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Virial Relations

 the halo bias function

Before we focus on the results of numerical simulations, it is useful to derive some 
very general scaling relations for dark matter haloes.

It is common practice to refer to the mass, radius and circular velocity of the halo 
thus defined as the virial mass,         , virial radius,       , and virial velocity,       .Mvir rvir Vvir

According to SC model, dark matter haloes have an average overdensity well fitted by

(ΛCDM only)where x = Ωm(z)− 1∆vir �
18π2 + 82x− 39x2

x+ 1

ρ̄h =
3Mvir

4πr3vir
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8πG
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Halo Density Profiles



The NFW Profile
In 1997, Navarro, Frenk & White wrote a seminal 
paper in which they showed that CDM haloes in N-
body simulations have a universal density profile,
well fit by a double power-law... Julio Navarro Carlos Frenk Simon White
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The NFW Profile

Using a suite of simulations, of 
different cosmologies, they 
showed that the density 
profiles of the dark matter 
haloes can always be fit by a 
universal fitting function: 
the NFW profile

ρ(r) = ρcrit
δchar

(r/rs) (1 + r/rs)2
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The NFW Profile

The NFW profile is given by ρ(r) = ρcrit
δchar

(r/rs) (1 + r/rs)2
log ρ

log r

∝ r−3

∝ r−1

rs

M(r) = 4πρcritδcharr
3
s f(c) = Mvir

f(cx)

f(c)
The corresponding mass profile is                                                               , where x = r/rvir

c = rvir/rs

It is completely characterized by the mass         and the
concentration parameter                   , which is related to

Mvir

the characteristic overdensity according to:

δchar =
∆vir Ωm

3

c3

f(c)

where f(x) = ln(1 + x) + x/(1 + x)

log r

log Vc

rmax

The circular velocity of an NFW profile is Vc(r) = Vvir

�
f(cx)

x f(c)

which has a maximum                                        at  Vmax � 0.465Vvir

�
c/f(c) rmax � 2.163rs

For example, for           one has that                      .  c = 10 Vmax ∼ 1.2Vvir

Vc ∝ r1/2r � rmaxFor                 the NFW profile has                . 
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The Concentration-Mass Relation
NFW97 showed that the characteristic overdensity,         , is closely related to the 
halo’s formation time: haloes that form (assemble) earlier are more concentrated.... 

δchar

Since more massive haloes assemble later (on average) they are expected to be less 
concentrated, giving rise to an inverted concentration-mass relation. Furthermore, 
because of large scatter in MAHs one expects significant scatter in this relation.

P(c|M) dc =
1√

2π σlnc

exp

�
− (ln c− ln c̄)2

2σ2
lnc

�
dc

c

Simulations have shown that halo concentrations follow a log-normal distribution:

with                  and                    .c̄ = c̄(M) σlnc � 0.25
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The concentration-mass relation of dark matter haloes in 
a series of N-body simulations. Note that, as expected, 
more massive haloes are less concentrated, and that the 
relation has an appreciable amount of scatter...

Simulations have also shown that even at fixed mass,
halo concentration is correlated with assembly time.

(e.g., Wechsler et al. 2002; Zhao et al. 2003)
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The Concentration-Mass Relation
Several models have been developed to compute the mean concentration as function of 
halo mass and cosmology. All these models assume that a halo’s characteristic density is 
related to the mean cosmic density at some characteristic epoch in the halo’s history.

So
ur

ce
: Z

ha
o 

et
 a

l. 
20

09
, A

pJ
, 7

07
, 3

54

(e.g., Bullock et al. 2001; Eke Navarro & Steinmetz 2001; Maccio et al. 2008; Zhao et al. 2009)

At the present, the most accurate of these models is that of Zhao et al. (2009), according 
to which the average concentration is

c̄(M, t) = 4×
�
1 +

�
t

3.75 t0.04(M, t)

�8.4�1/8

Here                   is the time at which the main 
progenitor had acquired 4% of its final mass    . 

t0.04(M, t)
M

This model is based on the following empirical 
fact (observed in simulations):

central structure of halo is established through 
violent relaxation at early phase of rapid major 
mergers, leading to NFW profile with c~4.

subsequent accretion increases mass & size of 
halo without adding much matter to center, 
causing concentration to increase with time...
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The Cusp-Core Controversy
Around the turn of the millenium, a lively debate 
broke out among simulators and observers 
regarding the actual inner density slopes of 
dark matter haloes: 

(e.g., Moore et al. 1998, ApJ, 499, L5;  Fukushige & Makino, 2001, ApJ, 557, 533)

