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Lecture 1
Introduction



 the halo bias function

Galaxy Formation in a Nutshell
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Lecture 2
Overview of Cosmology I 

(Riemannian Geometry & FRW metric)



 the halo bias function

General Relativity

Einstein’s Field Equation

Rµ� � 1

2
gµ�R� gµ�� =
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Friedmann Equations
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Friedmann-Robertson-Walker Metric

Riemannian Geometry

Cosmological Principle
Universe is homogeneous & Isotropic

Lecture 2 Lecture 3
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Fundamental observer

Proper time vs. conformal time

Comoving vs. proper distance 

Angular diameter distance

Luminosity distance

Key words 
Cosmological Principle

FRW metric

Hubble parameter

redshift

peculiar velocity

Physical laws can be made manifest invariant by writing them in tensor form.

The geometry of space-time is described by the metric

The FRW-metric is the most general metric consistent with the cosmological principle, that 
the Universe is homogeneous and isotropic (on large scales).

gµ⇥ = gµ⇥(x
�)

Due to the expansion, the peculiar velocities of particles that do not

experience an external force decay with time as vpec / a�1

Since energy densities of baryons & dark matter evolve in the same way, 

it is sufficient to describe the (non-relativistic) matter as one component .

Since energy densities of radiation & relativistic matter (i.e., neutrinos)  
evolve in the same way, it is sufficient to describe them as one component .

Summary: key words & important facts
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ds2 = c2dt2 � a2(t)


dr2

1�Kr2
+ r2(d�2 + sin2 � d⇥2)

�

ds2 = a2(�)
�
d�2 � d�2 � f2

K(�)
�
d�2 + sin2 � d�2

��
Two ways of writing 

the FRW-metric

z ⌘ �obs � �em

�em
=

a(tobs)

a(tem)
� 1Redshift, wavelength, scale-factor & 

peculiar velocity

1 + zobs = (1 + zcos) (1 + zpec)v = ȧ�+ a�̇ ⌘ vexp + vpec

dA(z) =
a0 r

1 + z
dL(z) = a0 r (1 + z)

angular diameter distance

           luminosity distance

d�

da
+ 3(1 + w)

�

a
= 0 � � a�3(1+w)Thermodynamics 

 non-relativistic matter (baryons & dark matter) 
        relativistic matter (radiation)                      
cosmological constant (dark energy)                 

w = 0 
w = 1/3 
w = -1

Summary: key equations & expressions
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Lecture 3
Overview of Cosmology II 

(General Relativity & Friedmann Eqs)



 the halo bias function

General Relativity

Einstein’s Field Equation

Rµ� � 1

2
gµ�R� gµ�� =

8�G

c4
Tµ�

Friedmann Equations
✓
ȧ

a
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3
⇥� Kc2
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+
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3

ds2 = a2(�)
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d�2 + sin2 � d�2
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Friedmann-Robertson-Walker Metric

Riemannian Geometry

Cosmological Principle
Universe is homogeneous & Isotropic

Lecture 2 Lecture 3
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Since gravity is `permanent’ (can only be transformed away locally), it 
must be related to an intrinsic property of space-time itself.

Equivalence Principle

Christoffel symbols

covariant derivative

Key words 
Riemann tensor

Ricci tensor

Einstein tensor


Newtonian gravity only holds in inertial systems, is covariant under Galilean 
transformations, and moving mass has immediate effect all throughout space.

Why 
we 

need 
GR

Einstein Field equation is the manifest covariant version of Poisson equation

Space-time of freely falling observer (no gravity) is flat Minkowski space;

hence, gravity originates from curvature in space-time (Riemann space)

The
Key
to   
GR

inertial systems do not exist (you can’t shield yourself from gravity)
SR: inertial systems transform according to Lorentz transformations

SR: universal speed limit; no information can propagate instantaneously

but

Summary: key words & important facts
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Einstein Field Equation Rµ� �
1
2

R gµ� � �gµ� =
8�G

c4
Tµ�

r2� = 4�G⇥Poisson Equation

GR GR

✓
ȧ

a

◆2

=
8�G

3
⇥� Kc2
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+
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3
The Friedmann Equation

E(z) =
�
��,0 + (1� �0) (1 + z)2 + �m,0(1 + z)3 + �r,0(1 + z)4

�1/2

whereH2(z) = H2
0 E2(z)

�(z)� 1 = (�0 � 1)
(1 + z)2

E2(z)
Density Parameter

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Summary: key equations & expressions



Lecture 4
Newtonian Perturbation Theory 

I. Linearized Fluid Equations
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Euler equations

Equation of State

Ideal Gas

Sound Speed

Key words 
Hubble drag

Perturbation analysis

Isentropic perturbations

Isocurvature perturbations

Dark matter can be described as a collisionless fluid as long as the velocity dispersion 
of the particles is sufficiently small that particle diffusion can be neglected on the scale 
of interest. This is true on scales larger than the free-streaming scale.

