

The Galaxy-Dark Matter Connection

Constraints from Clustering, Satellite kinematics & Lensing

Frank van den Bosch (MPIA)

in collaboration with Houjun Mo (UMass), Xiaohu Yang (SHAO) Surhud More (MPIA), Marcello Cacciato (MPIA)

Motivation and Techniques

Conditional Luminosity Function

Stochasticity

Conclusions

Extra Material

Motivation and Techniques

Why study the Galaxy-Dark Matter Connection?

- To constrain the physics of Galaxy Formation
- To constrain Galaxy Bias and Cosmological Parameters

How to Constrain the Galaxy-Dark Matter Connection?

- Luminosity Dependent Clustering
- Galaxy Group Catalogues
- Galaxy-Galaxy Lensing
- Satellite Kinematics

- Conditional Luminosity Function
- The Conditional Luminosity Function
- Luminosity & Correlation
 Functions
- The CLF Model
- Best-Fit Models
- The Galaxy-Dark Matter Connection
- Galaxy-Galaxy Lensing: Theory
- The Cross-Correlation
 Coefficient
- Galaxy-Galaxy Lensing: Comparison with CLF

Stochasticity

Conclusions

Extra Material

The Conditional Luminosity Function

To specify Halo Occupation Statistics we introduce Conditional Luminosity Function, $\Phi(L|M)$, which is the direct link between halo mass function n(M) and the galaxy luminosity function $\Phi(L)$:

$\Phi(L) = \int_0^\infty \Phi(L|M) n(M) \,\mathrm{d}M$

The CLF contains a lot of important information, such as:

• The average relation between light and mass:

$$\langle L
angle(M) = \int_0^\infty \Phi(L|M) \, L \, \mathrm{d}L$$

• The bias of galaxies as function of luminosity:

$$b_g(L) = rac{1}{\Phi(L)} \int_0^\infty \Phi(L|M) \, b_h(M) \, n(M) \, \mathrm{d}M$$

CLF is ideal statistical tool to specify Galaxy-Dark Matter Connection

Conclusions

Extra Material

- DATA: More luminous galaxies are more strongly clustered.
- Λ CDM: More massive haloes are more strongly clustered.

More luminous galaxies reside in more massive haloes

REMINDER: Correlation length r_0 defined by $\xi(r_0) = 1$

The CLF Model

For 2dFGRS we assume that CLF has Schechter form:

$$\Phi(L|M) \mathrm{d}L = rac{\Phi^*}{L^*} \left(rac{L}{L^*}
ight)^lpha \, \exp[-(L/L^*)] \, \mathrm{d}L$$

Here Φ^* , L^* and α all depend on M.

(e.g., Yang et al. 2003; vdB et al. 2003, 2005)

For SDSS we split CLF in central and satellite components:

$$\begin{split} \Phi(L|M) \mathrm{d}L &= \Phi_c(L|M) \mathrm{d}L + \Phi_s(L|M) \mathrm{d}L \\ \Phi_c(L|M) \mathrm{d}L &= \frac{1}{\sqrt{2\pi} \ln(10) \sigma_c} \exp\left[-\left(\frac{\log(L/L_c)}{\sqrt{2\sigma_c}}\right)^2\right] \frac{\mathrm{d}L}{L} \\ \Phi_s(L|M) \mathrm{d}L &= \frac{\Phi_s}{L_s} \left(\frac{L}{L_s}\right)^{\alpha_s} \exp\left[-(L/L_s)^2\right] \mathrm{d}L \end{split}$$

Here L_c , L_s , σ_c , ϕ_s and α_s all depend on M

(e.g., Cooray & Milosavljevic 2005; Cooray 2005, 2006; vdB et al. 2007)

Use Monte-Carlo Markov Chain to constrain free parameters by fitting to $\Phi(L)$ and $r_0(L)$.

