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The slides of these lectures are available (in PDF) at:
http://www.astro.yale.edu/vdbosch/teaching.html

Lecture 1 (Mon 31/12) 
Structure Formation: from linear to non-linear

Lecture 2 (Tue 1/1) 
(Extended) Press-Schechter Theory

Lecture 3 (Wed 9/1) 
The Structure of Dark Matter Halos

Lecture 4 (Thu 10/1) 
Semi-Analytical Models of Galaxy Formation

More detailed treatment of material covered in these lectures 
can be found in the textbook Galaxy Formation and Evolution 
available from  Cambridge University Press

http://www.physics.utah.edu/~vdbosch/astro5580.html
http://www.physics.utah.edu/~vdbosch/astro5580.html


The Cosmological 
Density Field



 the halo bias function

Since        is believed to be the outcome of some random process in the early 
Universe (i.e., quantum fluctuations in inflaton), our goal is to describe the 
probability distribution

δ(�x)

P(δ1, δ2, ..., δN ) dδ1 dδ2 ...dδN

δ1 = δ(�x1)where                   , etc. For now we will focus on the cosmological density 
field at some particular (random) time. We will address it’s time evolution 
later in this lecture.

�δl1
1 δl2

2 ...δlN
N � =

�
δl1
1 δl2

2 ...δlN
N P(δ1, δ2, ..., δN ) dδ1 dδ2 ...dδN

This probability distribution is completely specified by the moments

The Cosmological Density Field
How can we describe the cosmological (over)density field,           , without 
having to specify the actual value of    at each location in space-time,         ? (�x, t)δ

δ(�x, t)
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NOTE:       denotes an ensemble average. For instance,          means the
            average overdensity at    for many realizations of the random process...

�...� �δ(�x)�
�x



 the halo bias function

PROBLEM: Theory specifies ensemble average, but observationally we have
                   only access to one realization of the random process....

The Ergodic Hypothesis
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Ergodic Hypothesis: Ensemble average is equal to spatial average taken over 
                                 one realization of the random field...

Essentially, the ergodic hypothesis requires spatial correlations to decay 
sufficiently rapidly with increasing separation so that there exists many 
statistically independent volumes in one realization....

First Moment �δ� =
�

δP(δ) dδ =
1

V

�

V
δ(�x) d3�x = 0

QUESTION: How many moments do we need to completely specify the
                      cosmological density field?

In principle infinitely many.  However, there are good reasons to believe that the 
initial cosmological density field is special, in that it is a Gaussian random field...



Gaussian Random Fields
A random field        is said to be Gaussian if the distribution of the field values
at an arbitrary set of N points is an  N-variate Gaussian:

δ(�x)

where we have defined the two-point correlation function ξ(�r) = �δ(�x) δ(�x + �r)�

In particular, the one-point distribution function of the field is

P(δ) dδ =
1√
2π σ

exp
�
− δ2

2σ2

�
dδ

where                           is the variance of the density perturbation field.σ2 = �δ2� = ξ(0)
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Q ≡ 1
2

�

i,j

δi (C−1)ijδj

P(δ1, δ2, ..., δN ) =
exp(−Q)

[(2π)N det(C)]1/2

Cij = �δiδj� ≡ ξ(rij)

As you can see, for Gaussian random field the N-point probability function 
                        is completely specified by the two-point correlation function.P(δ1, δ2, ..., δN )



The two-point correlation function

Second Moment �δ1 δ2� ≡ ξ(r12) r12 = |�x1 − �x2|

ξ(r) is called the two-point correlation function

Poisson distributionClustered distribution

ξ(r)

r

1 + ξ(r) =
npair(r ± dr)

nrandom(r ± dr)

Note that this two-point correlation function is defined for a continuous 
field,        . However, one can also define it for a point distribution:δ(�x)
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Higher-Order Correlation Functions
The n-point correlation function is defined as ξ(n) ≡ �δ1 δ2 ... δn�

The reduced (or irreducible) n-point correlation function is defined as

ξ(n)
red ≡ �δ1 δ2 ... δn�c

where         is the cumulant or connected moment.�...�c
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These reduced (or irreducible) correlation functions express the part of the n-point 
correlation functions that cannot be obtained from lower-order reduced correlation 
functions:

In the limit where r13 goes to infinity, the correlation between the three 
points in configuration 2 is entirely due to that between points 1 and 2. 
The reduced correlation function subtracts the correlations due to these 
configurations from the total correlation function. ...

