The Cosmic Microwave Background: Listening to the Symphony of the Big Bang

PROF. FRANK VAN DEN BOSCH DEPT. OF PHYSICS & ASTRONOMY

1965: Penzias & Wilson serendipitously discovered CMB while testing Bell Lab's horn-antenna on Crawford Hill at Holmdell, New Jersey. Were awarded 1978 Nobel Prize in Physics

Arno Penzias & Robert Wilson

Jim Peebles (Princeton)

Observing the CMB: do it yourself...

Roughly 1 percent of the static on your TV is CMB!!!

Most Accurate Planck Curve ever measured

The CMB Power Spectrum

Observations in an Expanding Universe

Cosmological Redshift

Light and other radiation reaches us in form of photons.
Photons are characterized by a wavelength, which reflects their energy.
Due to expansion of Universe, photons get redshifted (become less energetic).

Turning Back the Clock...

★ In present day Universe, mean free path of photons exceeds horizon; average photon traverses visible Universe without interaction (which is why we can see galaxies etc.)

Going back in time, the Universe becomes denser & hotter.

There comes a time, when photons are so energetic that they destroy hydrogen atoms: H --> p + e

★ At earlier times, photons interact strongly with free electrons (Thomson scattering), while electrons have Coulomb interactions with free protons: photon-baryon fluid.

In photon-baryon fluid, mean free path of photons is tiny; photons are trapped, and can't get `out of box'

Recombination; the Origin of CMB Radiation

Shortly after Big Bang, Universe consists of dark matter and a photon-baryon fluid; photons are trapped.

About 380.000 yrs after Big Bang, Universe has cooled to the point where electrons & protons combined to form Hydrogen atoms: sudden increase in mean free path of photons --> CMB

The Last Scattering Surface

The CMB are photons from the last scattering surface at a redshift of $z\sim1100$, when the Universe recombined.

At recombination T \sim 3000K. Because of expansion of Universe, photons have been redshifted to T \sim 3 K.

The Last Scattering Surface

The CMB are photons from the last scattering surface at a redshift of $z\sim1100$, when the Universe recombined.

At recombination T \sim 3000K. Because of expansion of Universe, photons have been redshifted to T \sim 3 K.

Last Scattering Surface is like photosphere of Sun; no information from before recombination can reach us (except for neutrinos & gravitational waves)

Origin of the Dipole

The origin of the dipole in the CMB is the the Doppler effect due to our peculiar motion

Origin of the Dipole

The origin of the dipole in the CMB is the the Doppler effect due to our peculiar motion

Origin of the Dipole

The origin of the dipole in the CMB is the the Doppler effect due to our peculiar motion

Peculiar motion made up of:

Motion of Earth around Sun (~30 km/s)
Motion of Sun around MW center (~220 km/s)
Motion of MW towards Virgo cluster (~300 km/s)

Total vector sum of 369 km/s

Dark Matter Perturbation --> Potential well

Pressure of photon-baryon fluid resists gravity, giving rise to oscillations --> sound waves

Dark Matter Perturbation --> Potential well

Pressure of photon-baryon fluid resists gravity, giving rise to oscillations --> sound waves

Compressing a gas heats it up, expanding a gas cools it down --> Temperature fluctuations

Compression results in higher temperature Rarefaction results in lower temperature

Compression in valley & rarefaction at hill followed by compression at hill & rarefaction in valley

 Density perturbation field is a combination of perturbations with different wavelengths (different `modes')

Modes with smaller wavelengths oscillate faster.

Modes stop oscillating at recombination (phases are `frozen')

★=observer

At recombination, photons decouple & start to free-stream; angular scale of fluctuations proportional to wavelength of mode.

At recombination, photons decouple & start to free-stream; angular scale of fluctuations proportional to wavelength of mode.
Origin of First Acoustic Peak

First peak due to mode that just reaches maximal compression in valley/rarefaction on hill top for first time

Origin of First Acoustic Trough

At troughs, temperature fluctuations are not zero due to motions of photon-baryon fluid --> Doppler effect.

Origin of Second Acoustic Peak

Second peak due to mode that just reaches maximal rarefaction in valley/compression on hill top for first time

Diffusion Damping

Angular Scale 0.5° 0.2° 2° 90 6000 large small scales scales 5000 ((+1)C₁/2π (μK²) 4000 3000 2000 1000 0 100 10 40 200 400 800 0 1400 Multipole moment (1)

> Recombination is not instantaneous; rather the last scattering surface has finite thickness A

> Consequently, fluctuations on scales smaller than d are washed out causing damping on small angular scales.

last scattering surface

observer

Lessons Learned

Curvature of Universe can be probed using large-scale triangles

GEOMETRY OF THE UNIVERSE

One such triangle comes from angular scale of first acoustic peak: $\Delta \Theta \sim v_{\rm sound} t_{\rm rec}$

GEOMETRY OF THE UNIVERSE

One such triangle comes from angular scale of first acoustic peak: $\Delta \Theta \sim v_{
m sound} t_{
m rec}$

The Baryon-to-Dark Matter Ratio

Increasing density of baryons causes stronger compression in valleys (due to self-gravity of baryons), and less compression on hill tops.

Ratio of odd to even acoustic peaks holds information regarding ratio of baryons to dark matter

The Baryon-to-Dark Matter Ratio

Flat geometry implies that Universe has critical density

Flat geometry implies that Universe has critical density

Summing densities due to dark matter and baryonic matter only accounts for ~27% of "critical density"

Flat geometry implies that Universe has critical density

Summing densities due to dark matter and baryonic matter only accounts for ~27% of "critical density"

Dark Energy makes up ~73% of Universe

SUMMARY

<u>CREDITS</u>: Many of the illustrations and movies have been taken from the excellent website created by Prof. Wayne Hu <u>http://background.uchicago.edu</u>/

