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Press-Schechter Theory 

In this lecture we discuss Press-Schechter theory, and its extension based on 
upcrossing statistics of excursion sets. We show how these formalisms can be

used to predict halo mass functions, but also discuss its oversimplifications and

shortcomings.

Topics that will be covered include:

Halo Mass Functions
Extended Press-Schechter
Excursion Sets
Press-Schechter Formalism
Mass Variance
The Smoothed Density Field

Spherical vs. Ellipsoidal Collapse



Here          is the density field linearly extrapolated to           , and         is the linear

growth rate normalized to unity at   

�0(⇥x) t = t0
t = t0

According to linear theory, the density field evolves as �(⇥x, t) = D(t) �0(⇥x)

D(t)

�lin

�c

0 �x

halo halo halo

According to the spherical collapse model, regions with                                  will have 

collapsed to produce dark matter haloes by time   . In this lecture we examine how to 

assign a halo mass to this structure. But first, we need to introduce some concepts...

�(⇥x, t) > �c ' 1.686
t

The Linear Cosmological Density Field
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According to the spherical collapse model, regions with                                  will 

have collapsed to produce dark matter haloes by time 

�(⇥x, t) > �c ' 1.686
t

In this latter case, we consider the density field to be static (at the one linearly

extrapolated to our reference time), while the `collapse barier’ evolves with time.

Using that                                 we can also phrase this differently: regions 

with                            will have collapsed to produce dark matter haloes by time 

�(⇥x, t) = D(t) �0(⇥x)
�0(⇥x) > �c/D(t) t

In the Press-Schechter formalism, the latter will be our preferred `view’.

�lin �c

0 �x

� = �(⇥x)

�c = �c(t)

Notation & Convention

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University



Recall that the assumption of ergodicity implies that h�i = 1

V

Z
�(⇥x) d3⇥x

where V is the volume of the Universe over which we assume it to be periodic.

⇥2 = h�2i = 1

V

Z
�2(⇤x) d3⇤x

Similarly, we have that the variance of the density field can be written as

Recall that                                                                       , from which it is clear that �(r) = ��(�x)�(�x + �r)� = 1
(2�)3

�
P (k)e+i�k·�rd3�k

�2 = �(0) =
1

(2�)3

�
P (k)d3�k =

1
2�2

�
P (k) k2 dk =

�
�2(k)

dk

k

where                             is the unitless power spectrum.�2(k) =
k3

2�2
P (k)

The Variance of the Density Field
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Given a density field        , one can filter it using some window function (or “filter”)  �(�x) W (�x;R)
which is properly normalized such that                               , to get a smoothed field

�
W (�x;R) d3�x = 1

For each filter, one can define a mass                      , where     is some constant that depends

on the shape of the filter.  In what follows, we will characterize a filter intermittendly by

its size     or its mass     . R M

�fM = �f �̄ R3

The above equation for the smoothed density field is a convolution integral (the density field 
is convolved with the window function).  Since convolution in real-space is equal to 
multiplication in Fourier space, we have that

�(�k;R) =
�

�(�x;R) e�i�k·�x d3�x = �(�k) �W (kR)

where                                                      is the Fourier Transform of the window function

for which  we have made it explicit that    and     only enter in the combination      .

�W (kR) =
�

W (�x;R) e�i�k·�x d3�x
kRk R

�(⇥x;R) ⌘
Z

�(⇥x0)W (⇥x� ⇥x0;R) d3⇥x0

Smoothing
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Throughout we will use either one of the following three window functions:

Top Hat Filter:

W (�x;R) =
�

3
4�R3 r � R
0 r > R

�f = 4�/3

Gaussian Filter:

Sharp k-space Filter:

�f = (2⇡)3/2

�f = 6⇡2

fW (kR) =

⇢
1 k  1/R
0 k > 1/R

W (⇥x;R) =
1

2�2 r3
[sin(r/R)� (r/R) cos(r/R)]

W (�x;R) =
1

(2�)3/2 R3
exp

�
� r2

2R2

�
�W (kR) = exp

�
� (kR)2

2

�

�W (kR) =
3

(kR)3
[sin(kR)� (kR) cos(kR)]
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Window Functions



Similar to case without smoothing, we define the variance of the smoothed density field as

limR�0 �2(R) = �2
limR�0

�W (kR) = 1Note that                                   (normalization condition), from which it is clear that 

                                  as required.