configuration 1 configuration 2

1 1

22
3 3



Higher-Order Correlation Functions

�δ1δ2δ3δ4� = �δ1�c �δ2�c �δ3�c �δ4�c+�δ1�c �δ2δ3δ4�c (4 terms)+�δ1δ2�c �δ3δ4�c (3 terms)

+�δ1δ2�c �δ3�c �δ4�c (6 terms) + �δ1δ2δ3δ4�c

As an example, consider the four point correlation function:

Using similar diagrams we can understand the origin of each of these terms

1

2
3

4
1

2
3

4 1

2
3

4
1

2
3

4
1

2
3

4

Here         means: “this point moving to infinity”

For a Gaussian random field, all connected moments (=reduced correlation functions) 
of           are equal to zero: n > 2                                                     One can use higher-order reduced correlation 
functions to test whether a density field is Gaussian or not...
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�δ1δ2δ3δ4�c = ξ(4)
1234 − ξ(2)

12 ξ(2)
34 − ξ(2)

13 ξ(2)
24 − ξ(2)

14 ξ(2)
23Since                        we have that  �δ�c = �δ� = 0



Often it is very useful to describe the matter field in Fourier space:

δ(�x) =
�

k

δ�k e+i�k·�x

Here V is the volume over which the Universe is assumed to be periodic.
Note: the perturbed density field can be written as a sum of plane waves 
          of different wave numbers k (called `modes’)

The Fourier transform (FT) of the two-point correlation function is
called the power spectrum and is given by

A Gaussian random field is completely specified by either the two-point
correlation function       , or, equivalently, the power spectrumξ(r) P (k)

Note: P(k) hasunits of volume!

δ�k =
1
V

�
δ(�x) e−i�k·�x d3�x

P (�k) ≡ V �|δ�k|2�

=
�

ξ(�x) e−i�k·�x d3�x

= 4π

�
ξ(r)

sin kr

kr
r2 dr

The Power Spectrum
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Non-Linear
Structure Formation 



 the halo bias function

Baryons CDM

1 growth growth

2 oscillations stagnation

3 oscillations damping

4 oscillations growth

5 damping damping

6 damping growth

7 growth growth

After recombination the growth of linear perturbations on our scales of interest 
(                                        ) is governed by the linear growth rate;  106M⊙ < M < M15M⊙ D(a)

In this linear regime, all modes    evolve similarly and independently:k δ�k ∝ D(a)

time

co
m

ov
in

g 
sc

al
e

teq trec

a

a−1/2

a1/2
λH

1 λd

tNR tdec

λbar
J

2

3

4

6
5 λCDM

J

7
δ ∝ D(a)

Once perturbations become of order unity, structure formation becomes non-linear....

P (k, t) = Pi(k) T 2(k) D2(t)
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Linear Perturbation Growth in a Nutshell



Non-Linear Evolution

Because of this mode-coupling, the density field looses its Gaussian properties,
i.e., in the non-linear regime, we no longer have a Gaussian random field.

Hence, higher-order moments are required to completely specify density field.

How to proceed?

Numerical simulations (see MBW §5.6.2) 

Higher-order perturbation theory (see MBW §4.1.7)

Oversimplified, but insightful, analytical model (this lecture)

The Halo Model (see MBW §7.6)

In the linear regime (          ) we can calculate the evolution of a density field of
arbitrary form using linear perturbation theory.

δ � 1

δ > 1In the non-linear regime (         ) perturbation theory is no longer valid. Modes
start to couple to each other, and one can no longer describe the evolution of the 
density field with a simple growth rate: in general, no analytic solutions exist...
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In order to gain insight into the non-linear evolution of density perturbations, 
we now consider the highly idealized case of Top-Hat Spherical Collapse.

Einstein-de Sitter (EdS) cosmology

ρ

x

y

Universe is homogeneous, except for a
single, top-hat, spherical perturbation.

Collisionless fluid        treatment is only 
valid for collisionless Dark Matter.

Universe is in matter-dominated phase, 
after recombination...

Although the following treatment is only valid 
for an EdS cosmology, similar models can be 
constructed for other cosmologies as well, 
including ΛCDM (see MBW §5.1.1 + 5.1.2)

Furthermore, since all cosmologies behave 
similar to EdS at early times, this treatment 
is always good approximation at high z....