In the linear regime, all modes evolve independently (there is no `mode-coupling’)

If evolution is adiabatic, isentropic perturbations remain isentropic.

If not, the non-adiabatic processes create non-zero�S

Isentropic and isocurvature perturbations are orthogonal;

any perturbation can be written as a linear combination of both.     

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Summary: key words & important facts
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D⇤u

Dt
= �rrP

�
�rr⇥

D�

Dt
+ ��r · ⇥u = 0

r2
r⇤ = 4�G⇥

continuity equation

Euler equations

Poisson equation

�2�

�t2
+ 2

ȧ

a

��

�t
= 4�G�̄� +

c2
s

a2
�2� +

2
3

T̄

a2
�2S

“Master equation”

Perturbation analysis in expanding space-time

Fourier Transform

d2��k

dt2
+ 2

ȧ

a

d��k

dt
=

�
4�G�̄� k2c2

s

a2

�
��k �

2
3

T̄

a2
k2 S�k

�S =
3
4
�r � �m

isentropic perturbations

isocurvature perturbations

�r = (4/3)�m

�r/�m = �(a/aeq)

P =
kBT

µmp
�ideal gas � =

1
� � 1

kBT

µmp

cs = (�P/��)1/2
Ssound speed
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Summary: key equations & expressions



Lecture 5
Newtonian Perturbation Theory 

II. Baryonic Perturbations
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Jeans criterion

Jeans length

Horizons (particle vs. event)

Key words 
Linear growth rate

Silk damping

Radiation drag


Perturbations below the Jeans mass do not grow, but cause acoustic oscillations.

If matter is purely baryonic, at recombination Silk damping has erased all perturbations on 
relevant scales (Md ~ 1015 M⦿)             structure formation proceeds in top-down fashion.

Growth of super-horizon density-perturbations is governed by conservation of the 

associated perturbations in the metric.

Hubble drag resists perturbation growth            perturbations above the Jeans mass
��k(t) � ta     do not grow exponentially, but as a power-law: 

The index a depends on cosmology and EoS, as characterized by linear growth rate.

At recombination photons decouple from baryons             huge drop in the Jeans mass.
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Summary: key words & important facts
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prior to recombination: relativistic photon-baryon fluid cs =
c�
3

�
3
4

�b(t)
�r(t)

+ 1
��1/2

after recombination: baryon fluid is `ideal gas’ cs = (�P/��)1/2 � T 1/2

MJ =
4�

3
�̄

�
�J

2

�3
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JJeans length & mass: �prop
J = cs

�
�

G�̄

�H(a) =
� t

0

cdt
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=

� a

0

cda

a ȧ
comoving particle horizon: �prop

H =
2 c t
3 c t

radiation era
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�k2��k = 4�Ga2�̄��k

��k
is constant implies that ��k � (�̄a2)�1

Poisson equation (Fourier space)
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Summary: key equations & expressions



Lecture 6
Newtonian Perturbation Theory 

III. Dark Matter
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Thermal vs. Non-thernal relics

Cold vs. Hot relics (CDM vs. HDM)

Collisionless Boltzmann equation

Jeans equations

Key words 
Freeze-out

Meszaros effect

Free-streaming damping

ISW effect

A collisionless fluid with isotropic and homogeneous velocity dispersion is described 
by the same continuity and momentum equations as a collisional fluid, but with the 
sound speed     replaced by � = �v2

i �1/2cs

After recombination, baryons fall in DM potential wells, thereby un-doing Silk damping.

Collisional     fluid: perturbations below Jeans mass undergo acoustic oscillations
Collisionless fluid: perturbations below Jeans mass undergo free streaming

Collisionless dark matter and baryonic matter have the same linear growth rate.

A collisionless fluid does not have an EoS         moment equations are not a closed set

The integrated Sachs-Wolfe effect probes (linear) growth rate of structure. 

