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Halo Mass Functions




The Linear Cosmological Density Field

Accor'dmg to lmear' Theor'y The density field evolves as §(Z,t) = D(t) 0o (& )

Here 0y (%) is the density field linearly extrapolated to t = ¢, and D(t) is the linear
growth rate normalized to unity at ¢ = ¢
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Notation & Convention

According to the spherical collapse model, regions with §(Z,t) > . ~ 1.686 will
have collapsed to produce dark matter haloes by time ¢

Using that 0(Z,t) = D(t) do(Z) we can also phrase this differently: regions
with 6o (%) > 6./ D(t) will have collapsed to produce dark matter haloes by time ¢

In this latter case, we consider the density field to be static (at the one linearly
extrapolated to our reference time), while the " collapse barier' evolves with time.

o 0
-----
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Smoothing

Given a density field J(Z), one can filter it using some window function (or “filter") W (Z;
which is properly normalized such that [ W (Z; R) d°Z = 1, to get a smoothed field

]l
=

5(Z; R) = / 5() W (F + 7 R) d°F

For each filter, one can define a mass M = ¢ p R® , where ~; is some constant that depends

on the shape of the filter. In what follows, we will characterize a filter intermittendly by
Its size R or its mass M.

The above equa’rlon for the smoo’rhed densu’ry field is a convolu’rlon m’regral (densu’ry
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Throughout we will use either one of the following three window functions:

Sharp Jk-space [Filter. /
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The Mass Variance

Similar to case without smoothing, we define the variance of the smoothed density field as

1
2772

o*(R) = (6°(%; R)) =

/ P(k)W2(kR) k* dk

Since we can equally label a filter by its size R or its mass M, we cah write 0%(R) = o*(M).
The latter is called the mass variance, and plays an important role in what follows.

., NOTE Ifo ( )IS a Gaussnan random field, then so is §(7; R). In par"ncular' R
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Mass Variance

The variance of the smoothed,
linear density field as a
function of the size R of the
top-hat filter. Results are
shown for four different
cosmogonies. The variance is
normalized such that os = 1.

CDM (I'=0.5) N (see MWB §6.1.3)
CDM (I'=0.2) N
S —. HDM (Q,=1.0) \ S
N\ ’ the shape parameter
— ——— MDM (Q,=0.3) \ ‘ I' = €, 0 h characterizes

,‘ ,- the horizon scale at matter-
100 | radiation equality.

i ———— J

| .

jras—

In hierarchical models, such as CDM-based cosmologies, the variance is a monotonically
/‘\ decreasing function of the filter size R (or M). In fop-down cosmogonies, such as HDM,
N however, the lack of small scale structure introduces a characteristic scale where

the variance is maximum.
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How to Assign (Halo) Mass to Collapsed Regions?

We now return to our main question of interest:

—— T e

’ According to SC model, regions in the linear densi‘ry'field with 0 > 0. have collapsed )
" to produce virialized dark matter haloes. How can we associate a mass to those hc:lloes,1
i and how can we use the statistics of the linear density field to infer the halo mass

qunc’rion, i.e., the (comoving) number density of haloes as a function of halo mass?

B—— S R

FORMATION OF GALAXIES AND CLUSTERS OF GALAXIES BY
SELF-SIMILAR GRAVITATIONAL CONDENSATION*

WiLLIAM H. PRESS AND PAUL SCHECHTER
California Institute of Technology
Received 1973 August 1

