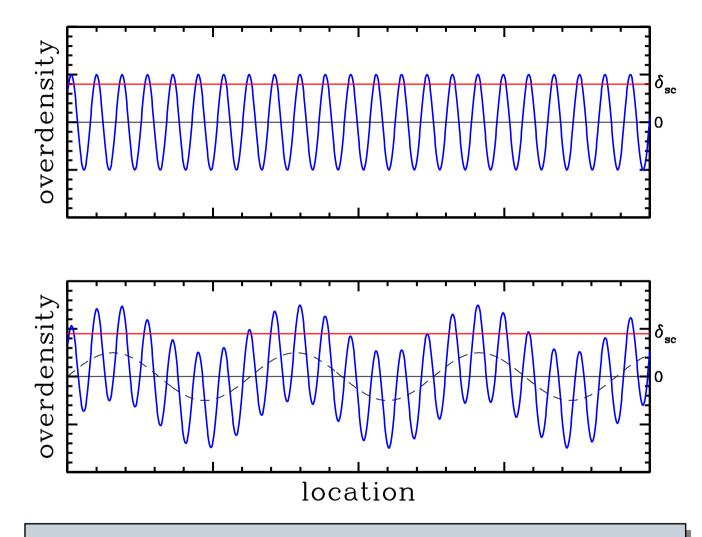


Halo Assembly Bias and its Impact on Galaxy Formation

Frank C. van den Bosch

in collaboration with Yu Wang, Yaoquan Shu, Xiaohu Yang (SHAO) Houjun Mo (UMass), Simone Weinmann (MPA)



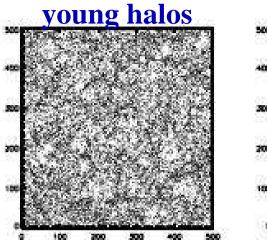
The Origin of Halo Bias

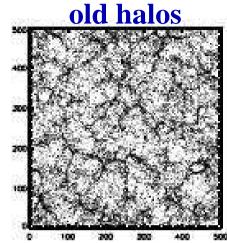
Presentation

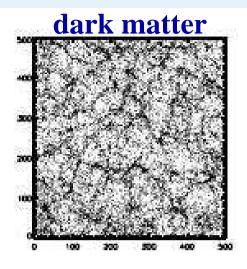
- The Origin of Halo Bias
- Halo Assembly Bias
- Mass Dependence of Halo Bias
- Color Dependence of Halo
 Bias
- Implications for Galaxy Formation
- Halo Formation vs. Halo Assembly

Conclusions

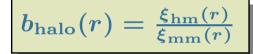
Modulation causes statistical bias of peaks (haloes) Modulation growth causes dynamical enhancement of bias

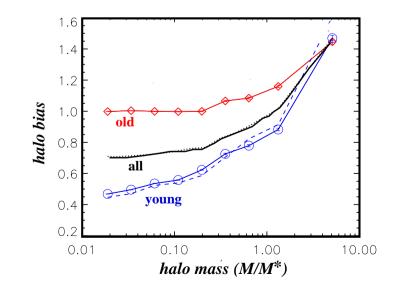

• The Origin of Halo Bias


Halo Assembly Bias


- Mass Dependence of Halo Bias
- Color Dependence of Halo Bias
- Implications for Galaxy Formation
- Halo Formation vs. Halo
 Assembly

Conclusions

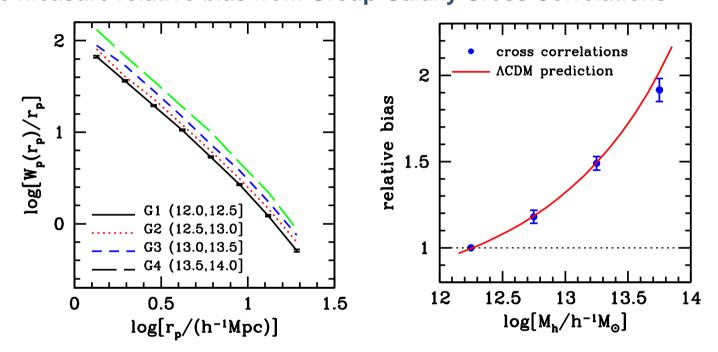




(Gao, White & Springel 2005)

Halos that assemble earlier are more strongly clustered than halos of the same mass that form later.