However, several studies claimed that 
simulated dark matter haloes have cusps that 
are significantly steeper. A `popular’ alternative to the 
NFW profile was the Moore profile, which has γ = 1.5

Dr. CuspProf. Core

According to the NFW profile, dark matter 
haloes have central cusps with ρ ∝ r−1

At around the same time, however, numerous studies claimed that the observed rotation 
curves of dwarf galaxies and low-surface brightness (LSB) disk galaxies indicate dark 
matter haloes with central cores; i.e.,                      
                                                      (e.g., Moore 1994; Flores & Primack 1994; McGaugh & de Blok 1998) 

γ = 0
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The Cusp-Core Controversy

arbitrary 
normalization
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Ben Moore

Direct comparison of observed rotation curves 
with circular velocity curves of dark matter 

haloes reveals inconsistency....
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The Cusp-Core Controversy

Source: van den Bosch & Swaters, 2001, MNRAS, 325, 1017
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It soon became clear, though, 
that the existing data could not
really discriminate between core
and cusp, or between NFW and
Moore profiles....

Beam smearing and uncertainties
in the stellar mass-to-light 
ratios hamper unique mass
decompositions.

Better data, of higher spatial
resolution was required...

van den Bosch et al., 2000
van den Bosch & Swaters, 2001

Swaters et al., 2003
Dutton et al., 2005

gas

stars
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Issues with non-circular motions 
due to bars, triaxiality, asymmetric 
drift etc. are a concern..



The Cusp-Core Controversy
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One decade later:
* Spatial resolution of data has improved 
* Data has consequently become more complicated 
* Conclusions remain equally outlandish....

Holmberg 1

Moore



The Cusp-Core Controversy
Even *if* observed dark matter haloes 
have cusps, this does not necessarily 
rule out CDM: Baryons to the rescue!!

Baryons may have several effects:

they can steepen the central 
profile via adiabatic contraction

they can create cores via
dynamical friction

they can create cores via
three-body interactions 
(i.e., massive binary BHs)

they can create cores via
supernova feedback

credit: A. Pontzen & F. Governato

The 30th Jerusalem Winter School in Theoretical Physics © Frank van den Bosch:  Yale 2012



The Cusp-Core Controversy
Of the various effects mentioned on the previous slide, only the supernova (SN) 
feedback one is likely to play a role in dwarf and LSB galaxies....

Repeated SN-driven outflows out of the central regions of (dwarf) galaxies may 
therefore create cores in their dark matter haloes.

As shown by Pontzen & Governato (2012) SN feedback can result in impulsive heating of 
central region; since expansion speeds of winds are much faster than local circular speed, 
winds can cause changes in the potential that are virtually instantaneous (impulsive).
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Halo Density Profiles in the New Millenium
While the cusp-core controversy continues, the dispute among simulators as
to the exact cusp-slope of dark matter haloes has largely been resolved...
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Part of the discrepancy was related to resolution issues in the simulations.

But the main solution seems to be that dark matter haloes do not have double 
power-law density profiles....Neither NFW- nor Moore-profile are perfect fits...
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The Einasto Profile

ρ(r) = ρ−2 exp
�
−2
α

��
r

r−2

�α

− 1
��

The slope of the Einasto profile is a power-law function 
of radius: d ln ρ

d ln r
= −2

�
r

r−2

�α

Navarro et al. (2004) showed that dark matter haloes 
in simulations are better fit by an Einasto profile:

The best-fit value of
typically spans the range
0.12 < α < 0.25

α

(Gao et al., 2008, MNRAS, 387, 536)
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better fits, but one more free 
fitting parameter....
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Halo Shapes



Halo Shapes

Forbidden
Region
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Numerous authors have fitted dark matter haloes in N-body simulations with ellipsoids, 
characterized by the lengths of the axes a ≥ b ≥ c

These axes can be used to specify the 
dimensionless shape parameters

s =
c

a
q =

b

a
p =

c

b

T =
a2 − b2

a2 − c3
=

1− q2

1− s2

and/or the triaxiality parameter

Oblate: T = 0
Prolate: T = 1

       CDM haloes in simulations
typically have 0.5 < T < 0.85

As we have seen in our discussion of the Zeldovich approximation, because of the tidal 
tensor                       perturbations are not expected to be spherical. Since gravity 
accentuates non-sphericity, collapsed objects are also not expected to be spherical.

∂2Φ/∂xi∂xj
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Halo Shapes
Simulations show that more massive haloes are more aspherical (more flattened).

