
ASTR 610: Solutions to Problem Set 2

Problem 1: Mass Variance
Define

M(~x;R) ≡ V (R)
∫

ρ(~x′)W (~x− ~x′;R) d3~x′

with V (R) the volume associated with filterW (~x;R), and M̄(R) ≡ 〈M(~x;R)〉.
Show that

〈(

M(~x;R) − M̄(R)

M̄(R)

)2〉

= σ2(M) ≡
1

2π2

∫

P (k) W̃ 2(kR) k2 dk

Hint: Use that σ2(M) = 〈δ2(~x;R)〉.

ANSWER: Using that ρ(~x) = ρ̄ [1 + δ(~x)] we can write

M(~x;R) = V (R)
∫

[ρ̄+ ρ̄δ(~x)]W (~x− ~x′;R) d3~x

= V (R) ρ̄+ V (R) ρ̄
∫

δ(~x)W (~x− ~x′;R) d3~x

= V (R) ρ̄+ V (R) ρ̄ δ(~x;R)

where we have used the normalization condition
∫

W (~x;R) d3~x = 1

Using the above, we infer that

M̄(R) ≡ 〈M(~x;R)〉 = V (R)ρ̄+ V (R)ρ̄〈δ(~x;R)〉 = V (R)ρ̄

where we have used that

〈δ(~x;R)〉 = 〈
∫

δ(~x)W (~x− ~x′;R) d3~x〉

=
∫

〈δ(~x)〉W (~x− ~x′;R) d3~x〉 = 0
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The last step follows from the fact that 〈δ(~x)〉 = 0. Combining, we have that

M(~x;R) − M̄(R)

M̄(R)
=
V (R)ρ̄ [1 + δ(~x;R)] − V (R)ρ̄

V (R)ρ̄
= δ(~x;R)

so that

〈(

M(~x;R) − M̄(R)

M̄(R)

)2〉

= σ2(M)

Problem 2: Free Streaming
Consider a flat ΛCDM cosmology with Ωm,0 = 0.3 and h = 0.7. Assume that
the dark matter particles decouple at zdec = 1010 and have a mass of 2 Gev.

a) At what redshift do the dark matter particles become non-relativistic?

ANSWER: The dark matter particles become non-relativisty when 3kBT =
mc2. Using that T = TCMB = 2.7K(1 + z) we have that

(1 + zNR) =
mc2

3kB2.7
=

2 × 109eV × 1.6 × 10−12erg eV−1

3 × 2.7K × 1.381 × 10−16ergK−1
= 2.9 × 1012

b) Show that the comoving free-streaming length at matter-radiation equal-
ity can be written as

λfs(teq) =
2ctNR

aNR

[

(

adec

aNR

)1/2 {

2 + ln
(

aeq

adec

)}

− 1

]

Hint: use that, during the radiation dominated era a = aNR(t/tNR)1/2|

ANSWER: The comoving free streaming length is given by

λfs =
∫ teq

0

v(t)

a(t)
dt =

∫ tNR

0

v(t)

a(t)
dt+

∫ tdec

tNR

v(t)

a(t)
dt+

∫ teq

tdec

v(t)

a(t)
dt ≡ I1 + I2 + I3
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Here we have split the integral in three parts corresponding to the following
periods:

t < tNR for which v(t) = c

tNR < t < tdec for which v(t) = c
(

aNR

a

)1/2

tdec < t < teq for which v(t) = c
(

aNR

adec

)1/2 (adec

a

)

Using that for t < teq the scale radius evolves with time as

a(t) = aNR

(

t

tNR

)1/2

we have that

da

dt
=

1

2
aNR

(

t

tNR

)−1/2 1

tNR
=

1

2

a2
NR

a(t) tNR

This allows us to write that

dt

a(t)
=

2tNR

a2
NR

da

Using this it is straightforward to compute the above three integrals:

I1 =
∫ tNR

0

c

a(t)
dt =

2ctNR

a2
NR

∫ aNR

0
da =

2ctNR

aNR

I2 = c
∫ tdec

tNR

(

aNR

a(t)

)1/2
2tNR

a2
NR

da =
2ctNR

a
3/2
NR

∫ adec

aNR

da

a1/2

=
4ctNR

a
3/2
NR

[

a
1/2
dec − a

1/2
NR

]

=
4ctNR

a
3/2
NR











a
1/2
dec

a
1/2
NR





1/2

− 1






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I3 = c
(

aNR

adec

)1/2 ∫ teq

tdec

adec

a(t)