Effect is stronger for less massive haloes



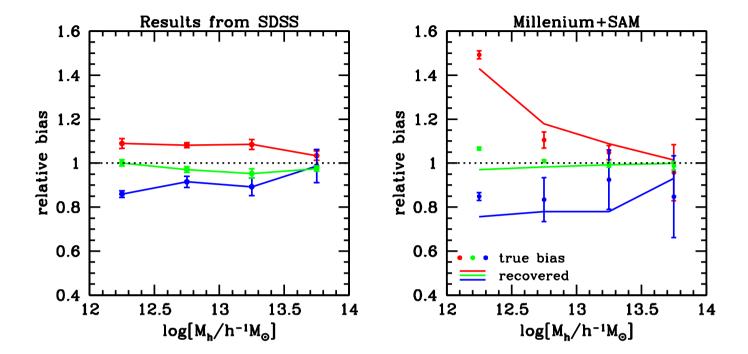
- The Origin of Halo Bias
- Halo Assembly Bias
- Mass Dependence of Halo Bias
- Color Dependence of Halo Bias
- Implications for Galaxy
 Formation
- Halo Formation vs. Halo Assembly

Conclusions

Mass Dependence of Halo Bias

We probe halo bias using SDSS group catalogue of Yang et al. (2007) We measure relative bias from Group-Galaxy Cross Correlations

More massive groups/haloes are more strongly clustered


- Mass dependence in excellent agreement with Λ CDM predictions
- Mass assignment in group catalogue is reliable

- The Origin of Halo Bias
- Halo Assembly Bias
- Mass Dependence of Halo Bias
- Color Dependence of Halo Bias
- Implications for Galaxy Formation
 Halo Formation vs. Halo
- Assembly

Conclusions

- We detect weak, but significant color dependence of halo bias
- Groups with red centrals are more strongly clustered that equal mass groups with blue centrals
- Our method can recover true signal from mock redshift survey
- SAM of Croton et al. (2006) 'predicts' similar color dependence, but much stronger for low mass haloes.

- The Origin of Halo Bias
- Halo Assembly Bias
- Mass Dependence of Halo Bias
- Color Dependence of Halo Bias

Implications for Galaxy
 Formation

 Halo Formation vs. Halo Assembly

Conclusions

Implications for Galaxy Formation

To summarize, at fixed mass:

- Halos that assemble earlier are more strongly clustered
- Groups with redder centrals are more strongly clustered

The logical inference would be that

Star Formation History traces Mass Assembly History

- The Origin of Halo Bias
- Halo Assembly Bias
- Mass Dependence of Halo Bias
- Color Dependence of Halo
 Bias

Implications for Galaxy
 Formation

 Halo Formation vs. Halo Assembly

Conclusions

Implications for Galaxy Formation

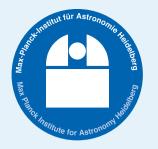
To summarize, at fixed mass:

- Halos that assemble earlier are more strongly clustered
- Groups with redder centrals are more strongly clustered

The logical inference would be that

Star Formation History traces Mass Assembly History

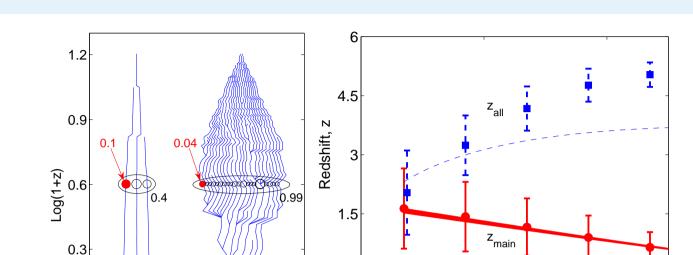
But, more massive halos assemble later. These should then host younger galaxies, which is in violent contrast to observations!!


Some people call this "downsizing" or "anti-hierarchical"

What is really required is

Positive correlation between SFH and MAH at fixed mass

Negative correlation between SFH and MAH globally


Is there a natural explanation for such **SFH-MAH** correlations?

- The Origin of Halo Bias
- Halo Assembly Bias
- Mass Dependence of Halo Bias
- Color Dependence of Halo
 Bias
- Implications for Galaxy
 Formation
- Halo Formation vs. Halo

Assembly

Conclusions

0

íq

Halo Formation vs. Halo Assembly

Halo assembly time : time when $M_{
m mmp}=M_0/2$ Halo formation time: time when $\sum\limits_{i=1}^{N_{
m min}}M_i=M_0/2$

M₀~100 M_{min}

0

 $M_0 \sim 10 M_{min}$

More massive halos assemble later, but form earlier

But at fixed mass, halos that form later also assemble later

Data suggests that star formation tracks halo formation

13

Neistein, vdB & Dekel, 2006

11

 $Log(M_0) [h^{-1} M_{sun}]$

Conclusions • Conclusions

Conclusions

- Galaxy Groups reveal mass-dependent bias as expected
- Dark Matter Haloes reveal strong assembly bias
- Galaxy Groups reveal weak color bias
- **SFH** of galaxies is related to halo formation history
- There is nothing 'anti-hierarchical' about downsizing