The Conditional Luminosity

Function

Introduction

Luminosity & Correlation Functions

Conditional Luminosity Function

● The CLF Model

Best-Fit Models

- The Galaxy-Dark Matter Connection
- Galaxy-Galaxy Lensing: Theory
- The Cross-Correlation Coefficient
- Galaxy-Galaxy Lensing: Comparison with CLF

Stochasticity

Conclusions

Extra Material

Conditional Luminosity Function

- The Conditional Luminosity Function
- Luminosity & Correlation
 Functions
- The CLF Model

Best-Fit Models

- The Galaxy-Dark Matter Connection
- Galaxy-Galaxy Lensing: Theory
- The Cross-Correlation Coefficient
- Galaxy-Galaxy Lensing: Comparison with CLF

Stochasticity

Conclusions

Extra Material

2dFGRS: vdB et al. 2006 (astro-ph/0610686)

Best-Fit Models

SDSS: vdB et al. 2007 (in preparation)

SDSS: vdB et al. 2007 (in preparation)

2dFGRS: vdB et al. 2006 (astro-ph/0610686)

Conditional Luminosity Function

- The Conditional Luminosity Function
- Luminosity & Correlation
 Functions
- The CLF Model
- Best-Fit Models
- The Galaxy-Dark Matter Connection

 Galaxy-Galaxy Lensing: Theory

- The Cross-Correlation Coefficient
- Galaxy-Galaxy Lensing: Comparison with CLF

Stochasticity

Conclusions

Extra Material

Galaxy-Galaxy Lensing: Theory

G-G lensing measures tangential shear distortions of background sources, which holds information on galaxy-matter cross correlation

In order to boost signal-to-noise one needs to stack lenses

$\langle \Delta \Sigma angle (R L)$	=	$\int P(M L) \; \mathbf{\Delta} \mathbf{\Sigma}(R M) \; \mathrm{d}M$
P(M L)	=	$\left[1-f_{\mathrm{sat}}(L) ight] P_{\mathrm{cen}}(M L)+f_{\mathrm{sat}}(L) P_{\mathrm{sat}}(M L)$

Previous studies typically had to make various assumptions:

- $f_{sat}(L)$ treated as free parameter(s)
- $P_{\text{cen}}(M|L) = \delta^D(M \langle M \rangle_L)$ (ignore stochasticity)
- $P_{\rm sat}(M|L) \propto M n(M) \Theta_{\rm H}[M M_{\min}(L)]$

(e.g., Mandelbaum et al. 2005, 2006; Seljak et al. 2005)

With CLF $f_{sat}(L)$, $P_{cen}(M|L)$ and $P_{sat}(M|L)$ are all known.

Conditional Luminosity Function

- The Conditional Luminosity Function
- Luminosity & Correlation
 Functions
- The CLF Model
- Best-Fit Models
- The Galaxy-Dark Matter Connection
- Galaxy-Galaxy Lensing: Theory

 The Cross-Correlation Coefficient

 Galaxy-Galaxy Lensing: Comparison with CLF

Stochasticity

Conclusions

Extra Material

The Cross-Correlation Coefficient

From large-scale structure we obtain galaxy power spectrum

$$P_{
m gg}(k) = b^2(k) P_{
m mm}(k)$$
 $b^2(k) = rac{P_{
m gg}^2(k)}{P_{
m mm}(k)}$

From G-G lensing we obtain galaxy-matter cross-power spectrum

$$P_{
m gm}(k) = r(k) \, b(k) \, P_{
m mm}(k) \qquad r^2(k) = rac{P_{
m gm}^2(k)}{P_{
m gg}(k) \, P_{
m mm}(k)}$$

- $P_{mm}(k)$ is the dark matter power spectrum
- **b**(k) is the (scale-dependent) galaxy bias
- **r(k) is the galaxy-matter cross-correlation coefficient**

With large (redshift) surveys we can measure both $P_{gg}(k)$ and $P_{gm}(k)$

Not enough to solve for three unknowns: b(k), r(k) and $P_{mm}(k)$

However, when r(k) = 1 then

 $P_{
m mm}(k)=P_{
m gm}^2(k)/P_{
m gg}(k)$ $b(k)=P_{
m gg}(k)/P_{
m gm}(k)$

- Conditional Luminosity Function
- The Conditional Luminosity Function
- Luminosity & Correlation
 Functions
- The CLF Model
- Best-Fit Models
- The Galaxy-Dark Matter Connection
- Galaxy-Galaxy Lensing: Theory
- The Cross-Correlation Coefficient
- Galaxy-Galaxy Lensing: Comparison with CLF
- Stochasticity
- Conclusions
- Extra Material