�2(R) = ��2(�x;R)� =
1

2�2

�
P (k) �W 2(kR) k2 dk

The cosmological parameter      is defined as the variance of the density field, linearly 
extrapolated to           , when smoothed with top-hat filter of size     

�8

z = 0 R = 8h�1Mpc

�8 = ��2
lin(�x;R)�1/2 =

�
1

2�2

�
Plin(k) �W 2

TH(kR) k2 dk

�1/2

This parameter is used to characterize the normalization of the power spectrum.

It’s currently favored value is of the order of                         . A larger value of 

implies larger fluctuations, and therefore earlier structure formation... 

�8 � 0.8± 0.1 �8
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The Smoothed Density Field



Since we can equally label a filter by its size    or its mass    , we can write                           .R M �2(R) = �2(M)
The latter is called the mass variance, and plays an important role in what follows.

NOTE: If        is a Gaussian random field, then so is             . In particular  �(�x) �(�x;R)

where we have used the shorthand notation                          and                     . �M = �(�x;M) �M = �(M)

P(�M ) d�M =
1�

2� �M

exp
�
� �2

M

2�2
M

�
d�M

It is straightforward to show that 

�2(M) =

��
M(�x;R)� M̄(R)

M̄(R)

�2
�

where                                                                    , with       the volume of the filter, 

and                                 , which exemplifies the nomenclature `mass variance’.M̄(R) = �M(�x;R)�

VRM(⇥x;R) = VR

R
�(⇥x0)W (⇥x� ⇥x0;R) d3⇥x0
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Mass Variance



The variance of the smoothed, 
linear density field as a 
function of the size R of the 
top-hat filter. Results are 
shown for four different 
cosmogonies. The variance is 
normalized such that σ8 = 1.

(see MWB §6.1.3)

In hierarchical models, such as CDM-based cosmologies, the variance is a monotonically

decreasing function of the filter size R (or M). In top-down cosmogonies, such as HDM,

however, the lack of small scale structure introduces a characteristic scale where

the variance is maximum.

� = �m,0 h
Note: the shape parameter

                             characterizes

          the horizon scale at matter-

          radiation equality.
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Mass Variance



number density of peaks 
above     in density field 

smoothed on mass scale M
�c

number density of 
haloes with mass >M

We now return to our main question of interest:

According to SC model, regions in the linear density field with            have collapsed 

to produce virialized dark matter haloes. How can we associate a mass to those haloes,

and how can we use the statistics of the linear density field to infer the halo mass function, 
i.e., the (comoving) number density of haloes as a function of halo mass? 

� > �c

Idea:

Let       be the linear density field smoothed on a mass scale     , i.e.,  

where                     , then those locations where                    are the locations where, 
at time   , a halo of mass      condenses out of the evolving density field.... 

�M M �M = �(�x;R)
M = �f �̄ R3

M
�M = �c(t)

t

In this case, the halo mass function simply follows from calculating the number

density of peaks in the smoothed density field, i.e., 

n(> M) = npk(�M )
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Assigning Halo Mass to Collapsed Regions



This idea was explored in a seminal paper by Bardeen et al. (1986), known as “BBKS”.

James Bardeen
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Peak Formalism & Cloud-in-Cloud Problem



Unfortunately, it soon became clear that the identification

faces a very serious problem:

peak in                   halo with mass  �M > M

Consider the same density field, but smoothed on two different mass scales,       and

      , where                  . Let       be a mass element associated with a peak of

but also with a peak of                          . Is       part of a halo of mass       or       ?   
M2

M1
M2 > M1 �m �1 = �(�x;M1)

�2 = �(�x;M2) �m M1 M2

Using elegant, clever mathematics they were able to compute the number density, 
clustering properties, shapes and density profiles of peaks in a smoothed Gaussian 
random field (which itself is also a Gaussian random field), all as function of the peak 
height �pk = �pk

��2
M �1/2 = �pk

�M (see MBW §7.1 for details)
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This idea was explored in a seminal paper by Bardeen et al. (1986), known as “BBKS”.

