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How can we describe the cosmological (over)density field, §(Z, ¢), without
having to specify the actual value of § at each location in space-time,(Z,1)?

Since §(¥)is believed to be the outcome of some random process in the early
Universe (i.e., quantum fluctuations in inflaton), our goal is to describe the

probability distribution

P(d1,02,...,0n5)ddy dds ... don
where 61 = 6(Z1), etc. For now we will focus on the cosmological density
field at some particular (random) time. We will address it's time evolution
later in this lecture.

This probability distribution is completely specified by the moments

(00622...58) = /551552...5%73(51,52,...,5N)d51 dds ... ddon
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TheErgodlc I-Iypo'rhesns

PROBLEM: Theory specifies ensemble average, but observationally we have
only access to one realization of the random process....

Ergodic Hypothesis: Ensemble average is equal to spatial average taken over
one realization of the random field...

First Moment | (8) = / 5P(85)ds = % / 5(%) 3% = 0
\%

Essentially, the ergodic hypothesis requires spatial correlations to decay
suffncnen’rly r'apldly wu'rh mcr'easmg separ'a‘rlon S0 ’rha‘r ’rher'e exns’rs many
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‘Gaussian Random Fields

E—— = _— e e ——————

A random field (%) is said to be Gaussian if the distribution of the field values
at an arbitrary set of N points is an N-variate Gaussian:

— 1 -
DS 6o in) = — ZP(=Q) - 525" (€
( 15029 -0y N) — [(27T)N det(C)]1/2 2,7
Cij = (0i05) = &(r45)

where we have defined the two-point correlation function &(7) = (6(%) §(Z + 7))
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Second Moment | (01 02) = &(712) T2 = |T1 — T

¢(r) is called the two-point correlation function

Note that this two-point correlation function is defined for a continuous
field, §(Z) . However, one can also define it for a point distribution:
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The n-point correlation function is defined as [£"™) = (§; 65 ... 5,,)

The reduced (or irreducible) n-point correlation function is defined as

£ = (6165 ...8,)e

where (...). is the cumulant or connected moment.

These reduced (or irreducible) correlation functions express the part of the n-point
correlation functions that cannot be obtained from lower-order reduced correlation
- functions:
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Higher-Order Correlation Function

As an example, consider the four point correlation function:
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The Power Specfrum |

Often it is very useful o describe the matter field in Fourier space:
= 25;‘56“’3"3 = —/ (%) e~ % 3%
k

Here V is the volume over which the Universe is assumed to be periodic.
Note: the perturbed density field can be written as a sum of plane waves
of different wave numbers k (called " modes')

The Fourier transform (FT) of the two-point correlation function is
called the power spectrum and is given by

V< ‘ 5E ‘ ° > NN v PR
/ (@) e Fia3z (B

47T/§ smkr 2

P(k)
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_Linear Perturbation Growth in a Nutshell

growth growth

comoving scale

oscillations | stagnation

oscillations | damping

oscillations | growth

damping | damping

damping growth

growth growth
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Non-Linear Evolution

= = - — = e e —————— —

In the linear regime (§ < 1) we can calculate the evolution of a density field of
arbitrary form using linear perturbation theory.

In the non-linear regime (0 > 1) perturbation theory is no longer valid. Modes
start to couple to each other, and one can no longer describe the evolution of the
density field with a simple growth rate: in general, no analytic solutions exist...

Because of this mode-coupling, the density field looses its Gaussian properties,
i.e., in the non-linear regime, we no longer have a Gaussian random field.

Hence, higher-order moments are required to completely specify density field.

e —— ——

How to proceed?

.

.
.
.

e e —
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Top-Hat Spherical Collapse

In order to gain insight into the non-linear evolution of density perturbations,
we now consider the highly idealized case of Top-Hat Spherical Collapse.

# Universe is homogeneous, except for a —

single, top-hat, spherical perturbation. ; —

* Universe is in matter-dominated phase, T/,y
after recombination... [ —-

# Collisionless fluid =» treatment is only e E———
valid for collisionless Dark Matter.

» Einstein-de Sitter (EdS) cosmology NOTE:

Although the following treatment is only valid
| for‘ an EdS cosmoloy snmllar' models can be
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p = D(a) = a x t*/3

6rGt?
Te

The 30th Jerusalem Winter School in Theoretical Physics

© Frank van den Bosch: Yale 2012



Top-Hat Spherical Collapse

Consider our spherical fop-hat perturbation: Let r; denote the radius of some
mass shell inside the top-hat at some initial time, t;, and let 0; and p; denote the
top-hat overdensity and the back-ground density at that same time.