Galaxy-Galaxy Lensing: Comparison with CLF

- Only good agreement with data for very bright galaxies
 Small scale increase of r(k) reflects that f_{sat} is small
- WARNING: results very preliminary

Cacciato, vdB et al. 2007 (in preparation)

Conditional Luminosity Function

Stochasticity

Stochasticity and Stacking

- Satellite Kinematics
- Results: The First Two Moments
- Why scatter increases with luminosity

```
Conclusions
```

```
Extra Material
```

Stochasticity and Stacking

To measure satelite kinematics or the weak lensing shear around galaxies, one needs to stack the signal of many galaxies.

Typically one stacks (central) galaxies in a narrow luminosity bin.

Unless $P(M|L_{cen})$ is very narrow, this means stacking haloes of different masses, and signal does not reflect $\langle M \rangle(L_{cen})$.

Proper interpretation of satelite kinematics and galaxy-galaxy lensing requires knowledge of σ_{logM} .

How can we constrain the scatter in $P(M|L_{cen})$?

- Use 'predictions' from semi-analytical models for galaxy formation
- Compute from CLF: $P(M|L_{cen}) = \frac{\Phi_c(L|M) n(M)}{\Phi_c(L)}$ (Bayes Theorem)
- Use satellite kinematics; host-weighting vs. satellite weighting

Stochasticity and Stacking Satellite Kinematics

• Why scatter increases with

Results: The First Two

Introduction

Stochasticity

Moments

luminosity

Conclusions

Extra Material

Satellite Kinematics

Select centrals and satellites and determine $\sigma_{sat}(L_{cen})$, describing the width of $P(\Delta V)$ with $\Delta V = V_{\text{sat}} - V_{\text{cen}}$ (More, vdB, et al. 2007, in prep.)

$$\langle \sigma_{\rm sat} \rangle (L_{\rm cen}) = \frac{\int P(M|L_{\rm cen}) \langle N_{\rm sat} \rangle_M^p \langle \sigma_{\rm sat} \rangle_M \, \mathrm{d}M}{\int P(M|L_{\rm cen}) \langle N_{\rm sat} \rangle_M^p \, \mathrm{d}M}$$

- p = 1: satellite-weighted mean $\langle \sigma_{sat} \rangle_{sw}$
- p = 0: host-weighted mean $\langle \sigma_{sat} \rangle_{hw}$

Unless $P(M|L_{cen}) = \delta(M - \langle M \rangle)$ one has that $\langle \sigma_{sat} \rangle_{sw} > \langle \sigma_{sat} \rangle_{hw}$

Both $\langle \sigma_{sat} \rangle_{sw}$ and $\langle \sigma_{sat} \rangle_{hw}$ can be determined from data.

Conditional Luminosity Function

Stochasticity

- Stochasticity and Stacking
- Satellite Kinematics
- Results: The First Two Moments
- Why scatter increases with luminosity

Conclusions

Extra Material

Results: The First Two Moments

All methods agree that scatter in $P(M|L_{cen})$ increases with L_{cen}

Conditional Luminosity Function

Stochasticity

Stochasticity and Stacking

Satellite Kinematics

 Results: The First Two Moments

 Why scatter increases with luminosity

Conclusions

Extra Material

Why scatter increases with luminosity

- The scatter in $P(L_{cen}|M)$ is roughly independent of M
- The scatter in $P(M|L_{cen})$ increases strongly with L_{cen}

Conclusions

n	tr	'n	a		\sim	tı	0	n	
	u	U	u	u	J	u	o		

Stochasticity

Conclusions

Conclusions

Extra Material

- The CLF allows a powerful and consice treatment of galaxy bias.
- The CLF also quantifies universal relation between light and mass.
- Galaxy-Dark Matter connection inferred from luminosity dependent clustering in excellent agreement with results obtained from galaxy group catalogues.
- The CLF predictions only match galaxy-galaxy lensing signal for very bright galaxies.
- Satellite kinematics can be used to probe and quantify the stochasticity in galaxy formation.
- **Scatter in** $P(M|L_{cen})$ increases strongly with increasing L_{cen}