NOTE:

H(t) · t = 2

3

D(a) = a ∝ t2/3ρ̄ =
1

6πGt2
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Ωm(t) = 1

Top-Hat Spherical Collapse



Top-Hat Spherical Collapse

 the halo bias function

ri
δi ρ̄i

Consider our spherical top-hat perturbation:  Let    denote the radius of some 
mass shell inside the top-hat at some initial time,    , and let    and     denote the
top-hat overdensity and the back-ground density at that same time.

ti

Newton’s first Theorem: 
a spherically symmetric matter 
distribution outside a sphere 

exerts no force on that sphere

d2r

dt2
= −GM

r2

Equation of motion

ρ

x

y

riThe mass enclosed by the shell is 

where the second equality expresses mass conservation: because of spherical 
symmetry, the mass inside the shell is conserved, but only up to shell crossing !!!

M(< r) =
4

3
πr3i ρ̄i [1 + δi]

=
4

3
πr3(t) ρ̄(t) [1 + δ(t)]
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 the halo bias function

Integrating the equation of motion once yields
1

2

�
dr

dt

�2

− GM

r
= E

where the integration constant E is clearly the specific energy of our shell.

The 30th Jerusalem Winter School in Theoretical Physics © Frank van den Bosch:  Yale 2012

This solution implies the following evolution for our mass shell:

t = 0shell expands from           at            (         )r = 0 θ = 0

t = tcoll = 2tmaxθ = 2πr = 0shell collapses back to           at             (                           )
shell reaches a maximum radius         at            (                        )rmax θ = π t = tmax = πB

The time of maximum size is often called the turn-around time,                 ,
while the time of collapse is also called the virialization time                   

tta = tmax

tvir = tcoll = 2tta

For          , mass shell is bound, 
and solution can be written in 
following parametric form:      

E < 0
r = A (1− cos θ)

t = B (θ − sin θ)

A =
GM

2|E| B =
GM

(2|E|)3/2
A3 = GMB2

θ ∈ [0, 2π]

Top-Hat Spherical Collapse



Top-Hat Spherical Collapse
Now let us focus on the evolution of the actual overdensity:

The mean density of the top-hat is ρ =
3M

4πr3
=

3M

4πA3
(1− cos θ)−3

The mean density of the background is ρ̄ =
1

6πGt2
=

1

6πGB2
(θ − sin θ)−2

Hence, the actual overdensity of our spherical top-hat region, according
to the spherical collapse (SC) model, which in general will be non-linear, is 

1 + δ =
ρ

ρ̄
=

9

2

(θ − sin θ)2

(1− cos θ)3

where we have used that                     . A3 = GMB2

Before we examine this SC model in some detail, we first compare it
to predictions from linear theory....
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 the halo bias function

Top-Hat Spherical Collapse
For a number of reasons (in particular for use in EPS theory), it is also useful 
to compare this SC overdensity model to what linear theory predicts for       .δ(t)

According to linear theory, perturbation in EdS cosmology evolve as

δlin ∝ D(a) ∝ a ∝ t2/3

r(t) θ � 1
In order to use the correct initial conditions (ICs), we have to use our 
parametric solution of        in the limit           . Using a Taylor series expansion
of         and         one can show that:   sin θ cos θ

δi =
3

20
(6π)2/3

�
ti

tmax

�2/3

(δi � 1)

NOTE: this implies that since             constant inside the top-hat, each  
            mass shell that is part of the top-hat will turn-around (reach
            maximum expansion) at the same time....

δ(r) =
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 the halo bias function

Top-Hat Spherical Collapse
For a number of reasons (in particular for use in EPS theory), it is also useful 
to compare this SC overdensity model to what linear theory predicts for       .δ(t)

According to linear theory, perturbation in EdS cosmology evolve as

δlin ∝ D(a) ∝ a ∝ t2/3

r(t) θ � 1
In order to use the correct initial conditions (ICs), we have to use our 
parametric solution of        in the limit           . Using a Taylor series expansion
of         and         one can show that:   sin θ cos θ

δi =
3

20
(6π)2/3

�
ti

tmax

�2/3

(δi � 1)

Combining the above, we have that, according to linear theory:

