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The EPS Formalism



Press-Schechter theory
&

Halo Mass Functions



The Linear Cosmological Density Field
According to linear theory, the density field evolves as δ(�x, t) = D(t) δ0(�x)

D(t)δ0(�x)Here          is the density field linearly extrapolated to           , and         is the linear
growth rate normalized to unity at   

t = t0
t = t0

δlin

δc

0 �x

halo halo halo

According to the spherical collapse model, regions with                                  will have 
collapsed to produce dark matter haloes by time   . In this lecture we examine how to 
assign a halo mass to this structure. But first, we need to introduce some concepts...

δ(�x, t) > δc � 1.686
t
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Notation & Convention
According to the spherical collapse model, regions with                                  will 
have collapsed to produce dark matter haloes by time 

δ(�x, t) > δc � 1.686
t

In this latter case, we consider the density field to be static (at the one linearly
extrapolated to our reference time), while the `collapse barier’ evolves with time.

Using that                                 we can also phrase this differently: regions 
with                            will have collapsed to produce dark matter haloes by time 

δ(�x, t) = D(t) δ0(�x)
δ0(�x) > δc/D(t) t

In the Press-Schechter formalism, the latter will be our preferred `view’.

δlin

δc

0 �x

δ = δ(�x)

δc = δc(t)
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Smoothing
Given a density field        , one can filter it using some window function (or “filter”)  δ(�x) W (�x;R)
which is properly normalized such that                               , to get a smoothed field

�
W (�x;R) d3�x = 1

δ(�x;R) ≡
�

δ(�x�) W (�x + �x�;R) d3�x�

For each filter, one can define a mass                      , where     is some constant that depends
on the shape of the filter.  In what follows, we will characterize a filter intermittendly by
its size     or its mass     . R M

γfM = γf ρ̄ R3

The above equation for the smoothed density field is a convolution integral (density 
field is convolved with window function).  Since convolution in real-space is equal to 
multiplication in Fourier space, we have that

δ(�k;R) =
�

δ(�x;R) e−i�k·�x d3�x = δ(�k) �W (kR)

where                                                      is the Fourier Transform of the window function
for which  we have made it explicit that    and     only enter in the combination      .

�W (kR) =
�

W (�x;R) e−i�k·�x d3�x
kRk R
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Window Functions
Throughout we will use either one of the following three window functions:

Top Hat Filter:

W (�x;R) =
�

3
4πR3 r ≤ R
0 r > R

γf = 4π/3

Gaussian Filter:

Sharp k-space Filter:

γf = (2π)3/2

γf = 6π2

�W (kR) =

�
1 k ≤ 1/R
0 k > 1/R

W (�x;R) =
1

2π2 r3
[sin(r/R)− (r/R) cos(r/R)]

W (�x;R) =
1

(2π)3/2 R3
exp

�
− r2

2R2

�
�W (kR) = exp

�
− (kR)2

2

�

�W (kR) =
3

(kR)3
[sin(kR)− (kR) cos(kR)]
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The Mass Variance

Similar to case without smoothing, we define the variance of the smoothed density field as

σ2(R) = �δ2(�x;R)� =
1

2π2

�
P (k) �W 2(kR) k2 dk

Since we can equally label a filter by its size    or its mass    , we can write                           .R M σ2(R) = σ2(M)
The latter is called the mass variance, and plays an important role in what follows.

NOTE: If        is a Gaussian random field, then so is             . In particular  δ(�x) δ(�x;R)

where we have used the shorthand notation                          and                     . δM = δ(�x;M) σM = σ(M)

P(δM ) dδM =
1√

2π σM

exp
�
− δ2

M

2σ2
M

�
dδM
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Mass Variance
The variance of the smoothed, 
linear density field as a 
function of the size R of the 
top-hat filter. Results are 
shown for four different 
cosmogonies. The variance is 
normalized such that σ8 = 1.