2tNR

a2
NR

da =
2ctNR

a
3/2
NR

a
1/2
dec

∫ aeq

adec

da

a

=
2ctNR

aNR

(

adec

aNR

)1/2

ln
(

aeq

adec

)

Combining these results, we finally obtain that

λfs =
2ctNR

aNR

[

1 + 2

{

(

adec

aNR

)1/2

− 1

}

+
(

adec

aNR

)1/2

ln
(

aeq

adec

)

]

=
2ctNR

aNR

[

(

adec

aNR

)1/2 {

2 + ln
(

aeq

adec

)}

− 1

]

c) What is the ratio between λfs(teq) and the comoving particle horizon, λH,
at tNR? Compute the actual, numerical value of λfs(teq)/λH(tNR).

ANSWER: The comoving particles horizon at tNR is given by

λH =
∫ tNR

0

c dt

a(t)
=

2 c tNR

a2
NR

∫ aNR

0
da =

2 c tNR

aNR

Hence, we have that

λfs(teq)

λH(tNR)
=
(

adec

aNR

)1/2 [

2 + ln
(

aeq

adec

)]

− 1

Using that

aNR =
1

1 + zNR
=

1

2.9 × 1012

adec =
1

1 + zdec
=

1

1010

aeq =
1

1 + zeq
=

1

3528
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For the latter we have used that (1+ zeq) = 2.4×104Ωm,0h
2 = 2.4×104 ·0.3 ·

(0.7)2 = 3528. Substituting these values we find that

λfs(teq)

λH(tNR)
= 286

d) What is the free-streaming mass at matter-radiation equality? Hint: use
eq. (3.80) in MBW.

ANSWER: The free streaming mass at equality is

Mfs =
π

6
ρ̄ (λprop

fs )
3

=
π

6
ρ̄0 (λcom

fs )3

Using that ρ̄0 = Ωm,0 ρcrit,0, with ρcrit,0 = 2.78 × 1011h−1 M⊙/(h
−1 Mpc)3 we

find that

Mfs = 4.36 × 1010h−1 M⊙

(

λcom
fs

h−1 Mpc

)3

For the comoving free-streaming length we have that

λcom
fs = 286

2 c tNR

aNR

Evaluating this quantity requires that we first compute tNR. For this we use
that

a(t) =
(

32 πGρr,0

3

)1/4

t1/2

[see eq.(3.80) in MBW]. Using that Ωr,0 = 4.2 × 10−5h−2 and that zNR =
2.9 × 1012 we find that tNR = 2.83 × 10−6s. Substitution in the equation
for the free-streaming length yields that λcom

fs = 45.6 pc = 4.56 × 10−5 Mpc.
Substituting this in the expression for the free-streaming mass, and using
that h = 0.7, we finally find that Mfs = 2.0 × 10−3 M⊙
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Problem 3: Spherical Collapse
According to the SC model, the parametric solution to the evolution of a
mass shell is

r = A (1 − cos θ)

t = B (θ − sin θ)

where A3 = GM B2, which implies that

1 + δ =
9

2

(θ − sin θ)2

(1 − cos θ)3

Show that at early times (when θ ≪ 1) one has that

δi =
3

20
(6π)2/3

(

ti
tmax

)2/3

Hint: use Taylor series expansions of sin θ and cos θ and the fact that tmax =
πB.

ANSWER: We have that

sin θ ≃ θ −
θ3

3!
+
θ5

5!
− ...

cos θ ≃ 1 −
θ2

2!
+
θ4

4!
− ...

where we can ignore the higher-order terms, since at early times θ ≪ 1.
Hence,

(θ − sin θ)2 =

(

θ3

6
−

θ5

120

)2

=
θ6

36

[

1 −
θ2

10
+

θ4

400

]

≃
θ6

36

[

1 −
θ2

10

]

(1 − cos θ)3 =

(

θ2

2
−
θ4

24

)3

=
θ6

8

[

1 −
θ2

6
+

θ4

144
−
θ2

12
+
θ4

72
−

θ6

1728

]

≃
θ6

8

[

1 −
θ2

4

]
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Combining, we find that

1 + δi =
9

2

θ6

36

[

1 − θ2

10

]

θ6

8

[

1 − θ2

4

]

≃

[

1 −
θ2

10

]

×

[

1 +
θ2

4

]

≃ 1 +
3 θ2

20

from which we see that, to good approximation, δi = 3θ2/20. If we now use
that t = B (θ − sin θ) ≃ B θ3/6, we see that