The mass enclosed by the shell is T
M(<r) = grrd o1+ 6]
4 .
= S (1) p(t) [1+ 6(1)]

where the second equality expresses mass conservation: because of spherical
symmetry, the mass inside the shell is conserved, but only up to shell crossing Il

Newton's first Theorem:

N —
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2
Integrating the equation of motion once yields | (—) ———=F

where the integration constant E is clearly the specific energy of our shell.

r=A(1—cosb
For £ < 0, mass shell is bound, ( . ) 0 € [0, 27]
and solution can be written in t=DB(0—sin0)
following parametric form: g M 5, GM A3 — M B2
o5 P mmpe A

This solution implies the following evolution for our mass shell:

T ——

L P A
,‘,I R BT _"h 3 ‘
* shell expano omr=0at 0 =0 (t=0
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Now let us focus on the evolution of the actual overdensity:

IM IM

The mean density of the top-hat is e s (1—cosf)~°

1 1

The mean density of the background is p = P il (0 — sin )2
s s

Hence, the actual overdensity of our spherical top-hat region, according
to the spherical collapse (SC) model, which in general will be non-linear, is

£ g N L AN o a
'Y » Vo o dl‘

2
2

DD

(1 — cosf)3
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For a number of reasons (in particular for use in EPS theory), it is also useful
to compare this SC overdensity model to what linear theory predicts for (t).

According to linear theory, perturbation in EdS cosmology evolve as

Olin X D(a) < a $2/3

In order to use the correct initial conditions (ICs), we have to use our

parametric solution of () in the limit § < 1. Using a Taylor series expansion
of sin 6 and cos 6 one can show that:

20

max

g oot A 3 t; 2/3 A R N B e S
| 0 = —(67T)2/3< 1 > (01 < 1) S s
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For a number of reasons (in particular for use in EPS theory), it is also useful
to compare this SC overdensity model to what linear theory predicts for ().

According to linear theory, perturbation in EdS cosmology evolve as

Olin X D(a) < a $2/3

In order to use the correct initial conditions (ICs), we have to use our

parametric solution of () in the limit § < 1. Using a Taylor series expansion
of sin 6 and cos 6 one can show that:

3 + 2/3
| 0 = ——(6m)%° | —
Gobice 20( ) (t >

. Aadis o gl B ARl Gt o i g Vs el B
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_Turn-Around

Spherical Collapse (SC) model:
9 (6 —sinh)?

T2 (1 — cosf)3
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Shell Crossmg & Virialization

The SC model discussed above is only valid up to the point of shell crossing.
Afterall, after shell crossing M(r) is no longer a conserved quantity!

According to the SC model, §(¢..;1) = oo, which would result in the formation
of a black hole. However, in reality, the collapse is never perfectly spherical.

————

physical size

© Frank van den Bosch: Yale 2012
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Virialization means that the system relaxes towards virial equilibrium:

We can use the virial theorem to make a simple estimate of the final density

of our collapsed & virialized dark matter halo:

The 30th Jerusalem Winter School in Theoretical Physics
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_Final Density of a Collapsed Dark Matter Halo

We now compute the average overdensity of a virialized

dark matter halo:

P (tcoll)

1 + Avir = 1 + 0(Tconl) = =
( H) p(tcoll)

NOTE: for consistency with many textbooks and journal articles, we use the symbol Ay,

rather than 0,i; to indicate the virialized overdensity....

Using that p oc a=® oc t~2 (EdS), and that tcon = 2t we have that

8 Pta
‘ 14+ Ay = — P2 _39(1 4 6,,) = 1872 = 178

ﬁ(tta)/4

For' non- EdS cosmologles the V|r'|al overdensities are well aPpr'ommaTed by

M VT et S {Uhh 5 WHERRE T Y KA e A % ‘x 0.«-»- P 2 VRO I 10»_‘&‘.,“-»&:'-&,,\?&‘}:!.

¥ &“' ;"-'

it x; TR,
D ol e o,

Ayip & (187‘(‘ +60x — 3227 )/ (tyir)
Avir = (1872 + 822 — 39 27) /O (tvir)
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Summary: The Spherical Col

—— — = —— —_—— e e e =

| linear 4 non-linear

>

shell crossing
& virialization

physical density

................ ' f--\-- bound halo

Although SC model becomes
inaccurate (brakes down)
shortly after turn-around it

....... linear fheory |S STlll LlSelel fOI“ idenTiinng
pasiarennt important epochs in linearly
g gt
density;

evolved density field...

scale factor
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So far we considered perturbations in Eulerian (" grid’) coordinates. Individual
overdensities stay at a fixed (comoving) position and grow or decay in amplitude....