ABSTRACT

We consider an expanding Friedmann cosmology containing a ““gas” of self-gravitating masses.
The masses condense into aggregates which (when sufficiently bound) we identify as single particles
: of a larger mass. We propose that after this process has proceeded through several scales, the mass
Bill fess spectrum of condensations becomes ‘‘self-similar” and independent of the spectrum initially Paul Schechter
assumed. Some details of the self-similar distribution, and its evolution in time, can be calculated
with the linear perturbation theory. Unlike other authors, we make no ad hoc assumptions about
the spectrum of long-wavelength initial perturbations: the nonlinear N-body interactions of the
mass points randomize their positions and generate a perturbation to all larger scales; this should
fix the self-similar distribution almost uniquely. The results of numerical experiments on 1000
bodies are presented ; these appear to show new nonlinear effects: condensations can “bootstrap™
their way up in size faster than the linear theory predicts. Our self-similar model predicts relations
between the masses and radii of galaxies and clusters of galaxies, as well as their mass spectra. We
compare the predictions with available data, and find some rather striking agreements. If the
model is to explain galaxies, then isothermal “seed’ masses of ~3 x 107 My must have existed
at recombination. To explain clusters of galaxies, the only necessary seeds are the galaxies them-

selves. The size of clusters determines, in principle, the deceleration parameter go; presently available
data give only very broad limits, unfortunately.

Subject headings: cosmology — galaxies — galaxies, clusters of
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The Press-Schechter Mass Function

Press & Schechter (1974) postulated that:

S —

For a Gaussian random field, one has that

1 > 62 1 Oc
M

Here erfc(z) = 1 — erf(x) is the complimentary error function, and we consider it
~ understood that 6. = dc(1 ) Acccr'dm o ’rhe PS pos’rula’re we ’rhus have ‘rha‘r

~ {”- ,_..:'5“ ,v '_\{ _q.‘ i f. 5 / 3 ,{
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The Press-SchechfarMass Funchon

This may seem logical from the fact that P(6 < 0) = 5. i.e., only regions that are initially
overdense end up in collapsed objects...

However, underdense regions can be enclosed within larger overdense regions, giving them
a finite probability of being included in some larger collapsed object (see illustration)

large over-densi
Olin . TY)

under-dense
region

| F(> M,t) =~ P[6x > 6(1)] '
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The Press-Schechter Mass Function

We are now ready to write down the PS halo mass function:

( /\/] A /\/]

We have that 25 g7 s equal to the fraction of mass that is locked up in

&M
haloes with masses in the range [M, M + dM|.
Multiplying by p yields the total mass per unit volume that is locked up in those haloes.
p OF (> M)
Rk

Hence, the halo mass function is simply given by n(M,t)dM = dM
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The Schechter Mass Function

Upon defining the variable v = d.(t)/o (M) we can write the PS mass function in

a more compact form:
2 —1/2/2
dM  where fps(v)=14/—ve
= |

fps(v) is called the multiplicity function and gives the mass fraction associated with
haloes in a unit range of In v. Note that time enters only through 6.(t) ~ 1.686/D(t)

dlnv
dln M

n(M,t)dM = %fPS(V) |

If we define a characteristic mass, M* by o(M™) = i.(t) (i.e., by v(M™*) = 1) then:

————

o ForM < M* we have that n(M,t) oc M~ 27 where o = dIn o/dIn M
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The Excursion Set Formalism

Bond et al. (1991) came up with an alternative derivation of the halo
mass function that does not suffer from a * fudge-factor problem'