Peak Formalism & Cloud-in-Cloud Problem

If             then       can never be part of a halo with mass      ; apparently, contrary to the 
`ansatz’, not every peak in     can be associated with a halo...

If             the obvious interpretation is that       is part of       at some early time    ,

and part of                 at some later time            . 

�2 < �1 �m M1 t1
M2 > M1 t2 > t1

�m M1�2 > �1

�1



Unfortunately, it soon became clear that the identification

faces a very serious problem:

peak in                   halo with mass  �M > M

Using elegant, clever mathematics they were able to compute the number density, 
clustering properties, shapes and density profiles of peaks in a smoothed Gaussian 
random field (which itself is also a Gaussian random field), all as function of the peak 
height �pk = �pk

��2
M �1/2 = �pk

�M (see MBW §7.1 for details)
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This idea was explored in a seminal paper by Bardeen et al. (1986), known as “BBKS”.

Peak Formalism & Cloud-in-Cloud Problem

Apparently, some peaks (those that are part of a 
higher peak when smoothed with a larger filter) have 
to be excluded when identifying peaks with haloes...

This is called the cloud-in-cloud problem.



Because of the cloud-in-cloud problem, the peak formalism of BBKS has largely been 
abandoned in favor of the less rigorous, but more succesfull, Press-Schechter formalism

Paul SchechterBill Press

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

The Press-Schechter Mass Function



Because of the cloud-in-cloud problem, the peak formalism of BBKS has largely been 
abandoned in favor of the less rigorous, but more succesfull, Press-Schechter formalism

Press & Schechter (1974) postulated that:

�M > �c(t) “the probability that                   is the same as the mass fraction 

  that at time    is contained in halos with mass greater than     ”   Mt

For a Gaussian random field, one has that

P(�M > �c) =
1�

2� �M

� �

�c

exp
�
� �2

M

2�2
M

�
d�M =

1
2
erfc

�
�c

2�M

�

Here                                   is the complimentary error function, and we consider it

understood that                 .  According to the PS postulate, we thus have that  

erfc(x) = 1� erf(x)
�c = �c(t)

F (> M, t) =
1
2

erfc
�

�c

2 �M

�

Note: since                              and                    we see that the PS postulate predicts

          that only 1/2 of all matter in the Universe is locked-up in collapsed haloes... 

limM�0 �M =� erfc(0) = 1
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The Press-Schechter Mass Function



This may seem logical from the fact that                       ; i.e., only regions that are initially

overdense end up in collapsed objects... 

P(� < 0) = 1
2

However, underdense regions can be enclosed within larger overdense regions, giving them

a finite probability of being included in some larger collapsed object (see illustration)

�lin

�c

0 �x

under-dense 
region

large over-density

Press & Schechter `solved’ this problem by simply introducing a fudge factor two:

F (> M, t) = P [�M > �c(t)]2
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The Press-Schechter Mass Function



We are now ready to write down the PS halo mass function:

We define the mass function as                    , which is the number of haloes with 

masses in the range                        per volume. Hence,                                           .    

n(M, t) dM
[M,M + dM ]

Beware of units and different notations!!!!

We have that                      is equal to the fraction of mass that is locked up in 

haloes with masses in the range                        .  [M,M + dM ]

�F (>M)
�M dM

Multiplying by    yields the total mass per unit volume that is locked up in those haloes. ⇢̄

Hence, the halo mass function is simply given by n(M, t) dM =
�̄

M

⇥F (> M)

⇥M
dM

Using the Press-Schechter ansatz plus fudge factor we thus obtain:

n(M, t) dM = 2
⇤̄

M

⇧P(> �c)

⇧M
dM =

r
2

⇥

⇤̄

M2

�c
⌅M

exp

✓
� �2c
2⌅2

M

◆ ����
d ln⌅M

d lnM

���� dM

where we have used that                                                         . ⇥P/⇥M = ⇥P/⇥�M � |d�M/dM |

n(M, t) =
dn

dM
=

1

M

dn

d lnM
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The Press-Schechter Mass Function



For                 we have that                             , where                              .