We now switch to Lagrangian description, which follows motion of individual particles.
This gives insights into dynamics of structure formation process, and, unlike its
Eulerian counterpart, remains (fairly) accurate in the mildly non-linear regime...

. . . . . . .
.
< 0 A \C C Ul de 9 DIl DI'AAE dOwWI iy i orn-lined A0 <

Zel'dovich (1970) came up with a Lagrangian formalism that is based on the
following approximation (known as Zel'dovich Approximation, ZA):

Clon ‘-“ < A At P Ay s e
—_— - s 2. g8 Lo B A, Ml N
ot by SN AT LT D e

e ¥ B
LA ,“-_-4~ ;‘,‘.}, S i
e A
|~ -".L..I < 1!1- %

particles continue to move in the direction of their initial displacement

—
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The Zel'dovich Approximation

Note: the ZA is exact if perturbation is a 1D sheet in an otherwise homogeneous
universe; in that case direction of velocity remains fixed...

V\ass conservatrion

»
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The Zel'dovich Approx

—— L o eee= e £

dx Of;
Using that the tensor ( - ) = 0k — c(t)i we have that
jk

dx; oxy,

p(Z,t) = pi(Zi) a (1 —cA1) (1 = cha) (1 = cAs)

where A1 > A2 > A3 are the eigenvalues of the deformation tensor 9f; /0x;

Using that ,Oi(fi) Pi [1 5F (51(51)] S450s and that ﬁ(t) a’ = 0 CL? this YIeldS

pLZ,E) _ ! lithiodiad
T A ) |f e

14 6(Z,t) =

e
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Linearization of the equation for the density perturbation yields

1
B l—C()\1—|—>\2—|—)\3)

1+ 4(, 1) ~ 1+ c(A + A2 + A3)

—

Hence, we have that, in the linear regime §(Z,t) = c(t) Tr(0f;/0z;) = c(t) Y ¢ f

If we compare this to the fact that, in the linear regime, §(z,t) = D(t) 6;(Z;)
we see that ¢(t) = D(t) and V- f = §; .
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Zel'dovich Pancakes

P —

The ZA describes the non-linear evolution of density perturbations. It has two important
advantages over the spherical collapse model:

To understand why the ZA is more accurate in the quasi-linear regime (brakes down at a
later stage), have a look at its predicted evolution for an overdensity:

p(Z,t) 1

p(t) (I —cAp) (1 —chg) (1 —cA3)

1+ 6(Z,t) =

It is clear from this equation that collapse happens first along the axis associated with
the first (largest) eigenvalue, A\; =™ gravity accentuates asphericity!
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_Ellipsoidal Collapse

’ overdensity sheet (pancake) — filament

For a uniform, ellipsoidal overdensity in homogeneous universe (ellipsoidal top-hat) one can
obtain analytical approximations for time evolution of its 3 principal axes (see MBW §5.3).

This can be used to compute the critical overdensity for collapse (of the longest axis =
“halo formation’) in linear theory. The result can be obtained by solving

A Al = B A N el A g B A o L 7 .23 DX (e
o) SIS St o e ‘i'u‘ll‘ el 457 e AT a A ey _‘;‘,e.[» “'{'4 ”".’4
b it d EN AL P S S SR R ¥ S T
TR Sh Rt 4 S oy et Pl SR N S

3 | 54 - “ %

52 710-615( PN CEROARLE, o
~ 1+ 0.47 [5(62 + p?) 5—2] mwawm»
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_ Ellipsoidal Collapse

5. 52 70-615
5_ ~ 14 0.47 [5(6 + p?) 5_(;0] Ellipsoidal collapse

The parameters e and p characterize the asymmetry of the initial tidal field:

)\1—)\3 )\1‘|‘>\3_2>\2
20 + Xo + A3 D= o000 e+ )

Q)
]

Note that for a spherical system A\{ = o =3 mdb e=p =0 md 0oc = 05c =~ 1.686
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More details

Relaxation & Virialization v

Relaxa‘hon the pr'ocess by whlch a physucal sys’rem acquires equulubmum or re’rur'ns ’ro
equilibrium after a disturbance. Often, but not always, relaxation erases
the system's "knowledge" of it's initial conditions.

