ASTR 610: Problem Set 3

This problem set consists of 4 problems.
Due date: Wed Mar 6, 2024

Problem 1: Spherical Collapse [6 points]
According to the SC model, the parametric solution to the evolution of a mass shell is

$$
\begin{aligned}
& r=A(1-\cos \theta) \\
& t=B(\theta-\sin \theta)
\end{aligned}
$$

where $A^{3}=G M B^{2}$, which implies that

$$
1+\delta=\frac{9}{2} \frac{(\theta-\sin \theta)^{2}}{(1-\cos \theta)^{3}}
$$

Show that at early times (when $\theta \ll 1$) one has that

$$
\delta_{\mathrm{i}}=\frac{3}{20}(6 \pi)^{2 / 3}\left(\frac{t_{\mathrm{i}}}{t_{\max }}\right)^{2 / 3}
$$

Hint: use Taylor series expansions.

Problem 2: The Zel'dovich Approximation

In this problem we seek to characterize the displacement $\psi(t)$ defined by

$$
\vec{x}(t)=\vec{x}_{\mathrm{i}}+\psi(t)
$$

where $\vec{x}(t)$ is the comoving coordinate of a particle. Obviously we have that

$$
\psi(t)=\int_{t_{\mathrm{i}}}^{t} \frac{v(t)}{a(t)} \mathrm{d} t
$$

where $v(t)$ is the particle's peculiar velocity. Under the Zel'dovich approximation, the gradient of the potential (which defines the direction in which the particle moves), can be written as $\nabla \Phi(t)=f(t) \nabla \Phi_{\mathrm{i}}$, where $f(t)$ is some function (to be determined) of time.
a) [4 points] Use the linearized Euler equation for a pressureless fluid to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(a \vec{v})=-\nabla \Phi
$$

b) [6 points] Use the fact that, at early times, the Universe behaves as an EdS cosmology to show that

$$
\vec{v}=-\frac{\nabla \Phi_{\mathrm{i}}}{a} \int \frac{D(a)}{a} \mathrm{~d} t
$$

c) [6 points] Use the fact that $D(a)$ is a solution of the linearized fluid equation of a pressureless fluid to show that

$$
\frac{D(a)}{a}=\frac{1}{4 \pi G \bar{\rho}_{\mathrm{i}}} \frac{\mathrm{~d}\left(a^{2} \dot{D}\right)}{\mathrm{d} t}
$$

Hint: you may use that the scale factor is normalized such that $a_{\mathrm{i}}=1$.
d) [6 points] Use the above results to show that the displacement

$$
\psi(t)=-\frac{D(a)}{4 \pi G \bar{\rho}_{\mathrm{i}}} \nabla \Phi_{\mathrm{i}}
$$

Problem 3: The two-point correlation function and σ_{8}

Let M be the mass inside a top-hat filter. The expectation value for M, i.e., the average value obtained by putting down the top-hat filter at many different locations, is simply $\langle M\rangle=\bar{\rho} V$ where V is the volume of the top-hat. Similarly, one can show that

$$
\left\langle M^{2}\right\rangle=\langle M\rangle^{2}+\frac{\langle M\rangle^{2}}{V^{2}} \int_{V} \xi\left(\left|\vec{x}_{1}-\vec{x}_{2}\right|\right) \mathrm{d}^{3} \vec{x}_{1} \mathrm{~d}^{3} \vec{x}_{2}
$$

a) [5 points] Show that the mass variance, $\sigma^{2}(M)$, can be written as

$$
\sigma^{2}(M)=\frac{3}{R^{3}} \int_{0}^{R} \xi(r) r^{2} \mathrm{~d} r
$$

where $R=R(M)$ is the size of the top-hat filter.
b [6 points] The first measurements of the two-point correlation function of galaxies revealed a power-law $\xi(r)=\left(r / r_{0}\right)^{\gamma}$ with $r_{0}=5 h^{-1} \mathrm{Mpc}$ and $\gamma=-1.8$. Under the assumption that galaxies are unbiased tracers of the mass distribution, what does this imply for the value of σ_{8} ?

Problem 4: Power spectrum and Mass variance

Let the matter power spectrum be a pure power-law, $P(k) \propto k^{n}$.
a) [5 points] Using a sharp k-space filter, show that the mass variance $\sigma^{2}(M) \propto M^{\gamma}$, and give the relation between γ and n.
b [3 points] Repeat the same exersize as under (a), but this time using a Gaussian filter.
c [3 points] Give the ratio of the mass variances computed using the Gaussian filter and the sharp k-space filter for the case $n=1$. Do NOT use mathematica (or similar), but first express your answer in terms of a special function, prior to giving the numerical value of the ratio.