⇥ = �2c (t)/⇤
2(M)WARNING: some authors define                              which results in a somewhat


                    modified multiplicity function.....always check how    is defined!!  ⌫

Upon defining the variable                            the PS mass function can be written in a 
more compact form: 

⇥ ⌘ �c(t)/⇤(M)

n(M, t) dM =
⇥̄

M2
fPS(�)

����
d ln �

d lnM

���� dM fPS(�) =

r
2

⇥
� e��2/2where

If we define a characteristic mass,      , by                          (i.e., by                   ) then:M⇤ ⇥(M⇤) = �c(t) �(M⇤) = 1

n(M, t) / M↵�2 � = d ln⇥/d lnM

 For a CDM cosmology            at low mass end so that  ↵ ! 0 n(M) / M�2

M ⌧ M⇤

For                 the abundance of haloes is exponentially suppressed.M � M⇤

Since          decreases with time, the characteristic halo mass grows as function

of time; as time passes more and more massive haloes will start to form...

�c(t)

            is called the multiplicity function and gives the mass fraction associated with 
haloes in a unit range of       . Note that time enters only through ln ⌫
fPS(�)

�c(t) � 1.686/D(t)
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The Press-Schechter Mass Function



Bond et al. (1991) came up with an alternative derivation of the halo 

mass function that does not suffer from a `fudge-factor problem’
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The Excursion Set Formalism

Dick Bond



In what follows we adopt                     as our mass variable. For 
a hierarchical cosmogony such as CDM, S is a monotonically 
declining function of halo mass, so that there is a clear, one-to-
one relation between S and M. 

S � �2(M)
S

M

Consider a point    , for which the overdensity, linearly 
extrapolated to the present day is          .  For each value of

the filtering mass      , i.e. for each value of S, the smoothed

overdensity                     will have a different value. 

�x
�0(�x)

M
�S = �M (�x)

`With each point    corresponds a trajectory �x �S

mass variance

S

�S

example trajectories
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The Excursion Set Formalism

For             we have that               , and thus             . 

Hence, each trajectory starts at 

S � 0 M �� �S � 0
(S, �S) = (0, 0)

If the filter is a sharp k-space filter, changing S

adds new (and independent) modes. As a 
consequence, the trajectory is Markovian....



A random walk is a mathematical formalization of a path that consists of a succession of 
random steps. If the next step depends only on the current state (i.e., has no `memory’ of 
its prior path), the random walk is called Markovian.

For a sharp k-space filter the smoothed density field is given by

Here                  is the size of the top-hat in k-space, and        are Fourier modes of   kc = 1/R ��k,0 �0(⇥x)

�S(⇥x) =

Z
d3⇥kfWsk(⇥kR) ��k,0 e

i�k·�x =

Z

k<kc

d3⇥k ��k,0 e
i�k·�x

When increasing S (decreasing R, and thus increasing kc), you add new and independent 
modes (at least for a Gaussian random field). Since these new and independent modes 
have random phases, the step            associated with the change        is Markovian.  �(�S) �S

NOTE: for any other filter, the trajectories           will not be Markovian!! �S(S)

In what follows we will always assume a sharp k-space filter (unless stated otherwise), so 
that our trajectories can be considered Markovian. 
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Markovian Random Walks



Sharp k-space filter

Gaussian filter

S

�x

NOTE: for any filter other than sharp k-space filter, the random walks are NOT Markovian

S
ou

rc
e:

 B
on

d 
et

 a
l. 

(1
99

1)
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The Excursion Set Formalism



Consider          smoothed on a mass scale       corresponding to  �0(⇥x) M1 S1 = �2(M1)

Three trajectories 
corresponding to 
three different mass 
elements in a 
Gaussian random 
field. Note that B’ is

obtained mirroring 

trajectory B in the

line              for  

            . Since the 
trajectories are 
Markovian B and B’ 
are equally likely!

