Mon. Not. R. Astron. Soc. 405, 1690-1710 (2010)

On the origin of the galaxy star-formation-rate sequence: evolution and scatter

Aaron A. Dutton,^{1,2*}† Frank C. van den Bosch³ and Avishai Dekel⁴

¹UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA
²Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
³Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112-0830, USA
⁴Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Accepted 2010 February 26. Received 2010 February 26; in original form 2009 December 11

Yale Galaxy Lunch Sept 29, 2010

The Formation of Disk Galaxies

Disk galaxies are systems in centrifugal equilibrium Structure of disks is governed by angular momentum content

- Halo growth obtained using extended Press-Schechter theory
- Angular momentum originates from cosmological torques
- Baryons and dark matter acquire identical ang. mom. distributions
- During cooling, gas conserves its specific angular momentum

Gas settles in disk in centrifugal equilibrium:

$$\Sigma_{\rm disk}(R) \iff M_{\rm bar}(j_{\rm bar}) \iff M_{\rm dm}(j_{\rm dm})$$

Halo contracts in response to formation of disk (adiabatic contraction)

The Star Formation Law

Gao & Solomon 2004; Bigiel et al. 2008

Blitz & Rosolowski 2006

Blitz & Rosolowski 2006

Elmegreen 1993

Supernova Feedback

Energy-driven wind:
$$\dot{M}_{wind}(R) = \frac{2\varepsilon_{EFB}E_{SN}\eta_{SN}}{V_{esc}^2(R)}\dot{M}_{star}(R)$$
 Dekel & Silk 1986
lomentum-driven wind: $\dot{M}_{wind}(R) = \frac{\varepsilon_{MFB}p_{SN}\eta_{SN}}{V_{esc}(R)}\dot{M}_{star}(R)$ Murray et al. 2005

For a given efficiency, energy-driven winds typically result in a larger mass-loading factor than momentum-driven winds...

Comparison with data

Overall, energy-driven wind models is most succesful

The Cosmic Star Formation History

Decline in SSFRs may be due to evolution in gas mass fractions, or in gas surface densities (assuming that SF efficiency is governed by micro-physics)

and what our model predicts (no fine-tuning)

Results are independent of feedback prescription!!!

Star Formation is self-regulating...

average halo mass accretion rate $\dot{M} \propto (1+z)^{2.25}$ (Noeske et al. 2007; Birnboim et al. 2007)

 Models are in reasonable agreement with the data, independent of feedback implementation

 Models predict strong evolution at z > 2, in apparent conflict with observation.

Evolution in SSFRs of galaxies appears to be mainly driven by evolution in accretion rate onto dark matter haloes

NFB dotted lines;

EFB solid lines;

MFB dashed lines

Low mass haloes: cooling time < free-fall time (cold mode) High mass haloes: cooling time > free-fall time (hot mode)

Cosmic star formation rate appears related to the halo accretion rate, but there is more to it...

Galaxy disks are in steady-state in which SFR is roughly equal to the <u>net</u> gas inflow rate...

evolution in surface density of dark matter haloes...

Evolution in SSFRs driven by evolution in gas densities, not by evolution in gas mass fractions!!!

Higher densities --> higher molecular fractions --> higher SSFRs