EXCURSION SET MASS FUNCTIONS FOR HIERARCHICAL GAUSSIAN FLUCTUATIONS

J. R. Bonp,! S. CoLg,?> G. ErsTATHIOU,” AND N. KAISER'
Received 1990 July 23; accepted 1990 December 28

ABSTRACT

Most schemes for determining the mass function of virialized objects from the statistics of the initial density
perturbation field suffer from the “cloud-in-cloud™ problem of miscounting the number of low-mass clumps,
many of which would have been subsumed into larger objects. We propose a solution based on the theory of
the excursion sets of F(r, R;), the four-dimensional initial density perturbation field smoothed with a contin-
uous hierarchy of filters of radii R,. We identify the mass fraction of matter in virialized objects with mass
greater than M with the fraction of space in which the initial density contrast lies above a critical overdensity
when smoothed on some filter of radius greater than or equal to R{M). The differential mass function is then
given by the rate of first upcrossings of the critical overdensity level as one decreases R, at constant position
r. The shape of the mass function depends on the choice of filter function. The simplest case is “sharp k-
space” filtering, in which the field performs a Brownian random walk as the resolution changes. The first
upcrossing rate can be calculated analytically and results in a mass function identical to the formula of Press
and Schechter—complete with their normalizing “fudge factor ™ of 2. For general filters (e.g., Gaussian or “ top
hat”) no analogous analytical result seems possible, though we derive useful analytical upper and lower
bounds. For these cases, the mass function can be calculated by generating an ensemble of field trajectories
numerically. We compare the results of these calculations with group catalogs found from N-body simulations.
Compared to the sharp k-space result, less spatially extended filter functions give fewer large-mass and more
small-mass objects. Over the limited mass range probed by the N-body simulations, these differences in the
predicted abundances are less than a factor of 2 and span the values found in the simulations. Thus the mass
functions for sharp k-space and more general filtering all fit the N-body results reasonably well. None of the
filter functions is particularly successful in identifying the particles which form low-mass groups in the N-body
simulations, illustrating the limitations of the excursion set approach. We have extended these calculations to
compute the evolution of the mass function in regions that are constrained to lie within clusters or under-
densities at the present epoch. These predictions agree well with N-body results, although the sharp k-space
result is slightly preferred over the Gaussian or top hat results.

Subject headings: cosmology — galaxies: clustering — numerical methods

‘ Dick Bond
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In what follows we adopt S = o*(M) as our mass variable.
For a hierarchical cosmogony such as CDM, S is a monotonically
declining function of halo mass, so that there is a clear, one-
to-one relation between S and M.

Consider a point =, for which the overdensity, linearly
extrapolated to the present day is do(Z). For each value of
the filtering mass M , i.e. for each value of S, the smoothed
overdensity 05 = d,(Z) will have a different value.
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'Markovian Random Walks

A random walk is a mathematical formalization of a path that consists of a succession of
random steps. If the next step depends only on the current state (i.e., has no “ memory’
of its prior path), the random walk is called Markovian.

For a sharp k-space filter the smoothed density field is given by

05(Z) = /d3EWSk(ER) (5,;;70 ek :/k ) dng(SE,O ik T
<Kc

Here k. = 1/R is the size of the fop-hat in k-space, and ;. , are Fourier modes of o (&)

When increasing S (decreasing R), you add new and independent modes (at least for' a
Gauss:a r'q dpm».fle d 5 nce thesg ew and ln Z enden moge. haye r;qndo " ses, :rhe-..,;

\‘ q?, ) ’\-
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The Excursion Set Formalism
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Source: Bond et al. (1991)

for any filter other than sharp k-space filter, the random walks are NOT Markovian
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The Excursion Set Formalism

e e

|
R —J

Three trajectories
corresponding to
three different
mass elements in a
Gaussian random
field. Note that B'is
obtained mirroring
trajectory E in the
line 6 = . for

S > 5. Since the
trajectories are
Markovian * and
are equally likely!

Consider &, () smoothed on a mass scale M corresponding to S1 = o*(M)

According to PS ansatz, mass elements whose trajectory 0 > 0. at Sireside in
dark matter haloes with mass M > M; = neither or arein halo with M > M,

OQ according to same PS ansatz, mass element associated with trajectory
~, resides in a halo with M > M, > M;: PS ansatz is not self-consistentlll

The 30th Jerusalem Winter School in Theoretical Physics
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The Excursion Set Formalism

——

Three trajectories
corresponding to
three different
mass elements in a
Gaussian random
field. Note that B'is
obtained mirroring
trajectory B in the
line g = 6. for

S > 5. Since the
trajectories are
Markovian B and
are equally likely!

The problem with the PS ansatz is that it fails to account for trajectories such as
when counting mass elements in haloes with mass M > M;.

Correcting for this is easy though, by realizing that each trajectory  has a mirror
version, , that is equally likely (as a result of the Markovian nature of the trajectories).