�S = �c
S � S2

According to PS ansatz, mass elements whose trajectory              at      reside in 

dark matter haloes with mass                         neither A or B are in halo with  

�S > �c S1

M > M1 M > M1

S4

BUT: according to same PS ansatz, mass element associated with trajectory B 
resides in a halo with                          : PS ansatz is not self-consistent!!! M > M4 > M1
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The Excursion Set Formalism

M
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S4

The problem with the PS ansatz is that it fails to account for trajectories such as B

when counting mass elements in haloes with mass               .  M > M1

Correcting for this is easy though, by realizing that each trajectory B has a mirror

version, B’, that is equally likely (as a result of the Markovian nature of the trajectories).

Double-counting trajectories with              at     corrects for `missed trajectories’.....�S > �c S1

A natural explanation for the fudge-factor two in PS formalism!

Three trajectories 
corresponding to 
three different mass 
elements in a 
Gaussian random 
field. Note that B’ is

obtained mirroring 

trajectory B in the

line              for  

            . Since the 
trajectories are 
Markovian B and B’ 
are equally likely!

�S = �c
S � S2

The Excursion Set Formalism



In the excursion set formalism , also called the Extended Press-Schechter (EPS) 
formalism, one uses the (statistics of) Markovian random walks (the trajectories of 
mass elements in           -space) to infer the halo mass function (and more).(S, �S)

EPS ansatz:
fraction of trajectories with a first upcrossing (FU) of the 
barrier                   at                               is equal to the mass 
fraction that at time    resides in haloes with masses          t

�S = �c(t) S > S1 = �2(M1)
M < M1

PS ansatz:
fraction of mass elements with                   is equal to the mass 

fraction that at time    resides in haloes with masses         , 
where    and      are related according to   

> M
�S > �c(t)

t
S M S = �2(M)

Since, each trajectory is guaranteed to upcross the barrier                  at some 
(arbitrarily large) S, the EPS ansatz predicts that every mass element is in a halo 
of some (arbitrarily low) mass

�S = �c(t)

F (< M1) = 1� F (> M1)
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The Excursion Set Formalism



Based on the EPS ansatz, we can write the EPS mass function as:

n(M, t) dM =
�̄

M

�F (> M)
�M

dM = � �̄

M

�F (< M)
�M

dM

Without proof:

where, as before, we defined                                             and we expressed the

result in terms of the PS multiplicity function 

� = �c(t)/�(M) = �c/
�

S
fPS(�) =

�
2/� � exp(��2/2)

(see MBW §7.2.2     
     for derivation)

It is straightforward to show that this yields exactly the same halo mass function

as before, but this time there has been no need for a fudge factor....

= � �̄

M

�FFU(> S)
�S

dS

dM
dM =

�̄

M
fFU(S, �c)

����
dS

dM

���� dM

S S + dS
Here                        is the fraction of trajectories that have their first 

upcrossing of barrier         between     and             .   �c(t)

fFU(S, �c) dS

fFU(⇥) =
1p
2⇤

�c
S3/2

exp


� �2c
2S

�
=

1

2S
fPS(⇥)
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The EPS Mass Function



Although the EPS mass function is used very frequently in modern astronomy, it is important 
to be aware of its assumptions, shortcomings and pitfalls:

Consider two mass elements (yellow `dots’) in the same dark matter halo:

one near the center, the other near the outskirts.

Since both particles have very similar large-scale environments (on 
scales larger than halo itself), their 

trajectories are very similar for small S:

�m1

�m2

S

�S

�c
�m2

�m1

S2S1

Although both particles reside in same halo, their

trajectories have first upcrossings at different S:

according to EPS formalism,        resides in a less

massive halo than        : excursion set formalism 

only predicts how much mass ends up in haloes of

different mass in a statistical sense.... 

�m2
�m1
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The EPS Mass Function



Trajectories have to be constructed with sharp k-space filter in

order to guarantee Markovian nature of the random walks.

In particular, the real-space filter is not

spatially localized; it has oscillating wings 

that extent out to large distances... 

However, the corresponding real-space filter has complicated (sinc-like) form; 
difficult to interpret....