So
ur

ce
: A

llg
oo

d 
et

 a
l. 

20
06

, M
N

RA
S,

 3
67

, 1
78

1

�s�(M, z) = (0.54± 0.03)

�
M

M∗(z)

�−0.050±0.003

Allgood et al. (2006) found that the mass and redshift dependence is well characterized by

where             is the characteristic halo mass at redshift   .M∗(z) z

Simulations suggest that the shape of a halo is
tightly correlated with its merger history:

Haloes that assembled earlier are more spherical

Haloes that experienced a recent major merger 
are typically close to prolate, with major axis 
reflecting direction along which merger occurred

Currently there are only few observational 
constraints on halo shapes....
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Halo Substructure



Halo Substructure

 the halo bias function

Up until the end of the 1990s 
numerical simulations revealed 
little if any substructure in dark
matter haloes.
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Nowadays, faster computers 
allow much higher mass- and 
force-resolution, and simulations
routinely reveal a wealth of 
substructure... 

Dark matter subhaloes are the
remnants of host haloes that 
survived accretion/merging into a 
bigger host halo.

While orbiting their hosts, they 
are subjected to forces that try 
to dissolve them: dynamical 
friction, impulsive encounters, 
and tidal forces.... 
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The Subhalo Mass Function
The subhalo mass function, which describes the number of subhaloes of a given 
mass per host halo, is well fit by a Schechter function

Here      and      are the masses of subhalo and host halo. Simulations indicate that                                      
                       and                        . The large uncertainties relate to uncertainties in 
defining (sub)haloes in numerical simulations...

m M
γ ∼ 0.9± 0.1 0.1 < β < 0.5

dn

d ln(m/M)
=

f0
β Γ(1− γ)

�
m

βM

�−γ

exp

�
−
�

m

βM

��

f0 =
1

M

�
m

dn

dm
dm =

�
dn

d ln(m/M)
d
�m

M

�
The parameter     is the mean subhalo mass fraction:f0

and is difficult to measure reliably in simulations; 
typically one can only measure it down to the mass 
resolution of the simulation...

Subhalo mass functions in a series of N-body simulations.
Different colors correspond to different host halo masses.  

Source: Giocoli, Tormen, Sheth & van den Bosch (2010)
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Mass Stripping
In addition to the (“evolved”) subhalo mass function, which reflects the abundance of 
subhaloes as a function of their present-day mass, one can also define the un-evolved 
subhalo mass function, which measures the abundance as function of their mass at infall...

Difference between evolved & un-evolved mass functions reflects mass stripping: 
Depending on their mass and orbit, subhaloes can loose large fractions of their mass, 
and even be tidally disrupted....
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unevolved subhalo
mass function

evolved subhalo
mass functions

subhaloes in less massive hosts have 
experienced more mass loss....
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Subhalo Mass Functions

Subhalo mass functions from 
N-body simulations in host 
haloes of different mass, as 
indicated. For comparison, 
the unevolved subhalo mass 
functions are also shown. The 
difference between 
unevolved and evolved is due 
to mass stripping
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Subhalo Mass Fractions
Simulations show that halos that assemble earlier have, at present day, 
less substructure. Since more massive haloes assemble later, they, on
average, have more substructure.

As shown in van den Bosch (2005), this is a consequence of the fact that the unevolved 
subhalo mass function is virtually independent of halo mass: all haloes accrete the same 
subhalo population (in units of m/M).  Those that accrete them earlier (=assemble 
earlier), stripped more mass from them, resulting in lower subhalo mass fraction...

eary 
formation

late 
formation
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The Spatial Distribution of Subhaloes
Simulations show that dark matter subhaloes are less centrally concentrated
than the dark matter, and that the radial distribution is independent of
subhalo mass (i.e., there is no indication of mass segregation)
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local mass fractions in subhaloes as a function of 
halo-centric radius. Results are shown for 6 MW-
sized haloes from the Aquarius project...

normalized radial number density profiles of dark matter 
subhaloes for five different mass bins. Note that there 
appears to be no dependence on subhalo mass.
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Angular Momentum



Linear Tidal Torque Theory
Dark matter haloes acquire angular momentum in the linear regime due to tidal 
torques from neighboring overdensities...

Consider the material that ends up as part of a virialized halo. Let VL be the Lagrangian 
region that it occupies in the early Universe. The angular momentum of this material can 
be written as

where          is the center of mass (the barycenter) of the volume. �xcom

Using the Zel’dovich approximation for the velocities     inside the volume, and 
second-order Taylor series expansion of the potential, one finds that

�v

Ji(t) = a2(t) Ḋ(t) �ijkTjl Ilk Einstein summation convention

Here          is the time-derivative of the linear-growth rate,       is the tidal tensor
at the barycenter at the initial time,      is the inertial tensor at the initial time, and
       is the 3D Levi-Civita tensor.