Double-counting trajectories with 05 > 0. at S corrects for "~ missed trajectories'.....

0N 2 e e
/ — g_A natural explanation for the fudge-factor two in PS formalism! }

—
The 30th Jerusalem Winter School in Theoretical Physics © Frank van den Bosch: Yale 2012



In the excursion set formalism , also called the Extended Press-Schechter (EPS)
formalism, one uses the (statistics of) Markovian random walks (the trajectories of
mass elements in (S, 05)-space) to infer the halo mass function (and more).

———

PS ansatz:

¥ 9 [ o ' 3 1‘ i - o &
P P e a0 TS N N R r L o 8 S Tl
RO A o POy T B LRy SR N
e A LR & e e Wi ws
1) ¥ - ns L] .

= | F(< M) =1—F(> M)|
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The EPS Mass Funchon

Here fry(S,d.)dsS is the fraction of trajectories that have their first
upcrossing of barrieri.(¢) between S and S + d5S.

Without proof:
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Although the EPS mass function is used very frequently in modern astronomy, it is important
to be aware of its assumptions, shortcomings and pitfalls:
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The EPS Mass Function

Although the EPS mass function is used very frequently in modern astronomy, it is important
to be aware of its assumptions, shortcomings and pitfalls:

— — | — e —

’ Trajectories have to be constructed with sharp k-space filter in
- order to guarantee Markovian nature of the random walks.

' In particular, the real-space filter is not
spatially localized; it has oscillating wings
} that extent out to large distances...

However, the corresponding real-space filter has complicated (sinc-like) form;
difficult to interpret....

Yet, according to EPS formalism, this
structure corresponds to a collapsed dark
matter halo, which *is* spatially localized...
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Although the EPS mass function is used very frequently in modern astronomy, it is important
to be aware of its assumptions, shortcomings and pitfalls:
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Comparison with Numerical Simulation

"wu';'_ B =

The 30th Jerusalem Winter School in Theoretical Physics

Given the various crude assumptions
underlying the PS & EPS formalisms,
it is important to test their
predictions for halo mass function
against numerical simulations...

These follow the growth & collapse
of structures directly by solving the
equations of motion for dark matter
particles. However, as will be
discussed later, identifying haloes
in simulations is a non-trivial task.....

Until end of 1990s, most simulations
yielded results in fair agreement
with PS predictions....

However, when larger and more
accurate simulations became
available, it became clear that there
where some problems....

© Frank van den Bosch: Yale 2012




Comparison with Numerical Simulation

The Millenium Simulation
followed the evolution of 2160°
(~10 billion) particles in a
periodic box 500 Mpc/h on a
side in a ACDM cosmology.

=
3

-~
o
Q.
£
=

At the time it was run (2005)
it was one of the biggest
simulations to date. Because of
its superb statistics, it is
ideally suited to test the PS
mass functions...
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At low redshift, the PS mass function under- (over)-predicts the abundance of massive
(low mass) haloes. These problems become more pronounced at higher redshifts...

this statement is sensitive to how haloes are identified in the simulation box.
Here a Friends-Of-Friends (FOF) algorithm has been used....
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Extended Press-Schechter with Ellipsoidal Collapse

Ellipsoidal collapse and an improved model for the number and spatial
distribution of dark matter haloes

S

Ravi K. Sheth,'* H. J. Mo' and Giuseppe Tormen®

'‘Max-Planck Institut fiir Astrophysik, 85740 Garching, Germany
‘Dipartimento di Astronomia, 35122 Padova, Italy

