ASTR 610: Solutions to Problem Set 2

Problem 1: Mass Variance
Define

M(#R) = V(R) / p(#)W (% — 7 R) &7

with V(R) the volume associated with filter W (%; R), and M (R) = (M(Z; R)).
Show that

< <M(f; E(;)M(R)>2>:02(M L Py i

Hint: Use that o?(M) = (§*(7;

=

))-
ANSWER: Using that p(Z) = p[1 + §(Z)] we can write

M@ R) = V(R) [[p+ps(@)W (7 - 7 R)d'7

= V(R p+V(R)p | §(X)W(Z— ¥; R)d*F
= V(R)p+V(R)pd(Z: R)

where we have used the normalization condition
/W(f; R) 7 =1
Using the above, we infer that
NM(R) = (M(&: R)) = V(R)p+ V(R)p(3(& R)) = V(R)p

where we have used that

OFR) = ([ 6@ W(T - 7 R)d'F)



The last step follows from the fact that (6(Z)) = 0. Combining, we have that

M R) — N(R) _ VIR S@ER) VR 5o

so that

Problem 2: Free Streaming
Consider a flat ACDM cosmology with €2, o = 0.3 and h = 0.7. Assume that
the dark matter particles decouple at zgec = 10'° and have a mass of 2 Gev.

a) At what redshift do the dark matter particles become non-relativistic?

ANSWER: The dark matter particles become non-relativisty when 3kgT =
mc?. Using that T = Toyp = 2.7K(1 + 2) we have that

mc? 2% 10%V x 1.6 x 10~ 2ergeV!
3k2.7 3 x 2.7K x 1.381 x 10~ 6ergK-1

(14 2zR) = =2.9 x 10"

b) Show that the comoving free-streaming length at matter-radiation equal-
ity can be written as

\ (t ) _ 2ctNR (adec)l/Q {2 I ( (eq )} 1
fsitea aNr aNR Adec

Hint: use that, during the radiation dominated era a = axg(t/txg)"/?

ANSWER: The comoving free streaming length is given by

teq t t t tdec t teq t
A= | —()dt:/NR—UdtJr/d —“()dt+/ D= 1,41, + 14
0 0 t

a(t) a(t) sr a(t) taee Q(t)



Here we have split the integral in three parts corresponding to the following
periods:

t <tyg for which v(t) =¢

1/2
INR < t < tgee for which wv(t) =c¢ <aﬂ>

a
. (aNR>1/2 (adec>
QAdec a
Using that for ¢ < t.q the scale radius evolves with time as

o(®) = anm (L)m

INR

taec <t < teq for which wv(t)

we have that

da 1 ( t )—1/2 1 1 ddy
dt 2 tNR tNR 2 a(t) tNR

This allows us to write that

a(t) @12\IR

dt 2t
L0\

Using this it is straightforward to compute the above three integrals:

t 2ct a 2ct
]1 _ / NR L df — CQNR / NR da — CINR
o a(t) agg Jo

aNR

I — ¢ /tdec (QNR> 1/2 2iNR da = 2ctNr /adec da
5 = — -
INR a(t) 0’12\IR a3N/1§ aNR a1/2

1/2
_ dctxr [a3? — alf?] = Actr (aéﬁ) 1

3/2 |%dec — ONR 3/2 1/2
aNr aNR anr



. — ANR 1/2 fteq Qdec 2tNR da — 2ctNr 1/2 aeqa da
3 = € N 2o 94T T ddec
adec tdec a/( ) a/NR G,NR Adec a

2CtNR <adec>1/2 ( Qeq )
= In
GNR  \ANR QAdec
Combining these results, we finally obtain that
2 t ec 1/2 ec 1/2 (S
Ao = CNR[1+2{<°‘O1 ) —1}+<&d ) m(&)
aNR aNR aNR QAdec
_ 2ctNr l(adec)l/2 {2 T ln ( Ueq )} . 1]
GNR GNR QAdec

c) What is the ratio between Ag(teq) and the comoving particle horizon, Ay,
at tng? Compute the actual, numerical value of Ag(teq)/Au(tngr)-

ANSWER: The comoving particles horizon at tygr is given by

ik cdt 2ctNgr  [ONR 2ctnr
o a(t) azggr  Jo aNR

Hence, we have that

1/2
)\fs(teq) _ <adec> [2 + In ( aeq )] 1
A (tNr) aNgr Adec

Using that
o 1
R = 2.9 x 1012
I
e = e 1010
I
G0 = T4 2 3528



For the latter we have used that (14 zeq) = 2.4 X 10, 0h? = 2.4 x 10*-0.3-
(0.7)? = 3528. Substituting these values we find that

)‘fs (teq)

= 286
Au(tnr)

d) What is the free-streaming mass at matter-radiation equality? Hint: use
eq. (3.80) in MBW.