Ḋ(t) Tij

Iij
�ijk

This derivation for the growth of the angular momentum of `proto-haloes’ , due to
White (1984), is known as linear tidal torque theory (TTT)

See MBW §7.5.4
for more details

�J =

�

VL

d3�xi ρ̄ma
3 (a�x− a�xcom)× �v
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Linear Tidal Torque Theory

Since principal axes of the tidal and 
inertia tensors are, in general, not 
aligned for a non-spherical volume, 
this linear angular momentum should 
be non-zero.

J ∝ a2 ḊAccording to linear TTT,                 , 
which for an EdS cosmology implies 
that  J ∝ t

According to linear TTT, the acquisition of angular momentum stops once a proto-halo 
turns around and starts to collapse: after turn-around, the moment of inertia starts to 
decline rapidly...Hence, according to linear TTT the final angular momentum of a virialized
dark matter halo should (roughly) be equal to

Jvir =

� tta

0
J(t) dt = �ijk Tjl Ilk

� tta

0
a2(t) Ḋ(t) dt

�Fgrav
�Fgrav

Ji(t) = a2(t) Ḋ(t) �ijkTjl Ilk

Linear TTT
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Testing Linear Tidal Torque Theory
Linear TTT can be tested using numerical simulations. These show that although the 
overall behavior of angular momentum growth of proto-haloes is consistent with TTT,
it typically overpredicts the total angular momentum of a virialized halo by a factor ~3.

Source: Sugerman, Summers & Kamionkowski, 2000, MNRAS, 311, 762

tcoll tcollttatta

Not predicted 
by linear TTT

Two effects contribute to this `failure’ :
there is substantial angular momentum growth between turn-around and 
collapse, not anticipated by linear TTT

angular momenta of haloes continue to evolve due to accretion of/
merging with other haloes (Maller et al. 2002; Vitvitska et al. 2002)

Non-linear evolution 
due to merging

Evolution of angular momentum of 
(proto)-haloes in numerical simulations

Not predicted 
by linear TTT
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The Halo Spin Parameter
The angular momentum of a dark matter halo is traditionally parameterized through 
the dimensionless spin parameter:

λ =
J |E|1/2

GM5/2

where J, E and M are the angular momentum, energy and mass of the halo.

An alternative definition for the spin parameter, which avoids having to calculate the 
halo energy is: 

λ� =
J√

2M V R

where V and R are the virial velocity and viral radius, respectively.                                                                                                        Definitions are equal 
if halo is singular isothermal sphere; otherwise they differ by factor of order unity....

Simulations show that PDF for spin parameter of haloes is a log-normal

P(λ) dλ =
1√

2π σln λ

exp
�
− ln2(λ/λ̄)

2σ2
ln λ

�
dλ

λ

λ̄ � 0.03 σln λ � 0.5with                and                  , with virtually no dependence on halo mass or cosmology... 
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The Halo Spin Parameter

The log-normal PDF of 
the halo spin parameter

The halo spin parameter 
is independent of halo mass
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NOTE: the fact that the (median) spin parameter is 
            so small indicates that dark matter haloes
            are not supported by rotation; flattening is
            due to velocity anisotropy, not rotation...

for comparison, the spin parameter of a typical
disk galaxy is ~0.4, roughly an order of magnitude
larger than that of a dark matter halo....

Haloes that experienced a recent major merger have 
higher spin parameters than average . This reflects the 
large orbital angular momentum supplied by the merger 
                  (e.g., Vitvitska et al 2001; Hetznecker & Burkert 2006)

However, this spin-merger correlation only persists 
for short time; virialization & accretion of new matter 
quickly brings spin parameter of halo back to average,   
                                                   non-conspicuous value 
                                                       (e.g., D’Onghia & Navarro 2007)
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The (specific) Angular Momentum Distribution
Using N-body simulations, Bullock et al. (2001) showed that dark matter haloes have a 
universal angular momentum profile with characteristic value j0 and shape parameter μ :
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P(j) =
µj0

(j + j0)2
M(< j) = Mvir

µj

(j + j0)