Accepted 2000 September 5. Received 2000 April 7: in original form 1999 July 6

Ravi Sheth

ABSTRACT ‘
The Press—Schechter, excursion set approach allows one to make predictions about the

shape and evolution of the mass function of bound objects. The approach combines the

assumption that objects collapse spherically with the assumption that the initial density

fluctuations were Gaussian and small. The predicted mass function is reasonably accurate,

although it has fewer high-mass and more low-mass objects than are seen in simulations of

hierarchical clustering. We show that the discrepancy between theory and simulation can be

reduced substantially if bound structures are assumed to form from an ellipsoidal, rather than \

a spherical, collapse. In the original, standard, spherical model. a region collapses if the \ d

initial density within it exceeds a threshold value, 8. This value is independent of the initial S -
size of the region, and since the mass of the collapsed object is related to its initial size, this

means that d . is independent of final mass. In the ellipsoidal model, the collapse of a region HOLIjUﬂ Mo
depends on the surrounding shear field, as well as on its initial overdensity. In Gaussian

random fields, the distribution of these quantities depends on the size of the region <o
considered. Since the mass of a region is related to its initial size, there is a relation between
the density threshold value required for collapse and the mass of the final object. We provide
a fitting function to this d..(m) relation which simplifies the inclusion of ellipsoidal
dynamics in the excursion set approach. We discuss the relation between the excursion set
predictions and the halo distribution in high-resolution N-body simulations, and use our new
formulation of the approach to show that our simple parametrization of the ellipsoidal
collapse model represents an improvement on the spherical model on an object-by-object
basis. Finally, we show that the associated statistical predictions, the mass function and the
large-scale halo-to-mass bias relation, are also more accurate than the standard predictions.

Key words: galaxies: clusters: general — cosmology: theory — dark matter. Gluseppe Tormen l
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e==. Spherical vs. Ellipsoidal

Collapse _

e e —
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As we have seen, because of the non-zero tidal
field, collapse will not be spherical, but ellipsoidal.

56C

SC

Ellipsoidal collapse

5 10.615
56C]

~1+0.47 [5(62 + p?) -

o)

Here doc = dec(e, p) is the critical overdensity for ellipsoidal collapse, 6, = 0. ~ 1.686
is the critical overdensity for spherical collapse, and the parameters e and p characterize
the asymmetry of the initial tidal field. (see lecture 1)

Adopting the most probable values for e and p, Sheth, Mo & Tormen (2001; SMT) showed
that the upcrossing boundary for ellipsoidal collapse can be written as:

g O\ 0615 | e et it
A e
5ec 2é’ec(Svt) :5C(t) 1+0.47 ((53(]5)) P e B N e i ~
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The EPS Mass Function for Ellipsoidal Collapse

Knowing the critical overdensity for ellipsoidal collapse, we can compute the corresponding
PS mass function: all we need to do is to work out the first-upcrossing statistics....

collapsed

Unfortunately, for a moving barrier one
cannot compute this analytically.

Rather, one has to resort to Monte Carlo
simulations of independent random walks,
and register their first upcrossings.

This was done by SMT, who found that
the resulting multiplicity function if well
approximated by

fec(v) = 0.322 [1 + —] fps(?)  where =084y

The normalization 0.322 is set by requiring ’rha'rfooo n

M) M dM = py, , which implies

that all matter is in collapsed objects. The PS mass function for ellipsoidal collapse simply

follows from replacing fps(v) with fec(v); ie.,

TL(M,t) dM = %fEC(V) |

dlnv
dln M

s »
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Spherical vs. Ellipsoidal Collapse

The Millenium Simulation
Simulatic followed the evolution of 21603
-------- = EPS (SC) (~10 billion) particles in a
——— = EPS (EC) periodic box 500 Mpc/h ona
side in a ACDM cosmology.