δlin = δi

�
t

ti

�2/3

=
3

20
(6π)2/3

�
t

tmax

�2/3
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Turn-Around & Collapse

 the halo bias function

1 + δ =
ρ

ρ̄
=

9

2

(θ − sin θ)2

(1− cos θ)3
δlin = δi

�
t

ti

�2/3

=
3

20
(6π)2/3

�
t

tmax

�2/3

Turn-Around:

SC model: 

linear theory: δlin(tta) =
3
20

(6π)2/3 � 1.062

1 + δ(tta) =
9π2

16
� 5.55

(tta = tmax; θ = π)

Spherical Collapse (SC) model: Linear Theory

Collapse (shell crossing)

SC model: 

linear theory: 

δ(tcoll) =∞

δ(tcoll) =
3
20

(12π)2/3 =
3
5

�
3π

2

�2/3

� 1.686

(tcoll = 2tta)
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Hubble f
low

Individual oscillating shells interact gravitationally, exchanging energy (virializing). 
This process, to be described in more detail below, results in a virialized dark matter halo

Shell Crossing & Virialization
Hubble f

low

time

ph
ys

ic
al

 s
iz

e

turn-around

virialization

The SC model discussed above is only valid up to the point of shell crossing.
Afterall, after shell crossing M(r) is no longer a conserved quantity!

According to the SC model,                    , which would result in the formation 
of a black hole. However, in reality, the collapse is never perfectly spherical. 

δ(tcoll) =∞
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Final Density of a Collapsed Dark Matter Halo

 the halo bias function

Virialization means that the system relaxes towards virial equilibrium:

We can use the virial theorem to make a simple estimate of the final density 
of our collapsed & virialized dark matter halo:

2 Kf + Wf = 0

Ef = Kf + Wf = Ei = EtaEnergy conservation:

Virial Equilibrium:

A mass shell is expected to virialize at half its turn-around radius.

Hence, after virialization, the average density of the material enclosed
by the mass shell is 8 times denser than at turn-around....

Eta = Wta = −GM

rta

Ef = Wf/2 = −GM

2rvir

rvir = rta/2}
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Final Density of a Collapsed Dark Matter Halo

 the halo bias function

We now compute the average overdensity of a virialized dark matter halo:

1 + ∆vir ≡ 1 + δ(tcoll) =
ρ(tcoll)
ρ̄(tcoll)

NOTE: for consistency with many textbooks and journal articles, we use the symbol        ,
            rather than       to indicate the virialized overdensity.... 

∆vir

δvir

Using that                         (EdS), and that                   we have that  ρ̄ ∝ a−3 ∝ t−2 tcoll = 2tta

1 + ∆vir =
8 ρta

ρ̄(tta)/4
= 32 (1 + δta) = 18π2 � 178

For non-EdS cosmologies, the virial overdensities are well approximated by 

∆vir ≈ (18π2 + 60 x− 32 x2)/Ωm(tvir)

∆vir ≈ (18π2 + 82 x− 39 x2)/Ωm(tvir) (ΩΛ �= 0)

(ΩΛ = 0)

Here                             . These equations are often used to `define’ dark 
matter haloes in N-body simulations or in analytical models.... 

x = Ωm(tvir)− 1

 (Bryan & Norman 1998)
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Summary: The Spherical Collapse (SC) Model

 the halo bias function

ph
ys

ic
al

 d
en

si
ty SC model

bound halo

non-linearlinear

x5.5

x8

linear theory

WARNING 
not to scale

scale factoramax aviraNL

x2.686

background 
density;

x2.062

a−3

turn-around collapse

SC model 4.55 ∞

linear model 1.062 1.686

δ = ρ/ρ̄− 1

shell crossing 
& virialization

Although SC model becomes 
inaccurate (brakes down) 
shortly after turn-around it 
is still useful for identifying 
important epochs in linearly 
evolved density field...
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The linearly extrapolated density field collapses when δlin = δc � 1.686

Virialized dark matter haloes have an average overdensity of ∆vir � 178



The Zel’dovich Approximation
So far we considered perturbations in Eulerian (`grid’) coordinates. Individual
overdensities stay at a fixed (comoving) position and grow or decay in amplitude....

We now switch to Lagrangian description, which follows motion of individual particles. 
This gives insights into dynamics of structure formation process, and, unlike its 
Eulerian counterpart, remains (fairly) accurate in the mildly non-linear regime...

It is easy to see that Eulerian description brakes down in mildly non-linear regime:
Once overdensities (          ) reach amplitudes of order unity, the underdensities 
(           ) have grown to             , which would imply a negative (=unphysical) density...  