In an EdS cosmology               and the ISW effect is absent.D(a) � a
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Summary: key words & important facts
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D(a) � a�ΛCDM cosmology (� < 1)
Linear growth rate
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= 0Collisionless Boltzmann Equation (CBE)

Moment equations: multiply all terms by      and integrate over all of velocity space

Jeans equations

Continuity equation

vk
i

k = 0

k = 1

Summary: key equations & expressions

Poisson equation in Fourier space: �k2��k = 4�G�̄a2��k

In matter dominated Universe:  �̄ � a�3 ��k � D(a)/a
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Lecture 7
The Transfer Function  & 

Cosmic Microwave Background



 the halo bias function

ergodic principle

Gaussian random field

two-point correlation function

Harrison-Zeldovic spectrum

Key words 
Power spectrum

recombination vs. decoupling

last scattering surface

diffusion damping

Finite thickness of lss causes diffusion damping of CMB perturbations

Location of first peak in CMB power spectrum           curvature of Universe

Ratio of first to second peak in CMB power spectrum          baryon-to-dark matter ratio

CMB dipole reflects our motion wrt last scattering surface (lss)

The power-spectrum is the Fourier Transform of the two-point correlation function

A Gaussian random field is completely specified (in statistical sense) by the 

power-spectrum. The phases of all modes are independent and random.

Summary: key words & important facts
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Q � 1
2

�

i,j

�i (C�1)ij�j

Cij = ��i�j� = �(r12)
P(�1, �2, ..., �N ) =

exp(�Q)
[(2�)N det(C)]1/2

P (k, t) = Pi(k) T 2(k) D2(t)
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�2
m,0 H4

0

=
4
9

k4 P�,i(k)
�2

m,0 H4
0

��� =
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�P(�) d� =
�

�(�x) d3�x = 0

ergodic principle: ensemble average = spatial average

Gaussian 
random 

field

two-point 
correlation 

function

first  
moment

Power 
spectrum 

& 
transfer 
function

��1 �2� � �(�r12) = �(r12)

1 + �(r) =
npair(r ± dr)

nrandom(r ± dr)

�2(k) � 1
2�2

k3 P (k)
dimensionless power spectrum

The transfer 
function T(k) is 

independent of am 
as long as Ω(am)≃1

cosmological principle: isotropy

Summary: key equations & expressions
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Lecture 8
Non-linear Collapse

& Virialization
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In the non-linear regime (         ) perturbation theory is no longer valid. Modes

start to couple to each other, and one can no longer describe the evolution of the density field 
with a simple growth rate: in general, no analytic solutions exist...

� > 1

Because of this mode-coupling, the density field looses its Gaussian properties,

i.e., in the non-linear regime, density field cannot remain Gaussian.

The Zel’dovich approximation is a Lagrangian treatment of the displacement field.

 It remains accurate in the quasi-linear regime, up to first shell crossing.

Spherical Collapse (SC) model can be used to `identify’ when and where collapsed 
objects will appear. Ellipsoidal Collapse model improves upon SC by accounting for the 
impact of tides, which typically are more important for less massive objects
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Summary: key words & important facts

Spherical/Ellipsoidal collapse

Secondary Infall model

Zel’dovich approximation

critical overdensity

shell crossing

Key words 
Mode coupling

Violent relaxation

Phase Mixing

Virial Theorem

Two-body relaxation




 the halo bias function

Spherical/Ellipsoidal collapse

Secondary Infall model

Zel’dovich approximation

critical overdensity

shell crossing

Key words 
Mode coupling

Violent relaxation

Phase Mixing

Virial Theorem

Two-body relaxation


Violent relaxation operates on the free-fall time, only mixes at the course-grain level of the 
distribution function, and is self-limiting.

There are four relaxation mechanisms for collisionless systems:

         - phase mixing

         - chaotic mixing

         - violent relaxation

         - Landau damping

Unlike collisional relaxation, violent relaxation does not cause mass segregation

The only way in which a particle’s energy can change in a collisionless system is by having  a 
time-dependent potential.
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Summary: key words & important facts
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Summary: key equations & expressions



Lecture 9
Press-Schechter Theory
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(Extended) Press-Schechter 

Excursion Set Formalism

Moving Collapse Barrier

Markovian random walk

Key words 
Mass Variance

Halo Mass Function

Multiplicity Function

Characteristic Halo Mass

Locations in linearly extrapolated density field where 𝛿 > 𝛿c ≃ 1.686 correspond to 
collapsed objects (halos)

If 𝛿(x) is Gaussian, then so is the smoothed density field 𝛿(x;R)

Excursion sets are Markovian if, and only if, the density field is smoothed with a 
sharp-k space filter