ANSWER: The free streaming mass at equality is

™

My = —p (AZP)’ = 5 po (AE™)?

m
6
USiIlg that Po = Qm70 Perit,05 with Perit,0 = 2.78 x 101tp~1 M@/(hil MpC)3 we
find that

com 3
Mg = 4.36 x 10"°h" Mg, (W)
T NMpe

For the comoving free-streaming length we have that

2 CtNR

o = 286

fs aNR
Evaluating this quantity requires that we first compute tyg. For this we use
that

9 1/4
a(t) = (73 W?)Gpr’o) $1/2

[see eq.(3.80) in MBW]. Using that Q,¢ = 4.2 x 107°h2~2 and that z2yg =
2.9 x 10*? we find that txg = 2.83 x 107%. Substitution in the equation
for the free-streaming length yields that A™ = 45.6 pc = 4.56 x 10~ Mpc.
Substituting this in the expression for the free-streaming mass, and using
that h = 0.7, we finally find that My = 2.0 x 1072 M




Problem 3: Spherical Collapse
According to the SC model, the parametric solution to the evolution of a

mass shell is
r=A(1—cosf)

t =B (6 —sinf)

where A% = G M B2, which implies that

9 (6 —sinf)?
140=c—TF~
* 2 (1 —cosf)?

Show that at early times (when # < 1) one has that

3 ¢,
= ()
50 (67) b

Hint: use Taylor series expansions of sin# and cos 6 and the fact that ., =
B.

ANSWER: We have that

2/3
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0?2 ot

cosf ~ 1—5—#5—...

where we can ignore the higher-order terms, since at early times 6 < 1.
Hence,
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Combining, we find that

1+6 =

12

a0
20

9
2
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from which we see that, to good approximation, &; = 36%/20. If we now use
that t = B (0 —sin ) ~ B#3/6, we see that

0 6ti 1/3 67Tti 1/3

=(3) -G

where we have used that t,,,, = m B. Substituting the above expression for
0; into the expression for d;, one finally obtains that

3 t;
& = — (6m)%/3 (—)
50 6™ (7

2/3

Problem 4: The Zel’dovich Approximation
In this problem we seek to characterize the displacement v (t) defined by

T(t) = 23 + (1)

where Z(t) is the comoving coordinate of a particle. Obviously we have that

1/)(15):/:%&

where v(t) is the particle’s peculiar velocity. Under the Zel’dovich approx-
imation, the gradient of the potential (which defines the direction in which
the particle moves), can be written as V®(t) = f(t)V®;, where f(t) is some
function (to be determined) of time.



a) Use the linearized Euler equation for a pressureless fluid to show that

d

ANSWER: The linearized Euler equations for a pressureless fluid is given
by

@_i_é_’__@
ot av— a
Using that
i( ")_ @_}_*@_ @_}_9"
T % T e T\ e

Combining this with the linearlized Euler equations, it is immediately evident
that

d
= (a¥) = -~V
a (97

b) [5 points] Use the fact that, at early times, the Universe behaves as
an EdS cosmology to show that

_@/%dt

a a

U=

Hint: use that ®; oc D(a)/a.

ANSWER: The fact that ®; o< D(a)/a implies that ® o D(a)/a, and
therefore also V® o D(a)/a. This allows us to write that

D(a) a;

@ =
v D(a;)a

Vo,

Since at early times the Universe behaves as an EdS cosmology, for which
D(a) = a, we have that D(a;)/a; = 1, so that
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D(a)

Using what we inferred under a), we therefore have that

4 p_ Dl

= (a?) = P-
iy (a) Vo,

a

Integrating this equation yields

[dta) = —va, [ Dla) 4

a

from which it is immediately evident that

AL /DW)

a a

dt

U=

c) [6 points] Use the fact that D(a) is a solution of the linearized fluid
equation of a pressureless fluid to show that
D(a) 1 d(a®D)
a N 47TG[)1 di

Hint: you may use that the scale factor is normalized such that a; = 1.
ANSWER: Since D(a) is a solution of the linearized fluid equation for a
pressureless fluid, we have that

D+2%D=47Gpla) D
a

Using that p(a) = pi(ai/a)® = pia™3, where we have used that a; = 1, the
above equation reduces to

D(a)

a3

D+2%D=4nGp;
a



Next we use that

d /iy s e o Q.
T (a D) =a"D + 2aaD = a <D+25D>
to write that
d9my_ o _D(a) _ _ D(a)
T (a D) = a“ 47 G p; e 47TGpiT
Rearranging shows that
D(a) 1 d(a’D)

a :47TG,(_)1 dt

d) [5 points] Use the above results to show that the displacement

_Dla)
471'G[)i

U(t) = Vo,

ANSWER: Under b) we derived that
o D
Sy O

a a

7=
while under c¢) we demonstrated that
D(a) 1 d(a®D)
a N 47 G ﬁi di
Substituting the latter in the former, we find that
V&, . Vé; dD
- d(a’D) = — — 4 —
AtGpa / (" D) 47 G py “a

Hence, for the displacement we have that

. t ’U(t) . Vd; D(a)
O = f a5 TG Jow

D(a) - D(a)
4

7=

D(a)
V(IDi ~ — V(I)l
G py 4G p;
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where in the last step we have used that D(a;) < D(a).
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