
ASTR 610: Solutions to Problem Set 1

Problem 1: In a hypothetical universe, ΩΛ = 0, the CMB has a temperature
of 10.0 K, and the energy density of neutrinos, which are still relativistic at
the present, is 1.5 times higher than that of the photons. What is the redshift
of matter-radiation equality in units of Ωm,0 h

2?

ANSWER: The energy density of radiation is

ρr(z) = ρr,0(1 + z)4 = 2.5ργ,0(1 + z)4 =
10σSB

c3
T 4
γ,0

The energy density of matter, on the other hand, is

ρm(z) = ρm,0(1 + z)3 = Ωm,0
3H2

0

8πG
(1 + z)3

The redshift of equality, zeq is defined by ρr(zeq) = ρm(zeq), which implies

(1 + zeq) =
3H2

0c
3

80πGσSBT 4
γ,0

Ωm,0

Using that 1/H0 = 9.78h−1Gyr (see MBW Appendix E), one easily obtains
that

(1 + zeq) = 89Ωm,0h
2

.

Problem 2: Show that the equation of state (EoS) parameter of the non-
relativistic matter component can be written as

w = w(T ) =
kBT

µmpc2

[

1 +
1

γ − 1

kBT

µmpc2

]

−1

ANSWER: The energy density of non-relativistic matter is conveniently
written as

ρc2 = ρmc
2 + ρmε
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where ε is the specific, internal energy of the matter (see MBW § 3.1.5). One
can rewrite this as

ρ

ρm
= 1 +

ε

c2

which we will use below. The EoS for non-relativistic matter is well approx-
imated by that of an ideal gas:

P =
kBT

µmp

ρm

Using that the EoS parameter w is defined by P = wρc2, we write this as

P =
kBT

µmpc2
ρm
ρ
ρc2

from which it is immediately evident that

w =
kBT

µmpc2
ρm
ρ

Using that the specific, internal energy of an ideal gas is given by

ε =
1

γ − 1

kBT

µmp

(see MBW Appendix B), we have that

ρ

ρm
= 1 +

ε

c2
= 1 +

1

γ − 1

kBT

µmpc2

Combining these results it is clear that we can write

w = w(T ) =
kBT

µmpc2

[

1 +
1

γ − 1

kBT

µmpc2

]

−1

Problem 3: Using that, in a homogeneous and isotropic expanding universe,
the equation of motion of a shell of matter is given by

R̈ = −GM

R2
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with M = M(< R) ythe mass enclosed by that shell. Show that the Lapla-
cian of Φ ≡ φ + aäx2/2 with respect to the comoving coordinate ~x is equal
to 4πGρ̄a2δ, indicating that Φ is only ‘sourced’ by the density contrast
ρ̄δ = ρ− ρ̄. Here φ is the Newtonian gravitational potential, and a = a(t) is
the scale factor.

ANSWER: The Laplacian is

∇2
xΦ = ∇2

x(φ+ aäx2/2) = a2 ∇2
r(φ+ aäx2/2)

where ~r = a~x are the proper coordinates. Using the Poisson equation (which
holds in proper coordinates), we can write this as

∇2
xΦ = a2

(

4πGρ+
ä

2a
∇2

rr
2

)

= a2
(

4πGρ+
ä

2a

1

r2
∂

∂r
r2

∂

∂r
r2
)

= a2
(

4πGρ+ 3
ä

a

)

.

Now we use that

R̈ = −GM

R2

Using that M = 4π
3
ρ̄R3 and writing that R = a(t)R0, we find that

äR0 = −4πG

3
ρ̄aR0

which implies that
ä

a
= −4πG

3
ρ̄

Substituting this in the equation for our Laplacian we find that

∇2
xΦ = a2 (4πGρ− 4πGρ̄) = 4πGa2(ρ− ρ̄) = 4πGρ̄a2δ

.

Problem 4a: Use the Friedmann equation to show that before matter-
radiation equality

(

a

a0

)

=
(

32πGρr,0
3

)1/4

t1/2
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ANSWER: The Friedmann equation in the radiation dominated era is given
by

ȧ

a
= H0

[

Ωr,0(1 + z)4
]1/2

=

√

8πGρr,0
3

(

a

a0

)

−2

We can rewrite this as

d(a/a0)

dt
=

√

8πGρr,0
3

a0
a

Integration yields

∫ a/a0

0

a

a0
d(a/a0) =

√

8πGρr,0
3

∫ t

0
dt

which reduces to
1

2

(

a

a0

)2

=

√

8πGρr,0
3

t

from which it is immediately clear that

(

a

a0

)

=
(

32πGρr,0
3

)1/4

t1/2

b) Use this to show that the proper particle horizon during this era is λH =
2ct.

ANSWER: The proper particle horizon is given by

λprop
H = aλcom

H = a
∫ t

0

c dt

a(t)

Using the expression for the scale-factor in the radiation dominated era de-
rived above we have

λprop
H =

a c

β

∫ t

0

dt

t1/2
=

2ac

β
t1/2
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where we have used the shorthand notation

β =
(

32πGρr,0
3

)1/4

Finally, subtituting that a = βt1/2 yields the required result that λprop
H = 2ct.

c) Express the proper Jeans length during this era in units of λH.