FT

Yet, according to EPS formalism, this structure 
corresponds to a collapsed dark matter halo, 
which *is* spatially localized...
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Although the EPS mass function is used very frequently in modern astronomy, it is important 
to be aware of its assumptions, shortcomings and pitfalls:

The EPS Mass Function



The Spherical Cow: The upcrossing barrier used is based on the 
spherical collapse model; as we have seen collapse is believed to 
be ellipsoidal instead...

Finally, the mere idea that one can use the linear 
density field to identify collapsed structures in the 
non-linear field constitutes a leap of faith...

As we will see, though, this 

can be taken into account...
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Although the EPS mass function is used very frequently in modern astronomy, it is important 
to be aware of its assumptions, shortcomings and pitfalls:

The EPS Mass Function



 the halo bias function

Given the various crude assumptions 
underlying the PS & EPS formalisms, 
it is important to test their predictions 
for halo mass function against 
numerical simulations...

These follow the growth & collapse of 
structures directly by solving the 
equations of motion for dark matter 
particles. However, as will be 
discussed later, identifying haloes

in simulations is a non-trivial task.....

Until end of 1990s, most simulations 
yielded results in fair agreement with 
PS predictions....

However, when larger and more 
accurate simulations became 
available, it became clear that there 
where some problems....
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Comparison with Numerical Simulations
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= Millenium sim.

= PS prediction 

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.

At the time it was run (2005) it 
was one of the biggest 
simulations to date. Because 
of its superb statistics, it is 
ideally suited to test the PS 
mass functions...

At low redshift, the PS mass function under- (over)-predicts the abundance of massive 
(low mass) haloes. These problems become more pronounced at higher redshifts...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.

                   Here a Friends-Of-Friends (FOF) algorithm has been used (see lecture 11)  
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Comparison with Numerical Simulations
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EPS with Ellipsoidal Collapse



Here                         is the critical overdensity for ellipsoidal collapse, 

is the critical overdensity for spherical collapse, and the parameters e and p characterize

the asymmetry of the initial tidal field.                                                              (see lecture 8)

 the halo bias function

As we have seen, because of the non-zero tidal 

field, collapse will not be spherical, but ellipsoidal.

In that case, the critical (linear) over density for collapse is given by

�sc = �c ' 1.686�ec = �ec(e, p)

�ec
�sc

� 1 + 0.47


5(e2 ± p2)

�2ec
�2sc

�0.615
Ellipsoidal collapse

Adopting the most probable values for e and p, Sheth, Mo & Tormen (2001; SMT) showed 
that the upcrossing boundary for ellipsoidal collapse can be written as:

�ec ' �ec(S, t) = �c(t)

"
1 + 0.47

✓
S

�2c (t)

◆0.615
#

Contrary for spherical collapse, for which the boundary is constant, the boundary for 
ellipsoidal collapse increases with S (less massive structures need higher overdensity for

collapse). Because of this S-dependence,      , is called a “moving barrier”.�ec
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Spherical vs. Ellipsoidal Collapse



Knowing the critical overdensity for ellipsoidal collapse, we can compute the corresponding 
PS mass function: all we need to do is to work out the first-upcrossing statistics....

This was done by SMT, who found that the 
resulting multiplicity function is well 
approximated by

fEC(�) = 0.322


1 +

1

�̃0.6

�
fPS(�̃) where �̃ = 0.84 �

Unfortunately, for a moving barrier one 
cannot compute this analytically. 

Rather, one has to resort to Monte Carlo 
simulations of independent random walks, 
and register their first upcrossings.

n(M, t) dM =
⇥̄

M2
fEC(�)

����
d ln �

d lnM

���� dM

collapsed

S

The normalization 0.322 is set by requiring that                                       , which implies

that all matter is in collapsed objects. The PS mass function for ellipsoidal collapse simply

follows from replacing            with            ; i.e., 

R1
0 n(M)M dM = �̄m

fPS(�) fEC(�)
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EPS Mass Function for Ellipsoidal Collapse



= Simulation 

= EPS (SC) 

= EPS (EC) 
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Clearly, the EPS mass function 
based on ellipsoidal collapse is 
in much better agreement with 
numerical simulations than the 
spherical collapse-based model 
prediction...