θi ≃
(

6 ti
B

)1/3

=
(

6 π ti
tmax

)1/3

where we have used that tmax = π B. Substituting the above expression for
θi into the expression for δi, one finally obtains that

δi =
3

20
(6π)2/3

(

ti
tmax

)2/3

Problem 4: The Zel’dovich Approximation
In this problem we seek to characterize the displacement ψ(t) defined by

~x(t) = ~xi + ψ(t)

where ~x(t) is the comoving coordinate of a particle. Obviously we have that

ψ(t) =
∫ t

ti

v(t)

a(t)
dt

where v(t) is the particle’s peculiar velocity. Under the Zel’dovich approx-
imation, the gradient of the potential (which defines the direction in which
the particle moves), can be written as ∇Φ(t) = f(t)∇Φi, where f(t) is some
function (to be determined) of time.

7



a) Use the linearized Euler equation for a pressureless fluid to show that

d

dt
(a~v) = −∇Φ

ANSWER: The linearized Euler equations for a pressureless fluid is given
by

∂~v

∂t
+
ȧ

a
~v = −

∇Φ

a

Using that

d

dt
(a~v) = a

∂~v

∂t
+ ~v

∂a

∂t
= a

(

∂~v

∂t
+
ȧ

a
~v

)

Combining this with the linearlized Euler equations, it is immediately evident
that

d

dt
(a~v) = −∇Φ

b) [5 points] Use the fact that, at early times, the Universe behaves as
an EdS cosmology to show that

~v = −
∇Φi

a

∫

D(a)

a
dt

Hint: use that Φ~k ∝ D(a)/a.

ANSWER: The fact that Φ~k ∝ D(a)/a implies that Φ ∝ D(a)/a, and
therefore also ∇Φ ∝ D(a)/a. This allows us to write that

∇Φ =
D(a) ai

D(ai) a
∇Φi

Since at early times the Universe behaves as an EdS cosmology, for which
D(a) = a, we have that D(ai)/ai = 1, so that
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∇Φ =
D(a)

a
∇Φi

Using what we inferred under a), we therefore have that

d

dt
(a~v) = −

D(a)

a
∇Φi

Integrating this equation yields

∫

d(a~v) = −∇Φi

∫ D(a)

a
dt

from which it is immediately evident that

~v = −
∇Φi

a

∫ D(a)

a
dt

c) [6 points] Use the fact that D(a) is a solution of the linearized fluid
equation of a pressureless fluid to show that

D(a)

a
=

1

4πGρ̄i

d(a2Ḋ)

dt

Hint: you may use that the scale factor is normalized such that ai = 1.

ANSWER: Since D(a) is a solution of the linearized fluid equation for a
pressureless fluid, we have that

D̈ + 2
ȧ

a
Ḋ = 4πG ρ̄(a)D

Using that ρ̄(a) = ρ̄i(ai/a)
3 = ρ̄ia

−3, where we have used that ai = 1, the
above equation reduces to

D̈ + 2
ȧ

a
Ḋ = 4πG ρ̄i

D(a)

a3
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Next we use that

d

dt

(

a2Ḋ
)

= a2D̈ + 2aȧḊ = a2
(

D̈ + 2
ȧ

a
Ḋ
)

to write that

d

dt

(

a2Ḋ
)

= a2 4πG ρ̄i
D(a)

a3
= 4πGρ̄i

D(a)

a

Rearranging shows that

D(a)

a
=

1

4πG ρ̄i

d(a2Ḋ)

dt

d) [5 points] Use the above results to show that the displacement

ψ(t) = −
D(a)

4πGρ̄i
∇Φi

ANSWER: Under b) we derived that

~v = −
∇Φi

a

∫ D(a)

a
dt

while under c) we demonstrated that

D(a)

a
=

1

4πG ρ̄i

d(a2Ḋ)

dt

Substituting the latter in the former, we find that

~v = −
∇Φi

4πGρ̄ia

∫

d(a2Ḋ) = −
∇Φi

4πGρ̄i
a

dD

dt

Hence, for the displacement we have that

ψ(t) =
∫ t

ti

v(t)

a(t)
dt = −

∇Φi

4πGρ̄i

∫ D(a)

D(ai)
dD

= −
D(a) −D(ai)

4πGρ̄i

∇Φi ≃ −
D(a)

4πGρ̄i

∇Φi
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where in the last step we have used that D(ai) ≪ D(a).
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