This distribution has a maximum specific angular momentum,                               , which 
is related to the halo’s total specific angular momentum according to 

jmax = j0/(µ− 1)

jtot =
√

2 λ� rvir Vvir = jmax

�
1− µ

�
1− (µ− 1) ln

�
µ

µ− 1

���

The shape parameter is characterized by a log-normal 
distribution with                and                   .  µ̄ � 1.25 σln µ � 0.4

An alternative characterization of the angular 
momentum distribution within dark matter haloes is:

j(r) ∝ rα α � 1.1± 0.3with

The pair (λ , μ) completely specifies the angular 
momentum content of a dark matter halo.
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The (specific) Angular Momentum Distribution

Angular momentum distributions of dark matter (solid) and gas (dashed) in numerical simulations.
Here jv is the component of the specific angular momentum in the direction of the halo’s total
angular momentum vector. Note that there is only a slight excess of positive over negative jv...
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The Halo Model
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The Halo Model
The Halo model is an analytical model that describes dark matter density distribution 
in terms of its halo building blocks, under ansatz that all dark matter is partitioned 
over haloes.

 the halo bias function

Throughout we assume that all dark matter haloes are spherical,
and have a density distribution that only depends on halo mass: ρ(r|M) = M u(r|M)

�
d3�x u(�x|M) = 1Here            is the normalized density profile:u(r|M)



The Halo Model

x-axis

y-
ax

is

= halo center
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Imagine space divided into many small volumes,        ,which are so small that
none of them contain more than one halo center.

∆Vi

Then we have that
and therefore

Let      be the occupation number
of dark matter haloes in cell i

Ni

Ni = 0, 1
Ni = N 2

i = N 3
i =

This allows us to write the matter
density field as a summation:

ρ(�x) =
�

i

Ni Mi u(�x− �xi|Mi)



convolution integral

We can also use this to compute the two-point correlation function of matter:

=
�

i

�

j

�Ni Nj MiMj u(�x1 − �xi|Mi)u(�x2 − �xj |Mj)�

For the 1-halo term we obtain:

�ρ(�x) ρ(�x + �r)�1h =
�

i

�Ni M2
i u(�x1 − �xi|Mi)u(�x2 − �xi|Mi)�

=
�

dM M2 n(M)
�

d3�y u(�x1 − �y|M)u(�x2 − �y|M)

=
�

i

�
dM M2 n(M) ∆Vi u(�x1 − �xi|M)u(�x2 − �xi|M)

We split this in two parts: the 1-halo term           , and the 2-halo term (i = j) (i �= j)

�x2 = �x1 + �r

1-halo vs. 2-halo

The Halo Model ρ(�x) =
�

i

Ni Mi u(�x− �xi|Mi)

ξmm(r) ≡ �δ(�x) δ(�x + �r)� = 1
ρ2 �ρ(�x) ρ(�x + �r)� − 1

�ρ(�x) ρ(�x + �r)� =

�
�

i

Ni Mi u(�x1 − �xi|Mi) ·
�

j

Nj Mj u(�x2 − �xj |Mj)

�

N 2
i = Ni



For the 2-halo term we obtain:

�ρ(�x) ρ(�x + �r)�2h =
�

i

�

j �=i

�Ni Nj Mi Mj u(�x1 − �xi|Mi) u(�x2 − �xj |Mj)�

=
�

i

�

j �=i

�
dM1 M1 n(M1)

�
dM2 M2 n(M2) ∆Vi ∆Vj ×

[1 + ξhh(�xi − �xj |M1,M2)]u(�x1 − �xi|M1) u(�x2 − �xj |M2)
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?

NO: dark matter haloes themselves are clustered, i.e., have a non-zero two point
       correlation function. This needs to be taken into account.

= ρ2

The Halo Model ρ(�x) =
�

i

Ni Mi u(�x− �xi|Mi)

Clustering of dark matter haloes is characterized by halo-halo correlation function:

b(M)Here          is the halo bias function.                                                         Note: the above description of the halo-halo 
correlation function is only valid on large (linear) scales!  On small scales 
non-linearities and halo exclusion become important....[not covered here]...