The ellipsoidal collapse model gives rise to a moving barrier in excursion set formalism

The cosmological parameter σ8 is defined as the mass variance of the linearly 
extrapolated density field at z=0, smoothed with a Top-Hat filter of size R=8 h-1Mpc

Summary: key words & important facts
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Summary: key equations & expressions
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Lecture 10
Merger Trees & Halo Bias



 the halo bias function

Merger Tree

Progenitor Mass Function

Mass Assembly History 

Key words 
Halo Formation time

Halo Bias

Assembly Bias


Construction of halo merger tree is subject to two conditions

              accurately samples progenitor mass function at all times (self-consistency)

              mass conservation (sum of progenitor masses = descendent mass)

Different methods for constructing EPS merger trees differ in handling corresponding subtleties…

Even in the limit of infinitesimally small time-step there is a non-zero probability of having 
more than two progenitors           binary merger tree method fails

Mass assembly histories of dark matter halos are universal, if scaled appropriately.

More massive halos assemble later, and are more strongly clustered  (i.e.,  dbh/dM > 0)

Halos that assemble earlier are more strongly clustered than halos of the same mass that 
assemble later (= halo assembly bias)

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Summary: key words & important facts
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n(M1, t1|M2, t2) dM1 =
M2

M1
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����
dS1

dM1

���� dM1

Progenitor Mass Function:

in linear regime �h(M1, z1|�0) � bh(M1, z1)�(z1) bh(M, z) = 1 +

✓
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◆
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Halo Bias

Summary: key equations & expressions
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Lecture 11
Structure of Dark Matter Halos
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NFW/Einasto profile

Halo virial relations

Cusp-Core controversy

Key words 
Halo Concentration Parameter

Halo Spin Parameter

Linear Tidal Torque Theory


The (median) spin parameter is independent of halo mass or redshift 

More massive haloes are less concentrated, are more aspherical, and have more substructure

All these trends are mainly because more massive haloes assemble later

Both concentration and spin parameter follow log-normal distributions

Dark matter halos have a universal density profile, a universal angular momentum profile,

and a universal assembly history

Subhalos reveal very little segregation by present-day mass, a weak segregation by accretion 
mass, and strong segregation by accretion redshift and retained mass fraction

Dark matter haloes acquire angular momentum in the linear regime due to tidal torques 
from neighboring overdensities...

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Summary: key words & important facts
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Summary: key equations & expressions



Lecture 12
Large Scale Structure        



 the halo bias function

reduced/irreducible corr fnc

Poisson sampling

Wiener-Khinchin theorem

Limber equation

Key words 
projected correlation function

Redshift space distortions

Kaiser effect

Finger-of-God effect


The reduced (or irreducible) correlation functions express the part of the n-point 
correlation functions that cannot be obtained from lower-order correlation functions

For a Gaussian random field, all connected moments (=reduced correlation functions) 
of           are equal to zero (i.e.,                  ). n > 2 � = � = 0

One can use    and    to test whether the density field is Gaussian or not...��

If galaxy formation is a Poisson sampling of the density field, then all n-point correlation 
functions of the galaxy distribution are identical to those of the matter distribution
This is not the case though; galaxies are biased tracers of the mass distribution

Redder and more massive/luminous galaxies are more strongly clustered

On large (linear) scales, redshift space distortions (RSDs) depend on linear growth rate.
On small (non-linear) scales, RSDs reveal FoG indicative of virial motion within halos
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Summary: key words & important facts
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Summary: key equations & expressions



Lecture 13
The Halo Model & 

Halo Occupation Statistics



 the halo bias function

Halo model

halo exclusion

galaxy-galaxy lensing

Key words 
1-halo & 2-halo terms

Halo Occupation Distribution (HOD)

Conditional Luminosity Function (CLF)


The Halo model is an analytical model that describes dark matter density distribution in terms of its 
halo building blocks, under ansatz that all dark matter is partitioned over haloes.

In combination with a halo occupation model (HOD or CLF), the halo model can be used to 
compute galaxy-galaxy correlation function and galaxy-matter cross-correlation function. 

The latter is related to the excess surface density measured with galaxy-galaxy lensing.

HOD is mainly used to model clustering of luminosity threshold samples.

CLF can be used to model clustering of galaxies of any luminosity (bin).

It is common to assume that satellite galaxies obey Poisson statistics, such that 

<Ns(Ns-1)|M> = <Ns>2, and only the first moment of P(Ns|M) is required. This is not exact 

and may cause significant errors in the predicted clustering.