Clearly, the EPS mass function
based on ellipsoidal collapse is

in much better agreement with
numerical simulations than the
spherical collapse-based model

10 10° d prediction...
n [ particles ]

Source: Millenium Simulation; Springel V.,2004 (MPA research highlight)

this statement is sensitive to how haloes are identified in the simulation box.
Here a Friends-Of-Friends (FOF) algorithm has been used.....
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Recap: The Halo Mass Function

In the excursion set formulation of PS theory, also called extended Press-Schechter,
the halo mass function derives from firsT—upcrossing statistics of linear density field:

dS
dM

Here fru(9,9d.)dS is the fraction of trajectories that have their first upcrossing of
barrier d.(t) between S and S + dS.

n(M,t) M = — fFu(S Sc) dM

In the case of spherical collapse, the barrier §.(t) >~ 1.686/D(t)is independent
of mass, and the upcrossing statistics are analytical:

1 6. I
Jor 532 P | Tog| T 99

where v = §.(t) /o (M) = 6./vS and fps(v) = \/gve_”Q/Z is the multiplicity function

fru(v) = < /ps(v)

In the case of ellipsoidal collapse, Monte Carlo simulations of first-upcrossings with a
moving barrier are well fit by

fru(v) = % fec(v) where frc(v) =0.322 [1 + —] frs(¥) with 7 =0.84v
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Beyond a Halo Mass Function...

An important advantage of EPS over PS is that the excursion set formalism provides
a neat way to calculate the properties of the progenitors which give rise to a given
class of objects (i.e., haloes of a given mass).

For example, one can calculate the mass function at z=5 of those haloes (progenitors)
which by z=0 end up in a massive halo of 10" solar masses.

These progenitor mass functions, in turn,
can be used to describe how dark matter
haloes assemble over time (in a statistical
sense); in particular, they allow the
construction of halo merger trees.

These merger trees are invaluable tools
in galaxy formation studies...

Tllustration of a merger tree depicting the
growth of a dark matter halo as a result of a
series of mergers. Time increases from top
to bottom and the width of the tree beaches
represents the masses of the individual | DL L L LT
progenitors...

Source: Lacey & Cole, 1993, MNRAS, 262, 627
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Consider a spherical region (a patch) of mass Ms, corresponding to a mass variance

Sy = 0?(M>) with linear overdensity 05 = d.(t2) = 0./ D(ts) so that it forms a
collapsed object at time ?».

We are interested in the fraction of M-, that at some earlier time t; < t5 was in a
collapsed object of some mass M.

Within the excursion set formalism this means we want to calculate the probability that

a trajectory that upcrosses barrier d; at S5 has its first upcrossing of barrier §; = 0.(%1)
~at 51 > 5 ( see illustration).

o L e R
‘\ . y [

‘42 '.< :,:\ . o
o o L ‘,-’J’ . .
e 2y s T
e S L .’ng"' ,

LAY )
eI R e G R R M £ Sy
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Progenitor Mass Function

—— P e —

J translation ‘

1 01 — 09 ox [_ (51 — 52)2 ]
V2r (81 — 55372 7P | T 2(St — S

| Converting from mass-
to number-weighting

dS;
dM;

p fru(S1,01]S52,02) =

SHTRE PRI RS n(Mi,t1|Ma,t2) dMy = —= fru(S1, 01|S2, 02) ‘
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Merger Trees

The progenitor mass function allows one to construct halo
merger trees using the following algorithm:

— e —

H For a given host halo mass, 11, , and a given time step,
At , draw a set of progenitor masses from the |
progenitor mass function n(M,,tg + At|My,t)

The progenitors must obey the following fwo conditions:

> 0 0 0 O 0 o o oo 0 0 o 0 0 Oy o O O LD LY L9 LD L9 0D L9 CJ CJ CY L) 0D CJ L0 L))
O O O O OO O o o o 6o N '\ NN N DN

O accurately sample the progenitor mass function Q&Y
QR @
’ . O (/D)
1J O mass conservation: ZMW- = M, :: 119
(/ (¥) (@
: | ORY
For each progenitor, repeat above procedure, thus DN
. . . C’ D
| stepping back in time. B % s
0 -
Sounds easy.....is not... :; ~
Several different methods have been suggested to D
contruct halo merger trees; none of them is perfect...... :: 82 %
0 D00 R
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How to Plant a Healthy Merger Tree?

There are two tests that one can perform to test the accuracy of a merger tree:

‘llz.The .Self.— Consistencx.Tes‘rz

@ Construct a larger number of merger trees (using small time
steps) for a host halo of a given mass, and compute the average
mass function of all progenitors at different redshifts.