(see MWB §6.1.3)

In hierarchical models, such as CDM-based cosmologies, the variance is a monotonically
decreasing function of the filter size R (or M). In top-down cosmogonies, such as HDM,
however, the lack of small scale structure introduces a characteristic scale where
the variance is maximum.

Γ = Ωm,0 h
Note: the shape parameter
                             characterizes
          the horizon scale at matter-
          radiation equality.
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How to Assign (Halo) Mass to Collapsed Regions?
We now return to our main question of interest:

According to SC model, regions in the linear density field with            have collapsed 
to produce virialized dark matter haloes. How can we associate a mass to those haloes,
and how can we use the statistics of the linear density field to infer the halo mass 
function, i.e., the (comoving) number density of haloes as a function of halo mass? 

δ > δc

Paul SchechterBill Press
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The Press-Schechter Mass Function
Press & Schechter (1974) postulated that:

δM > δc(t) “the probability that                   is the same as the mass fraction 
  that at time    is contained in halos with mass greater than     ”   Mt

For a Gaussian random field, one has that

P(δM > δc) =
1√

2π σM

� ∞

δc

exp
�
− δ2

M

2σ2
M

�
dδM =

1
2
erfc

�
δc

2σM

�

Here                                   is the complimentary error function, and we consider it
understood that                 .  According to the PS postulate, we thus have that  

erfc(x) = 1− erf(x)
δc = δc(t)

F (> M, t) =
1
2

erfc
�

δc

2 σM

�
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Note: since                                  and                    we see that the PS postulate predicts
          that never more than 1/2 of all matter in Universe is locked-up in collapsed haloes... 

erfc(0) = 1limx→∞ erfc(x) = 0



The Press-Schechter Mass Function
This may seem logical from the fact that                       ; i.e., only regions that are initially
overdense end up in collapsed objects... 

P(δ < 0) = 1
2

However, underdense regions can be enclosed within larger overdense regions, giving them
a finite probability of being included in some larger collapsed object (see illustration)

δlin

δc

0 �x

under-dense
region

large over-density

Press & Schechter `solved’ this problem by simply introducing a fudge factor two:

F (> M, t) = P [δM > δc(t)]2
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The Press-Schechter Mass Function

We are now ready to write down the PS halo mass function:

We define the mass function as                    , which is the number of haloes with masses
in the range                        per (comoving) volume. Hence,                                           .    

n(M, t) dM
[M,M + dM ] n(M, t) = dn

dM = M dn
d lnM

We have that                      is equal to the fraction of mass that is locked up in 
haloes with masses in the range                       .  [M,M + dM ]

∂F (>M)
∂M dM

Multiplying by    yields the total mass per unit volume that is locked up in those haloes. ρ̄

Hence, the halo mass function is simply given by n(M, t) dM =
ρ̄

M

∂F (> M)

∂M
dM

Using the Press-Schechter ansatz plus fudge factor we thus obtain:

n(M, t) dM = 2
ρ̄

M

∂P(> δc)

∂M
dM =

�
2

π

ρ̄

M2

δc
σM

exp

�
− δ2c
2σ2

M

� ����
d lnσM

d lnM

���� dM

where we have used that                                                         . ∂P/∂M = ∂P/∂σM × |dσM/dM |
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The Press-Schechter Mass Function
Upon defining the variable                            we can write the PS mass function in 
a more compact form: 

ν ≡ δc(t)/σ(M)

n(M, t) dM =
ρ̄

M2
fPS(ν)

����
d ln ν

d lnM

���� dM fPS(ν) =

�
2

π
ν e−ν2/2where

            is called the multiplicity function and gives the mass fraction associated with 
haloes in a unit range of       . Note that time enters only through ln ν
fPS(ν)

δc(t) � 1.686/D(t)
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If we define a characteristic mass,      , by                          (i.e., by                   ) then:M∗ σ(M∗) = δc(t) ν(M∗) = 1

α = d lnσ/d lnM

 For a CDM cosmology            at low mass end so that  n(M) ∝ M−2

For                 we have that                                , where M � M∗

For                 the abundance of haloes is exponentially suppressed.M � M∗

Since          decreases with time, the characteristic halo mass grows as function
of time; as time passes more and more massive haloes will start to form...