ξhh(r|M1,M2) = b(M1) b(M2) ξlin
mm(r)



convolution integral

For the 2-halo term we obtain:

�ρ(�x) ρ(�x + �r)�2h =
�

i

�

j �=i

�Ni Nj Mi Mj u(�x1 − �xi|Mi) u(�x2 − �xj |Mj)�

= ρ2 +
�

dM1 M1 n(M1)
�

dM2 M2 n(M2) ×
�

d3�y1

�
d3�y2 u(�x1 − �y1|M1) u(�x2 − �y2|M2) ξhh(�y1 − �y2|M1,M2)
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= ρ2 +
�

dM1 M1 b(M1) n(M1)
�

dM2 M2 b(M2) n(M2)×
�

d3�y1

�
d3�y2u(�x1 − �y1|M1) u(�x2 − �y2|M2) ξlin

mm(�y1 − �y2)

The Halo Model ρ(�x) =
�

i

Ni Mi u(�x− �xi|Mi)

=
�

i

�

j �=i

�
dM1 M1 n(M1)

�
dM2 M2 n(M2) ∆Vi ∆Vj ×

[1 + ξhh(�xi − �xj |M1,M2)]u(�x1 − �xi|M1) u(�x2 − �xj |M2)
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ξ2h(r) =
1
ρ2

�
dM1 M1 b(M1) n(M1)

�
dM2 M2 b(M2) n(M2)×

�
d3�y1

�
d3�y2u(�x− �y1|M1) u(�x + �r − �y2|M2) ξlin

mm(�y1 − �y2)

ξ1h(r) =
1
ρ2

�
dM M2 n(M)

�
d3�y u(�x− �y|M)u(�x + �r − �y|M)

ξ(r) = ξ1h(r) + ξ2h(r)

Halo Model Ingredients:
 the halo mass function n(M)
 the halo bias function b(M)

the halo density profiles ρ(r|M) = Mu(r|M)

ξlin
mm(r)the linear correlation 

function of matter

All of these are (reasonably) well calibrated against numerical simulations.

The Halo Model: Summary (part I)
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P (k) = P 1h(k) + P 2h(k)

P 1h(k) =
1
ρ2

�
dM M2 n(M) |ũ(k|M)|2

P 2h(k) = P lin(k)
�
1
ρ

�
dM M b(M) n(M) ũ(k|M)

�2

Since convolutions in real-space become multiplications in Fourier space,
the halo model expression for the power spectrum is much easier.
Therefore, in practice, one computes         and then uses Fourier
transformation to obtain two-point correlation function

P (k)
ξ(r)

P lin(k) =
�

ξlin
mm(�x)e−i�k·�xd3�x = 4π

� ∞

0
ξlin
mm(r)

sin kr

kr
r2 dr

ũ(�k|M) =
�

u(�x|M)e−i�k·�x d3�x = 4π

� ∞

0
u(r|M)

sin kr

kr
r2 dr

The Halo Model in Fourier Space
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Source: Cooray & Sheth (2002)

Dashed line: true non-linear power spectrum
Solid line: halo model

∆2(k) =
1

2π2
k3P (k)

Dimensionless power spectrum

The Halo Model in Fourier Space



Halo Occupation 
Modeling
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The Galaxy Power Spectrum

 the halo bias function

The above equations describe the halo model predictions for the matter power spectrum

The same formalism can also be used to compute the galaxy power spectrum:

Here           describes average number of galaxies (with certain properties) that reside 
in a halo of mass     ,      is the average number density of those galaxies, and 
is the normalized, radial number density distribution of galaxies in haloes of mass     .      

�N�M
M n̄g ug(r|M)

M

simply replace:

�N�M
n̄g

M

ρ̄

ũ(k|M) ũg(k|M)

M2

ρ̄2

�N(N − 1)�M
n̄2
g

P 1h(k) =
1
ρ2

�
dM M2 n(M) |ũ(k|M)|2

P 2h(k) = P lin(k)
�
1
ρ

�
dM M b(M) n(M) ũ(k|M)

�2
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Halo Occupation Statistics

 the halo bias function

When describing halo occupation statistics, it is important 
to treat central and satellite galaxies separately. 

Central Galaxies: those galaxies that reside at the center
                             of their dark matter (host) halo

Satellite Galaxies: those galaxies that reside at the center
                               of a dark matter sub-halo, and are 
                               orbitting inside a larger host halo. = central

= satellite

Central Galaxies

uc(r|M) = δD(r)

�Nc�M =
1�

Nc=0

Nc P (Nc|M) = P (Nc = 1|M)

�N2
c �M =

1�

Nc=0

N2
c P (Nc|M) = P (Nc = 1|M) = �Nc�M

us(r|M) = TBD

�Ns�M =
∞�

Ns=0

Ns P (Ns|M)

�N2
s �M =

∞�

Ns=0

N2
s P (Ns|M)

Satellite Galaxies
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Halo Occupation Statistics

 the halo bias function

Calculating galaxy-galaxy correlation functions requires following halo occupation statistic 
ingredients:

Halo occupation distribution for centrals

Halo occupation distribution for satellites

Radial number density profile of satellites

P (Nc|M)