O Compare these directly to the EPS progenitor mass functions
at those redshifts.

O These need to be in agreement with each other....

Example of a method that fails the Self-
Consistency Test:
Black hls'rogr'ams are ‘rhe pr'ogem’ror'

T c 3 e it
r << 1% : NS HILE S =i
‘Q ﬂ-aﬁa: ur ‘ 4 4 \Sury .
b ;‘1_-».':.: S e b‘ {K 4 ‘ 1 =~ _‘_\‘L—’!-Ai_«; e : Tea
r b bt B PR, S ] % T )
{ # v "' »

The 30th Jerusalem Winter School in Theoretical Physics © Frank van den Bosch: Yale 2012



How to Plant a Healthy Merger Tree?

There are two tests that one can perform to test the accuracy of a merger tree:

‘llz.The .Self.— Consistencx.Tes‘rz

@ Construct a larger number of merger trees (using small time
steps) for a host halo of a given mass, and compute the average
mass function of all progenitors at different redshifts.

O Compare these directly to the EPS progenitor mass functions
at those redshifts.

O These need to be in agreement with each other....

Example of a method that successfully
passes the Self-Consistency Test:
Black histograms are the progenitor

»mass func’rnons for a halo of 1012 Msun |
‘f_%i( [{= Q kaqa QQ@ gﬁ%l 41

) A -»._- ‘ & "‘
p Canl 4 B 2L

(AV]
[

w-‘ 53 R po ol #9051
. (% oS s it
[ ‘:. A '_ .:5\.3.‘ .
e RN R AT T
N S ER S LT et
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How to Plant a Healthy Merger Tree?

P S ——

{’_2: ComFar'ison with Numerical Simulations !

An important test of EPS merger trees is
whether they can reproduce the merger trees

obtained from numerical N-body simulations.
We caution, though, that there is no unique way

to identify dark matter haloes and their merger
histories in numerical simulations, making the
comparison non-trivial.... y

The figure compares progenitor mass fractions in the Millenium
simulation (black histograms) to those obtained using two
different EPS merger tree algorithms: Cole et al. (2000; green
dotted lines), and Parkinson et al. (2008; red dashed lines). The
latter is an empirical, ad-hoc modification of Cole et al. (2000)
tuned towards better agreement with the simulation results....

----------- Cole et al. (2000)
Parkinson et al. (2008)
Fitting function (ignore)

The 30th Jerusalem Winter School in Theoretical Physics

My = 1012h~1 M, My =3 x 10"°h~ 1 M,
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Source: Parkinson et al. 2008, MNRAS, 383, 557



Mass Assembly Histories

A very useful, reduced characterization of a merger tree is its Mass Assembly
History (MAH), also called Mass Accretion History or Main Progenitor History.

The MAH M (z) gives the mass of the main progenitor as a function of redshift;
at each time step one associates M (z) with the most massive progenitor, and
one follows that progenitor, and that progenitor only, further back in time....

the main progenitor is not necessarily also the most massive of all
progenitors at a given redshift (see example)... 1.0

0.6 0.4
Examples of Mass Assembly Histories "\ <\

At each branching point in the
tree, the MAH follows the
most massive branch. Hence,
the MAH is sometimes called
the main trunk of the merger
tree...
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Anatomy of a Merger Tree

L J

2"order progenitors
1

*"order progenitors

O
O
O

0™order progenitors

The MAH is the mass history of the O™ order progenitor...
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Mass Assembly Histories

0]

Source: van den Bosch, 2002, MNRAS, 331, 98

A random subset of MAHs for a halo of The average MAHSs for haloes of different
mass My = 5 x 10" A~ ' M in an EdS mass in an EAS Universe. Note that more
massive haloes assemble later; a clear
manifestation of hierarchical structure
formation...

Universe. Note the large halo-to-halo
variance...
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