δc(t)

n(M, t) ∝M−(2+α)

α ∼ 0



Excursion Set Formalism



The Excursion Set Formalism
Bond et al. (1991) came up with an alternative derivation of the halo 
mass function that does not suffer from a `fudge-factor problem’

Dick Bond
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The Excursion Set Formalism
In what follows we adopt                     as our mass variable. 
For a hierarchical cosmogony such as CDM, S is a monotonically 
declining function of halo mass, so that there is a clear, one-
to-one relation between S and M. 

S ≡ σ2(M)
S

M

Consider a point    , for which the overdensity, linearly 
extrapolated to the present day is          .  For each value of
the filtering mass      , i.e. for each value of S, the smoothed
overdensity                     will have a different value. 

�x
δ0(�x)

M
δS = δM (�x)

With each point    corresponds a trajectory �x δS

mass variance

S

δS

example trajectories

For             we have that               , and thus             . 
Hence, each trajectory starts at 

S → 0 M →∞ δS → 0
(S, δS) = (0, 0)

If the filter is a sharp k-space filter, changing S
adds new (and independent) modes. As a consequence,
the trajectory is Markovian....
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Markovian Random Walks
A random walk is a mathematical formalization of a path that consists of a succession of 
random steps. If the next step depends only on the current state (i.e., has no `memory’ 
of its prior path), the random walk is called Markovian.

For a sharp k-space filter the smoothed density field is given by

Here                  is the size of the top-hat in k-space, and        are Fourier modes of   kc = 1/R δ�k,0 δ0(�x)

δS(�x) =

�
d3�k�Wsk(�kR) δ�k,0 e

i�k·�x =

�

k<kc

d3�k δ�k,0 e
i�k·�x

When increasing S (decreasing R), you add new and independent modes (at least for a 
Gaussian random field). Since these new and independent modes have random phases, the
step            associated with the change        is Markovian.  ∆(δS) ∆S

NOTE: for any other filter, the trajectories           will not be Markovian!! δS(S)

In what follows we will always assume a sharp k-space filter (unless stated otherwise), so 
that our trajectories can be considered Markovian. 
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The Excursion Set Formalism

Sharp k-space filter

Gaussian filter

S

�x

NOTE: for any filter other than sharp k-space filter, the random walks are NOT Markovian

So
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99
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The Excursion Set Formalism

Consider          smoothed on a mass scale       corresponding to  δ0(�x) M1 S1 = σ2(M1)

Three trajectories 
corresponding to 
three different 
mass elements in a 
Gaussian random 
field. Note that B’ is
obtained mirroring 
trajectory B in the
line              for  
            . Since the 
trajectories are 
Markovian B and B’ 
are equally likely!

δS = δc
S ≥ S2

According to PS ansatz, mass elements whose trajectory              at     reside in 
dark matter haloes with mass                         neither A or B are in halo with  

δS > δc S1

M > M1 M > M1

S4

BUT: according to same PS ansatz, mass element associated with trajectory B 
resides in a halo with                          : PS ansatz is not self-consistent!!! M > M4 > M1
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The Excursion Set Formalism

Three trajectories 
corresponding to 
three different 
mass elements in a 
Gaussian random 
field. Note that B’ is
obtained mirroring 
trajectory B in the
line              for  
            . Since the 
trajectories are 
Markovian B and B’ 
are equally likely!

δS = δc
S ≥ S2

S4

The problem with the PS ansatz is that it fails to account for trajectories such as B
when counting mass elements in haloes with mass               .  M > M1

Correcting for this is easy though, by realizing that each trajectory B has a mirror
version, B’, that is equally likely (as a result of the Markovian nature of the trajectories).