Summary: key words & important facts
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 the halo bias function
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Galaxy-Galaxy lensing: tangential shear, excess surface density and galaxy-matter cross correlation

Characteristic examples of CLF and HOD for both centrals and satellites
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CLF: the link between light and mass

P (k) = P 1h(k) + P 2h(k)

Summary: key equations & expressions
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Lecture 14
Galaxy Interactions



 the halo bias function

Impulse & tidal approximations

distant encounter approximation

tidal shock heating

tidal mass stripping

Key words 
dynamical friction

gravitational capture

orbital decay

negative heat capacity


Gravitational encounter results in tidal distortion. If tidal distortion lags perturber, the 

resulting torque causes a transfer of orbital energy into internal energy of the objects involved.

Dynamical friction does not generally result in orbital circularization.

Dynamical friction is a global, rather than a local effect. Unlike hydrodynamical friction, the

deceleration decreases with increasing velocity, at least at the high-velocity end.

An impulsive encounter that results in an (internal) energy increase 𝝙E that is larger than

the system’s binding energy does not necessarily result in the system’s disruption

More eccentric orbits decay faster.

Dynamical friction is only important for subjects with a mass larger than a few percent of the 
host halo mass. For less massive subjects, tdf > tH

During re-virialization, following an impulsive encounter, the subject converts 2x𝝙E from kinetic 
into potential energy, resulting in the system `puffing’ up.

Summary: key words & important facts



 the halo bias function
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Summary: key equations & expressions



Lecture 15
Heating & Cooling



 the halo bias function

Hydro-static Equilibrium

Accretion Shock

Virial Temperature

Cooling Function

Key words 
Overcooling Problem

Cold mode vs. Hot mode

Ionization equilibrium

Photo-ionization heating

Mass estimates based on the assumption of hydrostatic equilibrium need to 
correct for non-thermal pressure sources (turbulence, magnetic fields, cosmic rays)
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Summary: key words & important facts

is a function of both temperature and density. This arises because of the competition 
between photo-ionization & recombination.

In the presence of photo-ionization, the net heating/cooling rate,                     , (C �H)/n2
H

Gas infalling in a halo through an accretion shock is heated to the virial temperature 
at which the gas is in hydrostatic, virial equilibrium with the halo potential.

When ignoring photo-ionizations, it is typically assumed that the gas is in collisional 
ionization equilibrium (CIE)            one uses CIE cooling functions

Low mass halos (Mh  < 1012 M☉) are predicted to experience cold mode accretion (via 
streams), as they can’t support an accretion shock.



 the halo bias function
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Summary: key equations & expressions
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Lecture 16
   Star Formation



At high gas densities (                               ) conditions are such that self-
shielding becomes efficient, and molecular gas forms. 

�gas > 10M�pc
�2

Various mechanisms trigger instabilities, creating GMCs supported by 
supersonic turbulence.

Turbulent compression creates clumps and cores; the latter are Jeans 
unstable and collapse to form stars. 

Overall SFE per GMC is low �SF,GMC ⇠ 0.002

At low gas densities (                               ) star formation is suppressed, 
due to inability for gas to self-shield (i.e., form molecules), and due to 
reduced self-gravity, which enhances stability.

�gas < 10M�pc
�2

Mergers and tidal interactions cause efficient transport of angular 
momentum out (funneling gas in). This boosts efficiency of creating 

GMCs, so that galaxy enters starburst phase. 

Energy and momentum injection due to star formation process itself

is likely to be important regulator of star formation efficiency in GMCs.
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 Summary



Lecture 17
Supernova Feedback



Efficient SN feedback requires three-phase ISM envisioned by McKee & Ostriker 
(1977), with most volume (mass) being in hot (cold) phase.

SN feedback is essential ingredient of galaxy formation. It helps explain why  
overall SF efficiency is low, and is invoked to explain why galaxy formation is less 
efficient in lower mass haloes...

Unless SN go off in hot, low density medium, almost all SN energy is radiated 
away during radiative phase of blastwave. 

Radiation pressure, stellar winds, and photo-ionization seem to be crucial 
ingredients for paving the way for efficient SN feedback.

Numerical simulations that include wide spectrum of stellar feedback 
processes yields mass-loading efficiencies that scale similar to momentum-
driven winds.

They predict multi-phase winds; winds properties depend on SFR rate; 
radiation pressure becomes more important in systems with higher SFRs.
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BlastwavesSummary


