RelaxationTime |

First consider a single encounter

X Vv

F b

m

Here b is the impact param%ter , X = vI,with t = O atclosest approach,
I 1=2
2

andcos = p-2___ = 1+ s
X2+ b?

At any given time, the gravitational force in the direction perpendicular to the
direction of the particle is

h | 5=
Fo = G =on? iy, w2 U
? = 2+lﬂ COS = b2 b
This force F» causes an acceleration in the ? -direction: F» = m dc\j't'-’

We now compute the total V- integrated over the entire encounter , where
we make the simplifying assumption that the particle moves in a straight line.
This assumption is OK aslong as V> V



RelaxationTime ||

R h ' 3=2
V?=26b—r21+ﬂ2 dt

[
N
®
3
(o)

—~~
=

+

0
N
~—
W
N
o

wn

As discussed above, this is only valid as long as V- V. We de ne the
minim um impact parameter Bmin , Whic h borders long- and shor t-rang e
interactions as: Vo (bmin ) = Vv

Dmin = 26M_ ' R=N

v 2

For a MW-type galaxy,with R = 10 kpcand N = 10'° we have that
In a single , close encounter E «in E «in . The time scale for such a close

encounter to occur can be obtained from the time scale for direct collisions ,
by simpl y replacing by bpin .

2
R t Cross

Ushort = B == = N teross




RelaxationTime |V

Now we compute the number of long-rang e encounter s per crossing . Here
we use that ( V» )2 adds linearl y with the number of encounter s. (Note:
this is not the case for V-, because of the random directions).

When the particle crosses the system once, it has N (< b) encounter s with
an impact parameter less than b, where

n(< by= N-2=N

b 2
R
Diff erentiating with respect to b yields

n(b)db = 2Mbdp

R2

Thus the total (V- )? per crossing due to encounter s with impact
parameter b; b+ dbis

( v-)%(b)db= 28m “2Nbgp= gy Cm *db

Integrating over the impact parameter yields

(o

R
((vp)2=8N Gm * T db gy Cm #,

bmin

with In - = In = InN the Coulomb logarithm

bmin



RelaxationTimeV

We thus have that

_ GN 2 1 8InN
(V?)Z_ Rm v2rI]\I

Substituting the characteristic value for vV then yields that

( v.)? . 10In N
v 2 N

Thus it takes of the order of N =(10In N ) crossings for (V5 )? to become
comparab le to V2. This de nes the relaxation time

trelax = 7ot
relax — qo|n N “Cross




Summaryof Time Scales

Let R be the size of the system, I the size of a particle (e.g., star), V the
typical velocity of the particles, and N the number of particles in the system.

Hubble time:  The age of the Univer se. ty ' 1=Hgo ' 10%° yr
Formation time: The time it takes the system to form. ttorm = M& ' tH
Crossing time: The typical time needed to cross the system. f.oss = R=V

Collision time: The typical time between two direct collisions.

~ t cross

leol = 7 N
Relaxation time: The time over whic h the change in kinetic energy due to the

long-rang e collisions has accum ulated to a value that is

comparab le to the intrinsic kinetic energy of the particle.

trelax = oot
relax — 7o|n N “cCross

Interaction time: The typical time between two shor t-rang e interactions that
cause a change in kinetic energy comparab le to the
intrinsic  kinetic energy of the particle.

tshot = N teross
For Trully Collisionless systems:

tcross tH tform trelax tshort tcoll



SomeotherusefulTime Scales

GM 3M

NOTE: Using that v = —&—and = ;—=% we can write

t _ T3
cross — 42 G

Dynamical time: the time required to travel halfway acrossqthe system.

— 3 —
tdyn - 16G jtcross

Free-fall time: the time it takes a sphere with zero pressure to collapse to

a point.
49— P _
t = VIR — tdyn = 2
Orbital time: the time it takes to complete a (circular) or&it.
_ 3 _
Lorb = G 2 Lcross

NOTE: All these timescales are the same as the crossing time, except for
some pre-factor s

Leross < U < tdyn < lomp



Exampleof Time Scales

System | Mass Radius Velocity N t cross t relax

M kp c kms 1! yr yr
Galaxy 1010 10 100 1010 108 > 101°
DM Halo | 10%? 200 200 > 10°° 10° > 100
Cluster 10%4 1000 1000 103 10° 1010
Globular | 104 0:01 2 104 5 10° 5 108

Dark Matter Haloes and Galaxies are collisionless
Collisions may or may not be impor tant in cluster s of galaxies

Relaxation is expected to have occured in (some) glob ular cluster s

NOTE: For a self-gra vitating system, the typical velocities are V ' G%
. . L R k RS d 3
For the crossing time this implies: {cgross = v - e - G

Useful to remember:
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