Double-counting trajectories with              at     corrects for `missed trajectories’.....δS > δc S1

A natural explanation for the fudge-factor two in PS formalism!
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The Excursion Set Formalism
In the excursion set formalism , also called the Extended Press-Schechter (EPS) 
formalism, one uses the (statistics of) Markovian random walks (the trajectories of 
mass elements in           -space) to infer the halo mass function (and more).(S, δS)

EPS ansatz:
fraction of trajectories with a first upcrossing (FU) of the 
barrier                   at                               is equal to the mass 
fraction that at time    resides in haloes with masses          t

δS = δc(t) S > S1 = σ2(M1)
M < M1

PS ansatz:
fraction of mass elements with                   is equal to the mass 
fraction that at time    resides in haloes with masses         , 
where    and      are related according to   

> M
δS > δc(t)

t
S M S = σ2(M)

Since, each trajectory is guaranteed to upcross the barrier                  at some 
(arbitrarily large) S, the EPS ansatz predicts that every mass element is in a halo 
of some (arbitrarily low) mass

δS = δc(t)

F (< M1) = 1− F (> M1)
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The EPS Mass Function
Based on the EPS ansatz, we can write the EPS mass function as:

n(M, t) dM =
ρ̄

M

∂F (> M)
∂M

dM = − ρ̄

M

∂F (< M)
∂M

dM

Without proof:

where, as before, we defined                                             and we expressed the
result in terms of the PS multiplicity function 

ν = δc(t)/σ(M) = δc/
√

S
fPS(ν) =

�
2/π ν exp(−ν2/2)

(see MBW §7.2.2    
     for derivation)

It is straightforward to show that this yields exactly the same halo mass function
as before, but this time there has been no need for a fudge factor....

= − ρ̄

M

∂FFU(> S)
∂S

dS

dM
dM =

ρ̄

M
fFU(S, δc)

����
dS

dM

���� dM

S S + dS
Here                        is the fraction of trajectories that have their first 
upcrossing of barrier         between     and             .   δc(t)

fFU(S, δc) dS

fFU(ν) =
1√
2π

δc
S3/2

exp

�
− δ2c
2S

�
=

1

2S
fPS(ν)
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The EPS Mass Function
Although the EPS mass function is used very frequently in modern astronomy, it is important 
to be aware of its assumptions, shortcomings and pitfalls:

Consider two mass elements (yellow `dots’) in the same dark matter halo:
one near the center, the other near the outskirts.

Since both particles have very similar large-scale environments 
(on scales larger than halo itself), their 
trajectories are very similar for small S:

δm1

δm2

S

δS

δc
δm2

δm1

S2S1

Although both particles reside in same halo, their
trajectories have first upcrossings at different S:
according to EPS formalism,        resides in a less
massive halo than        : excursion set formalism 
only predicts how much mass ends up in haloes of
different mass in a statistical sense.... 

δm2

δm1
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The EPS Mass Function
Although the EPS mass function is used very frequently in modern astronomy, it is important 
to be aware of its assumptions, shortcomings and pitfalls:

Trajectories have to be constructed with sharp k-space filter in
order to guarantee Markovian nature of the random walks.

In particular, the real-space filter is not
spatially localized; it has oscillating wings 
that extent out to large distances... 

However, the corresponding real-space filter has complicated (sinc-like) form; 
difficult to interpret....

FT

Yet, according to EPS formalism, this 
structure corresponds to a collapsed dark 
matter halo, which *is* spatially localized...
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The EPS Mass Function
Although the EPS mass function is used very frequently in modern astronomy, it is important 
to be aware of its assumptions, shortcomings and pitfalls:

The Spherical Cow: The upcrossing barrier used is based on the 
spherical collapse model; as we have seen collapse is believed to 
be ellipsoidal instead...

Finally, the mere idea that one can use the linear 
density field to identify collapsed structures in the 
non-linear field constitutes a leap of faith...

As we will see, though, this 
can be taken into account...
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Comparison with Numerical Simulation
Given the various crude assumptions 
underlying the PS & EPS formalisms, 
it is important to test their 
predictions for halo mass function 
against numerical simulations...