δi > 0
δi < 0 δ < −1

Zel’dovich (1970) came up with a Lagrangian formalism that is based on the
following approximation (known as Zel’dovich Approximation, ZA):

particles continue to move in the direction of their initial displacement

�xi initial (Lagrangian), comoving coordinates
function of time, to be determined below
vector function of initial coordinates, specifying direction of velocity�f(�xi)

�x(t) = �xi − c(t) · �f(�xi)

c(t)
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The Zel’dovich Approximation

 the halo bias function

Note: the ZA is exact if perturbation is a 1D sheet in an otherwise homogeneous
           universe; in that case direction of velocity remains fixed...

ZA:

Mass conservation

ρ(�x, t) a3(t) d3�x = ρi(�xi) d3�xi

Here        is the scale-factor normalized to unity at the initial time    : the scaling with 
         is required since     are comoving coordinates. The equation of mass conservation 
is valid (up to orbit crossing) for any geometry; no spherical symmetry is required!!

a(t) ti
a3(t) �x

Here                                       with     the eigenvectors of the matrix �A� = det(A) =
�

i

λi Aλi

Using Linear Algebra:                                                        ρ(�x, t) = ρi(�xi) a−3

����
d�x

d�xi

����
−1

�x(t) = �xi − c(t) · �f(�xi)
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The Zel’dovich Approximation

 the halo bias function

Using that the tensor                                           we have that

where                       are the eigenvalues of the deformation tensor λ1 ≥ λ2 ≥ λ3 ∂fi/∂xj

ρ(�x, t) = ρi(�xi) a−3 1
(1− cλ1) (1− cλ2) (1− cλ3)

�
d�x

d�xi

�

jk

= δjk − c(t)
∂fj

∂xk

1 + δ(�x, t) =
ρ(�x, t)
ρ̄(t)

=
1

(1− cλ1) (1− cλ2) (1− cλ3)

ρi(�xi) = ρ̄i [1 + δi(�xi)] � ρ̄iUsing that                                            and that                         this yieldsρ̄(t) a3 = ρ̄i a
3
i

(recall that ai = 1)

We can gain some useful insight from this equation (using that             ) :

if            this implies collapse in the direction of the      eigenvector.λi > 0 ith

λi < 0if            this implies expansion in the direction of the      eigenvector.ith

c(t) = 1/λiif                    `shell’ crossing happens along the direction of the      eigenvector.ith

as long as               the perturbation is still in the linear regime. cλ1 � 1

c(t) > 0
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The Zel’dovich Approximation

 the halo bias function

1 + δ(�x, t) =
1

1− c (λ1 + λ2 + λ3)
� 1 + c (λ1 + λ2 + λ3)

Linearization of the equation for the density perturbation yields

Hence, we have that, in the linear regime

If we compare this to the fact that, in the linear regime, δ(�x, t) = D(t) δi(�xi)
we see that                    and                 .  c(t) = D(t) �∇ · �f = δi

Using the Poisson equation, according to which (recall that           ) ai = 1δi = ∇2Φi/4πGρ̄i

and the fact that                        , we finally see that ∇2Φ = �∇ · �∇Φ �f = �∇Φi/4πGρ̄i

�x(t) = �xi −
D(a)
4πGρ̄i

�∇Φi Zel’dovich Approximation
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δ(�x, t) = c(t) Tr(∂fi/∂xj) = c(t) �∇ · �f



Zel’dovich Pancakes

 the halo bias function

The ZA describes the non-linear evolution of density perturbations. It has two important 
advantages over the spherical collapse model:

                    it makes no oversimplified assumptions about geometry
                    it remains accurate well into the quasi-linear regime

To understand why the ZA is more accurate in the quasi-linear regime (brakes down at a 
later stage), have a look at its predicted evolution for an overdensity:
                   

1 + δ(�x, t) =
ρ(�x, t)
ρ̄(t)

=
1

(1− cλ1) (1− cλ2) (1− cλ3)

It is clear from this equation that collapse happens first along the axis associated with 
the first (largest) eigenvalue,              gravity accentuates asphericity! λ1

Hence, collapse leads to flattened structures, called 
(Zel’dovich) pancakes. The ZA approximation is so 
accurate simply because, as mentioned above, it 
becomes exact in the limit of planar perturbations...