P (Ns|M)

us(r|M)

Central Galaxies

uc(r|M) = δD(r)

�Nc�M =
1�

Nc=0

Nc P (Nc|M) = P (Nc = 1|M)

�N2
c �M =

1�

Nc=0

N2
c P (Nc|M) = P (Nc = 1|M) = �Nc�M

us(r|M) = TBD

�Ns�M =
∞�

Ns=0

Ns P (Ns|M)

�N2
s �M =

∞�

Ns=0

N2
s P (Ns|M)

Satellite Galaxies

In principle, as we will see, one also requires the probability function                       , but it
is common practice to assume that the occupation statistics of centrals and satellites are
independent, i.e., that 

P (Nc, Ns|M)

P (Nc, Ns|M) = P (Nc|M)× P (Ns|M)
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 the halo bias function

Consider a luminosity threshold sample; all galaxies brighter than some threshold luminosity. 
The halo occupation statistics for such a sample are typically parameterized as follows:

Halo Occupation Statistics: the first moment

�Nc�M =
1

2

�
1 + erf

�
logM − logMmin

σlogM

��

�Ns�M =

� �
M
M1

�α
if M > Mcut

0 if M < Mcut

= characteristic minimum mass of haloes that
   host centrals above luminosity threshold

= characteristic transition width due to
   scatter in L-M relation of centrals

= cut-off mass below which you have zero    
   satellites above luminosity threshold
= normalization of satellite occupation numbers

= slope of satellite occupation numbers

Mmin

Mcut

M1

σlogM

α

�N
s
�M

∝
M

α

Mmin

σlogM

(Mmin,M1,Mcut,σlogM ,α)

This particular HOD model, which is fairly 
popular in the literature, requires 5 
parameters                                              to 
characterize the occupation statistics of a 
given luminosity threshold sample, and is 
(partially) motivated by the occupation 
statistics in hydro simulations of galaxy 
formation...So

ur
ce

: Z
he

ng
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05
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pJ
, 6
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91
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 the halo bias function

Halo Occupation Statistics: the first moment
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Increasing the slope                                       boosts the 1-halo term of the 
correlation function. It also boosts the 2-halo term, but to a lesser extent.

α = d log�Ns�/d log M

The latter arises because a 
larger value of α implies that 
satellites, on average, reside in 
more massive haloes, which are 
more strongly biased.

The 1-halo term scales with 
satellite occupation numbers as
            while the 2-halo term 
scales as           . This means that 
the relative clustering strengths 
in the 1-halo and 2-halo regimes 
constrains the satellite fractions.

�Ns�2M
�Ns�M



ASTR 610: Theory of Galaxy Formation © Frank van den Bosch:  Yale 2012

 the halo bias function

An alternative parameterization, which has the advantage that it describes the 
occupation statistics for any luminosity sample (not only threshold samples), is 
the conditional luminosity function.

Halo Occupation Statistics: the first moment

Φ(L|M) = Φc(L|M) + Φs(L|M)

The CLF describes the average number of galaxies of luminosity L that reside in 
a dark matter halo of mass M.

�Nx�M =

� L2

L1

Φx(L|M) dL

�L�M =

� ∞

0
Φ(L|M)L dL

Φ(L) =

� ∞

0
Φ(L|M)n(M) dM

CLF is the direct link between the halo mass 
function and the galaxy luminosity function.

CLF describes link between luminosity and mass

CLF describes first moments of halo occupation 
statistics of any luminosity sample
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The Conditional Luminosity Function

 the halo bias function

The CLF can be obtained from galaxy group catalogues. Yang, Mo & van den Bosch (2008) 
have shown that the CLF is well parameterized using the following functional form:

{Lc, Ls,σc,φs,αs}Note:                                all depend on halo mass. 
These dependencies are typically parameterized 
using ~10 free parameters.

Φc(L|M)dL =
1√

2πσc

exp

�
−

�
ln(L/Lc)√

2σc

�2
�

dL

L

Φs(L|M)dL =
φs

Ls

�
L

Ls

�αs

exp
�
−(L/Ls)2

�
dL
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The CLFs inferred from a SDSS galaxy group 
catalog. Symbols are data, while the solid, black 
line is best-fit using the CLF parameterization 
indicated above...