These follow the growth & collapse 
of structures directly by solving the 
equations of motion for dark matter 
particles. However, as will be 
discussed later, identifying haloes
in simulations is a non-trivial task.....

Until end of 1990s, most simulations 
yielded results in fair agreement 
with PS predictions....

However, when larger and more 
accurate simulations became 
available, it became clear that there 
where some problems....
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Comparison with Numerical Simulation
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= Millenium sim.

= PS prediction 

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.

At the time it was run (2005) 
it was one of the biggest 
simulations to date. Because of 
its superb statistics, it is 
ideally suited to test the PS 
mass functions...

At low redshift, the PS mass function under- (over)-predicts the abundance of massive 
(low mass) haloes. These problems become more pronounced at higher redshifts...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.
                   Here a Friends-Of-Friends (FOF) algorithm has been used....  

The 30th Jerusalem Winter School in Theoretical Physics © Frank van den Bosch:  Yale 2012



Extended Press-Schechter with Ellipsoidal Collapse

Ravi Sheth

Houjun Mo

Giuseppe Tormen
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Spherical vs. Ellipsoidal Collapse
As we have seen, because of the non-zero tidal 
field, collapse will not be spherical, but ellipsoidal.

In that case, the critical (linear) over density for collapse is given by

δsc = δc � 1.686Here                         is the critical overdensity for ellipsoidal collapse, 
is the critical overdensity for spherical collapse, and the parameters e and p characterize
the asymmetry of the initial tidal field.                                                     (see lecture 1)

δec = δec(e, p)

δec
δsc

≈ 1 + 0.47

�
5(e2 ± p2)

δ2ec
δ2sc

�0.615
Ellipsoidal collapse

Note that for a spherical system 

Adopting the most probable values for e and p, Sheth, Mo & Tormen (2001; SMT) showed 
that the upcrossing boundary for ellipsoidal collapse can be written as:

δec � δec(S, t) = δc(t)

�
1 + 0.47

�
S

δ2c (t)

�0.615
�

Contrary for spherical collapse, for which the boundary is constant, the boundary for 
ellipsoidal collapse increases with S (less massive structures need higher overdensity for
collapse). Because of this S-dependence,      , is called a “moving barrier”.δec
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The EPS Mass Function for Ellipsoidal Collapse
Knowing the critical overdensity for ellipsoidal collapse, we can compute the corresponding 
PS mass function: all we need to do is to work out the first-upcrossing statistics....

This was done by SMT, who found that 
the resulting multiplicity function if well 
approximated by

fEC(ν) = 0.322

�
1 +

1

ν̃0.6

�
fPS(ν̃) where ν̃ = 0.84 ν

Unfortunately, for a moving barrier one 
cannot compute this analytically. 
Rather, one has to resort to Monte Carlo 
simulations of independent random walks, 
and register their first upcrossings.

n(M, t) dM =
ρ̄

M2
fEC(ν)

����
d ln ν

d lnM

���� dM

collapsed

S

The normalization 0.322 is set by requiring that                                      , which implies
that all matter is in collapsed objects. The PS mass function for ellipsoidal collapse simply
follows from replacing            with            ; i.e., 

�∞
0 n(M)M dM = ρ̄m

fPS(ν) fEC(ν)
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Spherical vs. Ellipsoidal Collapse

= Simulation 

= EPS (SC) 

= EPS (EC) 
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Clearly, the EPS mass function 
based on ellipsoidal collapse is 
in much better agreement with 
numerical simulations than the 
spherical collapse-based model 
prediction...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.
                    Here a Friends-Of-Friends (FOF) algorithm has been used..... 