Because ZA is so accurate, it is often used in setting up
the initial conditions for N-body simulations..
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Ellipsoidal Collapse

 the halo bias function

As is evident from the ZA, in general density perturbations will collapse according to:

overdensity sheet (pancake) filament halo

For a uniform, ellipsoidal overdensity in  homogeneous universe (ellipsoidal top-hat) one can 
obtain analytical approximations for time evolution of its 3 principal axes   (see MBW §5.3). 

This can be used to compute the critical overdensity for collapse (of the longest axis =
`halo formation’) in linear theory. The result can be obtained by solving 

δec
δsc

≈ 1 + 0.47

�
5(e2 ± p2)

δ2ec
δ2sc

�0.615
Sheth, Mo & Tormen (2001)

δsc = δc � 1.686Here                         is the critical overdensity for ellipsoidal collapse, 
is the critical overdensity for spherical collapse, and the plus (minus) sign is used if p 
is negative (positive)....

δec = δec(e, p)
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Ellipsoidal Collapse

δec
δsc

≈ 1 + 0.47

�
5(e2 ± p2)

δ2ec
δ2sc

�0.615

The parameters e and p characterize the asymmetry of the initial tidal field:

Ellipsoidal collapse

p ≡ λ1 + λ3 − 2λ2

2(λ1 + λ2 + λ3)
e ≡ λ1 − λ3

2(λ1 + λ2 + λ3)

Note that for a spherical system λ1 = λ2 = λ3 e = p = 0 δec = δsc � 1.686

In general, however,                        which results in                , which implies that
structures collapse later under ellipsoidal collapse conditions (more realistic) than
under spherical collapse conditions.  

λ1 > λ2 > λ3 δec > δsc

As a final remark, as we will see later, less massive structures are more strongly 
influenced by tides and therefore more ellipsoidal...This has important implications....
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Relaxation & Virialization



Relaxation & Virialization
Relaxation: the process by which a physical system acquires equilibrium or returns to 
                   equilibrium after a disturbance. Often, but not always, relaxation erases   
                   the system’s “knowledge” of it’s initial conditions.

Virialization: the process by which a physical system settles in virial equilibrium

Virial Equilibrium: A system is said to be in virial equilibrium if

2K +W + Σ = 0

Σ

K

W

= kinetic energy
= potential energy
= work done by 
   surface pressure

Often,    can be ignored, in which case 
virial equilibrium implies that

Σ
E = −K = W/2

Two-body relaxation time: the time required for a particle to change its kinetic energy 
                                             by about its initial amount due to two-body interactions 

As you learn in Galactic Dynamics, the two-body relaxation time, trelax � N

10lnN
tcross

Here N is the number of particles and                      is the system’s crossing time. tcross ∼ R/v

For almost all collisionless systems of interest to us (galaxies, dark matter haloes) 
it is easy to show that                                                              trelax � tHubble � 1/H0

More details  
in MBW §5.4
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Relaxation & Virialization

 PUZZLE: if galaxies and haloes have two-body relaxations times that are 
                 orders of magnitude larger than the Hubble time, how can galaxies
                 (and haloes) appear relaxed?

Collisionless systems such as galaxies and dark matter haloes do not relax via 
two-body interactions, but rather by a combination of four other mechanisms:

Phase-mixing

Chaotic mixing

Violent Relaxation

Landau damping

the spreading of neighboring points in phase-space due to 
the difference in frequencies between neighboring orbits

the spreading of neighboring points in phase-space due to 
the chaotic nature of their orbits

the change in energy of individual particles due to changes 
in the overall potential

the damping and decay of perturbations due to decoherence 
between particles and waves (recall free streaming)

In what follows, we briefly discuss phase mixing and violent relaxation. Chaotic mixing and 
Landau damping will not be covered due to time constraints (but see MBW §5.5).
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Phase Mixing More details  
in MBW §5.5

 harmonic
oscillators

Consider a large number of harmonic oscillators, all with slightly different frequencies
(i.e, with slightly different sling-lengths). If they are close to each other initially, they 
will, over time, phase-mix (the overall system appears more relaxed).

Let     and     be the phase and frequency of oscillator  , then oscillators   and   separate
at a rate                                         :        phase mixing scales linearly with time.  