Free parameters are constrained by the 
data, which can be galaxy group catalogs, 
galaxy clustering, galaxy-galaxy lensing, 
satellite kinematics, etc...
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 the halo bias function

The 1-halo term of the galaxy-galaxy correlation function requires the second moment

Halo Occupation Statistics: the second moment

�N(N − 1)�M = �N2
c �M + 2�NcNs�M + �N2

s �M − �Nc�M − �Ns�M

= �Ns(Ns − 1)�M − 2�Nc�M �Ns�M

where we assumed that occupation statistics of centrals and satellites are independent

Thus, we need to specify the second moment of the satellite occupation distribution:

�Ns(Ns − 1)�M =
∞�

Ns=0

Ns(Ns − 1)P (Ns|M) ≡ β(M) �Ns�2

where we have introduced the function β(M)

If the occupation statistics of satellite galaxies follow Poisson statistics, i.e., 

P (Ns|M) =
λNs e−λ

Ns!
λ = �Ns�Mwith

then                  . Distributions with            (          ) are broader (narrower) than Poisson. β(M) = 1 β > 1 β < 1

The second moment of the halo occupation statistics is completely described by β(M)
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Occupation Statistics from Galaxy Group Catalog

 the halo bias function
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Galaxy group catalogs show that occupation statistics of satellites are (close to) Poissonian.
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 the halo bias function

The Radial Number Density Profile of Satellites
The radial number density profile of satellite galaxies is typically modelled as a 
`generalized NFW profile’:

us(r|M) ∝
�

r

R rs

�−γ �
1 +

r

R rs

�γ−3

Here     is a parameter that controls the central cusp slope, and                        sets 
the ratio between the concentration parameter of the satellites and that of the dark 
matter. For                    satellites are an unbiased tracer of the mass distribution 
(within individual haloes)

γ R = csat/cdm

γ = R = 1
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The radial number density profile of satellites
controls the clustering on small scales (only has
significant effect on 1-halo term).

The two-point correlation function of galaxies, calculated 
using the halo model. Solid dots are data from the APM 
catalogue. The solid line is the model’s matter correlation 
function, and the other lines are galaxy correlation 
functions in which the number density profile of satellite 
galaxies is varied. 



ASTR 610: Theory of Galaxy Formation © Frank van den Bosch:  Yale 2012

 the halo bias function

The Radial Number Density Profile of Satellites
The radial number density profile of satellite galaxies can be constrained using 
the clustering data itself, or by directly measuring the (projected) profiles of
satellite galaxies in groups/clusters, or around isolated centrals...
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The surface density profile of satellite 
galaxies in clusters. Solid line is the 
best-fit NFW profile.
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The surface density profiles of satellite galaxies around 
isolated centrals in the SDSS. Satellites are identified 
in photometric catalogue using statistical background 
subtraction. Lines are best-fit NFW profiles.
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 the halo bias function

The Radial Number Density Profile of Satellites
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Although several studies have suggested that satellite galaxies follow a radial number 
density profile that is well fitted by NFW profile, others find that               has a core 
and is less centrally concentrated than the dark matter.
This is consistent with distribution of subhaloes in dark-matter-only simulations....

us(r|M)

The surface density profile of satellite galaxies found 
isolated centrals. Here both centrals & satellites are 
obtained from the spectroscopic SDSS. Note that 
cored profiles are better fit than NFW profile.
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 the halo bias function

Testing with Galaxy Mock Catalogs
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One can test accuracy of halo model using mock redshift surveys. These can be constructed 
by populating haloes in numerical simulations with mock galaxies. Dots show mock data from 
simulation box, while solid lines show the model predictions from CLF+halo model. 
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Constraints on Halo Occupation Statistics

 the halo bias function

Zehavi et al. 2011 used halo occupation models to fit the projected correlation 
functions obtained from the SDSS for 9 different luminosity threshold samples. 
    The left-hand panel shows data+fits (offset vertically for clarity).   
    The right-hand panel shows first moments of best-fit halo occupation distributions. 
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The Galaxy - Dark Matter Connection

 the halo bias function
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Summary

 the halo bias function

Dark matter haloes have universal density profiles, universal subhalo mass functions, 
and universal angular momentum profiles.

More massive haloes are less concentrated, less spherical, and have more substructure.
All these trends are a direct consequence of the fact that more massive haloes 
assemble later.

At fixed halo mass, haloes that assemble earlier are more concentrated, more 
spherical, and have less substructure.

Halo spin parameter is independent of halo mass; adiabatic gas has same specific 
angular momentum distribution as dark matter.

Halo model allows one to analytically compute correlation function of matter in the non-
linear regime to accuracy of ~10%.

When combined with halo occupation models, halo model can also be used to compute 
correlation functions of galaxies.

Clustering data can be used to constrain halo occupation statistics.