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.
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Halo Merger Trees



Recap: The Halo Mass Function
In the excursion set formulation of PS theory, also called extended Press-Schechter, 
the halo mass function derives from first-upcrossing statistics of linear density field:

S S + dS
Here                        is the fraction of trajectories that have their first upcrossing of 
barrier         between     and             .   δc(t)

fFU(S, δc) dS

n(M, t) M =
ρ̄

M
fFU(S, δc)

����
dS

dM

���� dM

In the case of spherical collapse, the barrier                                is independent
of mass, and the upcrossing statistics are analytical: 

δc(t) � 1.686/D(t)

where                                             and                                      is the multiplicity function ν = δc(t)/σ(M) = δc/
√

S fPS(ν) =
�

2
π ν e−ν2/2

fFU(ν) =
1√
2π

δc
S3/2

exp

�
− δ2c
2S

�
=

1

2S
fPS(ν)

In the case of ellipsoidal collapse, Monte Carlo simulations of first-upcrossings with a
moving barrier are well fit by 

fEC(ν) = 0.322

�
1 +

1

ν̃0.6

�
fPS(ν̃)where ν̃ = 0.84 νfFU(ν) =

1

2S
fEC(ν) with
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Beyond a Halo Mass Function...
An important advantage of EPS over PS is that the excursion set formalism provides
a neat way to calculate the properties of the progenitors which give rise to a given 
class of objects (i.e., haloes of a given mass).

For example, one can calculate the mass function at z=5 of those haloes (progenitors)
which by z=0 end up in a massive halo of 1015 solar masses. 

These progenitor mass functions, in turn, 
can be used to describe how dark matter 
haloes assemble over time (in a statistical 
sense); in particular, they allow the 
construction of halo merger trees.
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Illustration of a merger tree depicting the 
growth of a dark matter halo as a result of a 
series of mergers. Time increases from top 
to bottom and the width of the tree beaches 
represents the masses of the individual 
progenitors...

These merger trees are invaluable tools
in galaxy formation studies...
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Progenitor Mass Function

S

δS

S2 S1

δ1

δ2

Consider a spherical region (a patch) of mass       , corresponding to a mass variance M2

S2 = σ2(M2) δ2 ≡ δc(t2) = δc/D(t2)
t2

                      with linear overdensity                                       so that it forms a 
collapsed object at time    .

t1 < t2We are interested in the fraction of       that at some earlier time             was in a
collapsed object of some mass      .  

M2

M1

Within the excursion set formalism this means we want to calculate the probability that
a trajectory that upcrosses barrier     at      has its first upcrossing of barrier δ2 S2 δ1 = δc(t1)
at               ( see illustration).S1 > S2

This is the same problem as before,
except for a translation of the origin
in the            -plane . (S, δS)
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Progenitor Mass Function

n(M1, t1|M2, t2) dM1                                   is the progenitor mass function; it gives the average number of 
progenitor haloes at time     in the mass range                             that at time             
have merged to form a halo of mass       .

t1 (M1,M1 + dM1) t2 > t1
M2

fFU(S, δc) =
1√
2π

δc
S3/2

exp

�
− δ2c
2S

�

translation

Converting from mass- 
to number-weighting 

n(M1, t1|M2, t2) dM1 =
M2

M1
fFU(S1, δ1|S2, δ2)

����
dS1

dM1

���� dM1

fFU(S1, δ1|S2, δ2) =
1√
2π

δ1 − δ2

(S1 − S2)3/2
exp

�
− (δ1 − δ2)2

2 (S1 − S2)

�
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Merger Trees
The progenitor mass function allows one to construct halo
merger trees using the following algorithm:

For a given host halo mass,      , and a given time step,     
     , draw a set of progenitor masses from the 
progenitor mass function 

M0

∆t
n(Mp, t0 + ∆t|M0, t0)

The progenitors must obey the following two conditions:

accurately sample the progenitor mass function

mass conservation: 
�

i

Mp,i = M0

For each progenitor, repeat above procedure, thus 
stepping back in time.
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2

Sounds easy.....is not...