ANSWER: The definition for the proper Jeans length is

λprop
J = cs

√

π

Gρ̄

Using that the sound speed during the radiation dominated era is cs = c/
√
3,

and that ρ̄ = ρ̄r = ρ̄r,0a
−4, we have

λprop
J = c

√

π

3Gρ̄r,0
a2 =

√

32π2

9
c t

In the last step we have used that a = βt1/2. Thus, we have that

λprop
J =

2
√
2π

3
λprop
H ≃ 2.96λprop

H

Problem 5: Primordial Matter
Primordial gas has zero metallicity and a Helium mass fraction of Y = 0.25.
What is the mean particle mass µ, in units of the proton mass mp, for such a
primordial gas when it is fully ionized? And what are the number densities
of Hydrogen and Helium nuclei relative to that of electrons?

ANSWER: Using that a Helium nucleus weighs approximately 4 proton
masses, (mass of proton is very similar to that of a neutron), a Hydrogen
atom 1 proton mass, while the masses of electrons are negligble. Using that
the mean mass per particle is equal to the total mass per volume divided by
the total number of particles per volume, it is easy to see that
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µ =
nH · 1 + nHe · 4
nH · 2 + nHe · 3

=
1 + 4(nHe/nH)

2 + 3(nHe/nH)

where we have used that there is 1 electron per Hydrogren nucleus, and 2
electrons per Helium nucleus. Using that nHe = ρHe/mHe = ρHe/(4mp) and
nH = ρH/mp, while

Y =
ρHe

ρH + ρHe

we have that

nHe

nH

=
ρHe

4 ρH
=

1

4

(

1

Y
− 1

)−1

=
1

12

Substituting in the equation for µ we obtain that µ = 16/27 ≃ 0.59.
In order to compute the number densities of Hydrogen and Helium nuclei
relative to that of electrons, we use that the number density of electrons is
equal to that of protons, and thus ne = np = nH + 2nHe. Dividing by nH

and using that nHe/nH = 1/12, one trivially obtains that nH/ne = 6/7 and
nHe/ne = 1/14.

Problem 6:
The Einstein-de Sitter (EdS) cosmology is defined as a flat, matter domi-
nated cosmology without cosmological constant. In an EdS cosmology the
universe is always matter dominated; it never experiences a phase of radiation
domination.

a) Use the Friedmann equation to show that in an EdS cosmology

(

a

a0

)

=
(

3

2
H0t

)2/3

ANSWER: The Friedmann equation can be written as
(

ȧ

a

)

= H0E(z) = H0

[

ΩΛ,0 + (1− Ω0)(1 + z)2 + Ωm,0(1 + z)3 + Ωr,0(1 + z)4
]1/2
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Hence, for a flat, matter dominated EdS cosmology (Ωm,0 = Ω0 = 1.0, and
ΩΛ,0 = Ωr,0 = 0), we have that

(

ȧ

a

)

= H0

(

a

a0

)

−3/2

which we rewrite as
d(a/a0)

dt
= H0

(

a

a0

)

−1/2

Integration yields

∫
(

a

a0

)1/2

d
(

a

a0

)

= H0

∫

dt = H0t

which solves to
2

3

(

a

a0

)3/2

= H0t

from which it is clear that

a

a0
=
(

3

2
H0t

)2/3

b) Show that, in an EdS cosmology, ρ̄(t) = (6πGt2)−1

ANSWER: The density of an EdS cosmology evolves as

ρ(t) = ρm,0

(

a

a0

)

−3

= ρcrit,0

(

a

a0

)

−3

=
3H2

0

8πG

(

3

2
H0t

)−2

=
1

6πGt2

c) Show that, in an EdS cosmology, H(t) t = 2/3.

ANSWER: Substituting what we learned under a) in the Friedmann equa-
tion yields

H(t) = H0

(

a

a0

)

−3/2

= H0

[

(

3

2
H0t

)2/3
]−3/2

=
2

3t
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Hence, it is clear that H(t) t = 2/3.

d) Show that, in an EdS cosmology, the proper particle horizon is λH = 3 c t.

ANSWER: The proper particle horizon is given by

λprop
H = aλcom

H = a
∫ t

0

c dt

a(t)

Using the expression for the scale-factor derived under a) yields

λprop
H = ac

(

3

2
H0

)−2/3 ∫ t

0
t′−2/3 dt′ = 3ct

Problem 7: The Sound-Speed of the Photon-Baryon fluid
Consider a Universe that consists solely of baryons and photons (no dark
matter, no dark energy, no neutrinos). Show that, during the radiation era,
the sound speed of the photon-baryon fluid can be written as

cs =
c√
3

[

3

4

ρ̄b(z)

ρ̄γ(z)
+ 1

]

−1/2

where ρ̄b(z) and ρ̄γ(z) are the mean energy densities of baryons and photons
at redshift z, and c is the speed of light.

ANSWER: The sound speed is defined as c2s = (∂P/∂ρ)S . Using that
ρ = ργ + ρb while the pressure is dominated by that of the radiation, P =
Pγ = 1

3
ργc

2, we have that

cs =

(

dPγ

dργ

∂ργ
∂ρ

)1/2

=
c√
3

[

1 +
∂ρb
∂ργ

]

−1/2

Using that ρb = ρ̄b(z) = ρ̄b,0a
−3 and ργ = ρ̄γ(z) = ρ̄γ,0a

−4, we have that

∂ρb
∂ργ

=
∂ρb
∂a

∂a

∂ργ
=

−3ρ̄b,0a
−4

−4ρ̄γ,0a−5
=

3

4

ρ̄b,0a
−3

ρ̄γ,0a−4
=

3

4

ρ̄b(z)

ρ̄γ(z)
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Combing the above we find that, indeed,

cs =
c√
3

[

3

4

ρ̄b(z)

ρ̄γ(z)
+ 1

]

−1/2
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