φi ωi

(∆φ)ij(t) = 2π(∆ω)ijt
i i j

According to the collisionless Boltzmann equation, the (fine-grained) DF             remains
constant. However, the coarse-grained DF,             , measured at the initial region of phase-
space, decreases as a function of time, as more and more “vacuum” is mixed in. 

f(�x,�v)
fc(�x,�v)

 harmonic
oscillators
 harmonic
oscillators
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Phase Mixing More details  
in MBW §5.5

The collapse of a spherical system with ρi ∝ r−3/2

Phase-mixing at work:

(from: Henriksen & Widrow 1997)

Phase-mixing of dark matter 
particles in a numerical N-body 
simulation. The particles are 
initially placed in a stratified 
sphere with zero-velocities. 
Collapse rapidly phase mixes 
the particles 

Note that phase-mixing is a relaxation process that does not cause any loss of information:
at the fine-grained level, phase-mixing is perfectly reversible and preserves all knowledge 
of the initial conditions....

Note how the number of 
particles in the red box,
representing the coarse-
grained DF,    , becomes more 
and more similar to that of 
neighboring boxes; the system
is relaxing...

fc
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Violent Relaxation

 the halo bias function

More details  
in MBW §5.5

dE

dt
=

∂E

∂�v

d�v

dt
+

∂E

∂Φ
dΦ
dt

= −�v · �∇Φ +
dΦ
dt

Thus we see that the only way in which a particle’s energy can change in a 
collisionless system is by having  a time-dependent potential.

Since                       and                   we have that:Φ = Φ(�x, t)E = v2/2 + Φ

no
relaxation

particle 
looses 
energy

particle 
gains
energy

time

Exactly how a particle’s 
energy changes due to 
violent relaxation 
depends in a complex 
way on the particle’s 
initial position and 
energy: particles can 
gain or loose energy.
Overall, however, violent 
relaxation increases the 
width of the energy 
distribution...
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= −�v · �∇Φ +
∂Φ
∂t

+
∂Φ
∂�x

· d�x

dt
=

∂Φ
∂t



Violent Relaxation

 the halo bias function

More details  
in MBW §5.5

A few remarks about violent relaxation:

Note that dE/dt is independent of particle mass; hence, violent relaxation has no
tendency to segregate particles by mass (in fact, it will undo any pre-existing
segregation). This is very different from collisional relaxation, where momentum
exchange during collisions drives system towards equipartition of kinetic energy: 
more massive particles end up with lower velocities         mass segregation.

The time scale for violent relaxation is of order the time scale on which the
potential changes by its own amount. This is basically the collapse time scale
(≅free fall time)        violent relaxation is very fast, hence its name

Violent relaxation is self-limiting: as soon as a system approaches any equilibrium, 
the large-scale potential fluctuations vanish; the mixing due to violent relaxation 
destroys the coherence that drives potential fluctuations        violent relaxation 
does not run to completion; not all knowledge of initial conditions is erased

During collapse of a collisionless sytem the CBE is still valid, i.e., the fine-grained
DF does not evolve                         violent relaxation only mixes at the coarse-
grained level. Note, though, that unlike for a steady-state system, 

df/dt = 0
∂f/∂t �= 0
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Violent Relaxation More details  
in MBW §5.5

lo
g 

dN
/d

E

energy

initial energy

fi
na

l 
en

er
gy

(from: van Albada 1982)

Scatter plot of final vs initial energies of the particles in
the above Nbody simulation. Note that the correlation is 

significant, indicating that violent relaxation has not 
completely erased memory of the system’s initial conditions.

Differential energy distributions of particles in 
Nbody simulation of gravitational collapse. Note how 
violent relaxation broadens the energy distribution 
with time. (from: van Albada 1982)
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Violent Relaxation More details  
in MBW §5.5

Note how phase-mixing is 
the dominant relaxation 
mechanism during the initial 
phases of the collapse.

Violent relaxation leads to efficient coarse-grain mixing of the DF and erases the system’s
memory of its initial conditions in a non-reversible way. 

Note how the number of 
particles in the red box,
representing the coarse-
grained DF,    , becomes more 
and more similar to that of 
neighboring boxes; the system
is relaxing...

fc

The collapse of a spherical system with ρi ∝ r−3/2

Violent Relaxation at work:

(from: Henriksen & Widrow 1997)

After some time there is a 
transition to a more 
“erratic” flow: due to the 
time-varying potential 
phase-space streams start 
to undergo complicated 
bends and wiggles. This is 
violent relaxation at work!
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