Several different methods have been suggested to 
contruct halo merger trees; none of them is perfect......
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How to Plant a Healthy Merger Tree?
The problem with how to construct a merger tree can be summarized as follows:

once I have drawn the first progenitor mass,         , from the progenitor mass function, 
                                     mass conservation now implies a constraint on the second 
progenitor mass:                                . Unfortunately, there is no analytical method to
include this `condition’ in the progenitor mass function, i.e., it is not clear how to 
specify                                               . Different methods for constructing halo merger
trees mainly differ in how to deal with this issue... 

n(Mp, t0 + ∆t|M0, t0)
Mp,2 ≤M0 −Mp,1

Mp,1

n(Mp, t0 + ∆t|M0, t0,Mp,1)
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How to Plant a Healthy Merger Tree?
There are two tests that one can perform to test the accuracy of a merger tree:

1: The Self-Consistency Test

Construct a larger number of merger trees (using small time 
steps) for a host halo of a given mass, and compute the average 
mass function of all progenitors at different redshifts.

Compare these directly to the EPS progenitor mass functions 
at those redshifts.

These need to be in agreement with each other....
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Example of a method that fails the Self-
Consistency Test:
Black histograms are the progenitor
mass functions for a halo of 1012 Msun
obtained from 2000 merger trees 
constructed using the N-Branch method 
with Accretion of Somerville & Kolatt 
(1998). The red lines are the direct EPS 
predictions...



How to Plant a Healthy Merger Tree?
There are two tests that one can perform to test the accuracy of a merger tree:

1: The Self-Consistency Test

Example of a method that successfully 
passes the Self-Consistency Test:
Black histograms are the progenitor
mass functions for a halo of 1012 Msun
obtained from 2000 merger trees 
constructed using Method B of Zhang, 
Fakhouri & Ma (2008). The red lines are
the direct EPS predictions, and are in 
excellent agreement with the merger tree 
results...

Construct a larger number of merger trees (using small time 
steps) for a host halo of a given mass, and compute the average 
mass function of all progenitors at different redshifts.

Compare these directly to the EPS progenitor mass functions 
at those redshifts.

These need to be in agreement with each other....
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The figure compares progenitor mass fractions in the Millenium 
simulation (black histograms) to those obtained using two 
different EPS merger tree algorithms: Cole et al. (2000; green 
dotted lines), and Parkinson et al. (2008; red dashed lines). The 
latter is an empirical, ad-hoc modification of Cole et al. (2000) 
tuned towards better agreement with the simulation results....

How to Plant a Healthy Merger Tree?

2: Comparison with Numerical Simulations

So
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Cole et al. (2000)

Parkinson et al. (2008)
Fitting function (ignore)

We caution, though, that there is no unique way 
to identify dark matter haloes and their merger 
histories in numerical simulations, making the 
comparison non-trivial....

An important test of EPS merger trees is 
whether they can reproduce the merger trees 
obtained from numerical N-body simulations.

M0 = 3× 1013h−1M⊙M0 = 1012h−1M⊙
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Mass Assembly Histories
A very useful, reduced characterization of a merger tree is its Mass Assembly 
History (MAH), also called Mass Accretion History or Main Progenitor History.

The MAH          gives the mass of the main progenitor as a function of redshift;M(z)
at each time step one associates           with the most massive progenitor, and
one follows that progenitor, and that progenitor only, further back in time.... 

M(z)

Examples of Mass Assembly Histories

At each branching point in the 
tree, the MAH follows the 
most massive branch. Hence, 
the MAH is sometimes called
the main trunk of the merger 
tree...

NOTE: the main progenitor is not necessarily also the most massive of all
            progenitors at a given redshift (see example)...
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Anatomy of a Merger Tree

The MAH is the mass history of the 0th order progenitor...

MAH
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Mass Assembly Histories
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A random subset of MAHs for a halo of 
mass                                     in an EdS
Universe. Note the large halo-to-halo 
variance...

M0 = 5× 1011h−1M⊙

The average MAHs for haloes of different
mass in an EdS Universe. Note that more 
massive haloes assemble later; a clear 
manifestation of hierarchical structure 
formation...
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