Virialization: the process by which a physical system settles in virial equilibrium

[ .. < . | o .0 3
ime: The tin ,, w "ed Tor r'ftl.l “hange ITS Kinhel
e (e pr ~ R o FEP ot S T M R a X P
oL Y m'ﬂ,' ¥ 7 ] “ 1 'Ej.i\."f{.-,;. :hb);\ .._(\_' G rpikd ” ,{3_},\3}’0[’_‘_,_ “‘ M SR _.!‘/. 2
. : e g 2 W M N9
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Collisionless systems such as galaxies and dark matter haloes do not relax via
two-body interactions, but rather by a combination of four other mechanisms:

S— the spreading of neighboring points in phase-space due to
a the difference in frequencies between neighboring orbits

— the spreading of neighboring points in phase-space due to
ao IXin ) : :
the chaotic nature of their orbits

the change in energy of individual particles due to changes
in the overall potential

, : the damping and decay of perturbations due to decoherence |
.andau dampin . .
between particles and waves (recall free streaming) J

—_—

iole elaxatio

——

e —————
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Phase Mixing

rmonic
oscillators

Consider a large number of harmonic oscillators, all with slightly different frequencies
(i.e, with slightly different sling-lengths). If they are close to each other initially, they
will, over time, phase-mix (the overall system appears more relaxed).

Let ¢; and w; be the phase and frequency of oscillator ¢, then oscillators 2 and j separate
at arate (A¢);;(t) = 2m(Aw),,;t : ™ phase mixing scales linearly with time.

According to the collisionless Boltzmann equation, the (fine-grained) DF f(Z, V) remains
constant. However, the coarse-grained DF, [ (T, V), measured at the initial region of phase-
space, decreases as a function of time, as more and more "vacuum" is mixed in.
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Phase Mixing

04

Phase-mixing of dark matter
particles in a numerical N-body
simulation. The particles are
initially placed in a stratified
sphere with zero-velocities.
Collapse rapidly phase mixes
the particles

Note how the number of

—3/2 particles in the ;
representing the coarse-
grained DF, f., becomes more
and more similar to that of
neighboring boxes; the system
is relaxing...

The collapse of a spherical system with p; o< r

Note that phase-mixing is a relaxation process that does not cause any loss of information:
at the fine-grained level, phase-mixing is perfectly reversible and preserves all knowledge
of the initial conditions....
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Violent Relaxation

Since E = v?/2 4+ ® and ® = ®(&,t) we have that:

dE _ OF dv |
dt 07 dt

OF d<I>

8<I>d

—

—U- VO + —

d<I>
dt

—

v Vo 4

0D 0<I> da: 0D

o T @ ot

Thus we see that the only way in which a particle’'s energy can change in a
collisionless system is by having a time-dependent potential.

Exactly how a particle's
energy changes due to
violent relaxation
depends in a complex
way on the particle's
initial position and
energy: particles can
gain or loose energy.
Overall, however, violent
relaxation increases the
width of the energy
distribution...
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More details

lOleﬂf RelGXGflOn . in MBW §5.5

A few remarks about vioIenT r'elaxa’rion:

@ Note that dE/dt is independent of particle mass; hence, violent relaxation has no
tendency to segregate particles by mass (in fact, it will undo any pre-existing
segregation). This is very different from collisional relaxation, where momentum
exchange during collisions drives system towards equipartition of kinetic energy:
more massive particles end up with lower velocities mm) mass segregation.

© During collapse of a collisionless sytem the CBE is still valid, i.e., the fine-grained
DF does not evolve df/dt = 0 =) violent relaxation only mixes at the coarse-
grained level. Note, though, that unlike for a steady-state system, 0 f /ot # 0

o The Tlme s,cqle for' vuolenT r'elaxq:rlon |s of Qr'd r Tha ‘r g scl on whuc

."_‘, .\ ,A, ,‘

-

—d
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Violent Relaxation

12K /W|=0.1

Differential energy distributions of particles in
Nbody simulation of gravitational collapse. Note how
violent relaxation broadens the energy distribution

with time. (from: van Albada 1982)

log dN/dE

—1

Leneray )

final energy

Scatter plot of final vs initial energies of the particles in
the above Nbody simulation. Note that the correlation is
significant, indicating that violent relaxation has not
completely erased memory of the system's initial conditions.
(from: van Albada 1982)

initial energy
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Violent Relaxation

Note how phase-mixing is
the dominant relaxation
mechanism during the initial
phases of the collapse.

After some time there is a
transition to a more
“erratic” flow: due to the
time-varying potential
phase-space streams start
. to undergo complicated
L L L bends and wiggles. This is
_3/2 violent relaxation at work!

The collapse of a spherical system withp; o< r

Note how the number of
particles in the ;
representing the coarse-
grained DF, f., becomes more
and more similar to that of
neighboring boxes; the system
is relaxing...

Violent relaxation leads to efficient coarse-grain mixing of the DF and erases the system's
memory of its initial conditions in a non-reversible way.
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