WARNING: this statement is sensitive to how haloes are identified in the simulation box.

                    Here a Friends-Of-Friends (FOF) algorithm has been used       (see lecture 11)  

The Millenium Simulation 
followed the evolution of 21603 
(~10 billion) particles in a 
periodic box 500 Mpc/h on a 
side in a ΛCDM cosmology.
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Spherical vs. Ellipsoidal Collapse
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Comparison of the mass of the halo of particles in a N-body simulation vs. the halo mass 
predicted by EPS based on the particle’s location in the initial (linear) density field.

Ellipsoidal collapse clearly performs much better than spherical collapse, but neither are 
very impressive... EPS performs poorly for individual particles (=mass elements), but 
nevertheless yields impressive results statistically....

SPHERICAL 
COLLAPSE

ELLIPSOIDAL 
COLLAPSE
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Spherical vs. Ellipsoidal Collapse
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Same as on previous page, but this time only showing the results for the N-body

particles located at the centers of their dark matter haloes. This removes the swath of 
points in the upper-left corner...for ellipsoidal collapse EPS is able to make object-by-
object predictions that are not too far off...

SPHERICAL 
COLLAPSE

ELLIPSOIDAL 
COLLAPSE
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Spherical vs. Ellipsoidal Collapse
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One can get some useful insight into how structure forms, by studying how the

halo mass function (computed using EPS under ellipsoidal collapse conditions) 

evolves as function of time...

The figure to the right shows how 
the comoving number density of 
dark matter haloes of different 
mass evolve as function of redshift 
in a ΛCDM cosmology.

Note how the abundance of low

mass haloes has hardly evolved at 
all since z=20, while the 
abundance of massive haloes is a 
very strong function of redshift.

This is a manifestation of 
hierarchical structure formation.
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Evolution of the Halo Mass Function



Lecture 9
SUMMARY



 the halo bias function

(Extended) Press-Schechter 

Excursion Set Formalism

Moving Collapse Barrier

Markovian random walk

Key words 
Mass Variance

Halo Mass Function

Multiplicity Function

Characteristic Halo Mass

Locations in linearly extrapolated density field where 𝛿 > 𝛿c ≃ 1.686 correspond to 
collapsed objects (halos)

If 𝛿(x) is Gaussian, then so is the smoothed density field 𝛿(x;R)

Excursion sets are Markovian if, and only if, the density field is smoothed with a 
sharp-k space filter

The ellipsoidal collapse model gives rise to a moving barrier in excursion set formalism

The cosmological parameter σ8 is defined as the mass variance of the linearly 
extrapolated density field at z=0, smoothed with a Top-Hat filter of size R=8 h-1Mpc

Summary: key words & important facts
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 the halo bias function

�(⇥x;R) ⌘
Z

�(⇥x0)W (⇥x� ⇥x0;R) d3⇥x0 �(�k;R) = �(�k) �W (kR)Mass Smoothing

�2(M) = ��2(�x;R)� =
1

2�2

�
P (k) �W 2(kR) k2 dkMass Variance M = �f �̄R3

Ellipsoidal 
Collapse  

Model

PS F (> M, t) = 2P[�M > �c(t)]
EPS F (> M, t) = 1� FFU(> S) S = �2(M)

(E)PS ansatz

Halo Mass 
 Function

n(M, t) � dn

dM
=

1
M

dn

d lnM
=

�̄

M

�F (> M, t)
�M

EPS + Gaussian n(M, t) =
�

2
�

�̄

M2

�c

�M
exp

�
� �2

c

2�2
M

� ����
d ln�M

d lnM

����

shorthand

=
�̄

M2
fPS(�)

����
d ln �

d lnM

����

� � �c(t)/�(M) fPS(�) =
�

2/� � e��2/2

�c(t)� �c(t)

�
1 + 0.47

�
�2(M)
�2
c (t)

�0.615
�

fPS(�)� fEC(�) = 0.322
�
1 +

1
(0.84�)0.6

�
fPS(0.84�)

Characteristic Mass

�2(M�) = �c(t)

Summary: key equations & expressions
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