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Press-Schechter Theory

In this lecture we discuss Press-Schechter theory, and its extension based on
upcrossing statistics of excursion sets. We show how these formalisms can be
used to predict halo mass functions, but also discuss its oversimplifications and

shortcomings.

Toplcs that WI|| be covered mclude
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The Linear Cosmological Density Field

According to linear theory, the density field evolves as §(Z,t) = D(t) (%)

Here 6o (%) is the density field linearly extrapolated to ¢t = ¢y, and D(t) is the linear
growth rate normalized to unity at ¢ = ¢

halo halo halo
5lin

| Vo

According to the spherical collapse model, regions with §(7,t) > d. ~ 1.686 will have
collapsed to produce dark matter haloes by time . In this lecture we examine how to
assign a halo mass to this structure. But first, we need to introduce some concepts...
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Notation & Convention

According to the spherical collapse model, regions with §(Z,t) > d. >~ 1.686 will
have collapsed to produce dark matter haloes by time ¢

Using that §(Z,t) = D(t) 6o(Z) we can also phrase this differently: regions
with 6o (%) > d./D(t) will have collapsed to produce dark matter haloes by time ¢

In this latter case, we consider the density field to be static (at the one linearly
extrapolated to our reference time), while the collapse barier’ evolves with time.

In the Press-Schechter formalism, the latter will be our preferred view’.
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The Variance of the Density Field

1
Recall that the assumption of ergodicity implies that () = % /5(91?) d3z

where V is the volume of the Universe over which we assume it to be periodic.

Similarly, we have that the variance of the density field can be written as

o2 = (§2) = %/52(:5) 37

Recall that £(r) = (0(2)0(Z + 7)) = gms [ P(k)et* a3k, from which it is clear that

B s [ o, dk
= o5 [ P(k)k dk_/A(k)k
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Smoothing

Given a density field J(Z), one can filter it using some window function (or “filter”) W (Z; R)
which is properly normalized such that f W (Z; R)d*T = 1, to get a smoothed field

5(%; R) = / 5(F) W (& — 7 R) 3%

For each filter, one can define a mass M = ~; p R®, where ~; is some constant that depends
on the shape of the filter. In what follows, we will characterize a filter intermittendly by
its size R or its mass M.

The above equation for the smoothed density field is a convolution integral (the density field
is convolved with the window function). Since convolution in real-space is equal to
multiplication in Fourier space, we have that

5(k: R) = / 5(%: R) e~ 433 = 6(F) W (kR)

where W ERY— [l s Re —ik-Z 437 is the Fourier Transform of the window function
for which we have made it explicit that £ and R only enter in the combination k R.
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Window Functions

Throughout we will use either one of the following three window functions:

Top Hat Filter: v = 4w/3

Gaussian Filter: v = (27)3/?

Sharp k-space Filter: ¢ =
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The Smoothed Density Field

Similar to case without smoothing, we define the variance of the smoothed density field as

7(R) = (6*(#: R)) = —

= o

/ P(k)W2(kR) k* dk

Note that limp_,¢ W(kR) — 1 (normalization condition), from which it is clear that
limg_,00%(R) = o as required.

The cosmological parameter oy is defined as the variance of the density field, linearly
extrapolated to z = 0, when smoothed with top-hat filter of size R = 84~ 'Mpc

j | N 1/2
oy = (52, (7 R))V/2 = [ﬁ / Pan (k) W2y (kR) k2 dk
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Mass Variance

Since we can equally label a filter by its size Ror its mass ), we can write 0%(R) = o*(M)
The latter is called the mass variance, and plays an important role in what follows.

It is straightforward to show that

S2(0) = (M(f; R) - M<R>>2

where M (Z; R) = Vg [ p(Z) W(Z — &’; R) d°%", with Vg the volume of the filter,
and M(R) = ( (Z; R)), which exemplifies the nomenclature ‘mass variance’
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Mass Variance

The variance of the smoothed,
linear density field as a
function of the size R of the
top-hat filter. Results are
shown for four different
cosmogonies. The variance is
normalized such that os = 1.

CDM (I'=0.5) N (see MWB §6.1.3)
CDM (I'=0.2)

————— HDM (Q,=1.0)
the shape parameter

I' = O, 0 h characterizes
the horizon scale at matter-

0.001 | 1 | | « o )
L L LLLLL L L LI Ll L 111l L L L 111l LLLLI radlatIOn equallty.
0.01 0.1 1 10 100 1000
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— — — — MDM (0,=0.3)

| In hierarchical models, such as CDM-based cosmologies, the variance is a monotonically
/‘\ decreasing function of the filter size R (or M). In top-down cosmogonies, such as HDM,
.o however, the lack of small scale structure introduces a characteristic scale where
the variance is maximum.
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Assigning Halo Mass to Collapsed Regions

We now return to our main question of interest:

According to SC model, regions in the linear density field with 0 > 9. have collapsed

ldea:

Let 07 be the linear density field smoothed on a mass scale M, i.e., §y; = 0(Z; R)
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Peak Formalism & Cloud-in-Cloud Problem

This idea was explored in a seminal paper by Bardeen et al. (1986), known as “BBKS”.
THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM FIELDS

J. M. BARDEEN'
Physics Department, University of Washington

J. R. Bonp!

Physics Department, Stanford University

N. KAISer'
Astronomy Department, University of California at Berkeley, and Institute of Astronomy, Cambridge Universit

AND

A. S. SzALAY!

Astrophysics Group, Fermilab
Received 1985 July 25; accepted 1985 October 9

ABSTRACT James Bardeen

Cosmological density fluctuations are often assumed to be Gaussian random fields. The local maxima o
such fields are obvious sites for the formation of nonlinear structures. The statistical properties of the peaks
can be used to predict the abundances and clustering properties of objects of various types. In this paper, we
derive (1) the number density of peaks of various heights va, above the rms a,; (2) the factor by which the
peak density is enhanced in large-scale overdense regions; (3) the n-point peak-peak correlation function in the
limit that the peaks are well separated, with special emphasis on the two- and three-point correlations; and (4)
the density profiles centered on peaks. To illustrate the predictive power of this semianalytic approach, we
apply our formulae to structure formation in the adiabatic and isocurvature €2 = 1 cold dark matter (CDM)
models. We assume bright galaxies form only at those peaks in the density field (smoothed on a galactic scale)
that are above some global threshold height v, & 3 fixed by normalizing to the galaxy number density. We
find, for example, that the shapes of the peak-peak two- and three-point correlation functions for the adiabatic
CDM model agree well with observations before any dynamical evolution, just due to the propensity of the
peaks to be clustered in the initial conditions. Only moderate dynamical evolution is required to bring the
amplitude of the correlations up to the observed level. The corresponding redshift of galaxy formation z, in
the isocurvature model is too recent (z, = 0) for this model to be viable. Even for the adiabatic models z,
3-4 is predicted. We show that the mass-per-peak ratio in clusters, and thus presumably the cluster mass-to-
light ratio, is substantially lower than in the ambient medium, alleviating the Q problem. We also confirm that
he smoothed density profiles of collapsing structures of height ~ v, are inherently triaxial.
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Peak Formalism & Cloud-in-Cloud Problem

This idea was explored in a seminal paper by Bardeen et al. (1986), known as “BBKS”.

Using elegant, clever mathematics they were able to compute the number density,
clustering properties, shapes and density profiles of peaks in a smoothed Gaussian

random field (w?ich itselg is also a Gaussian random field), all as function of the peak
pk pk

height v, = T o (see MBW §7.1 for details)

Unfortunately, it soon became clear that the identification

peak in §,; <= > halo with mass> M

faces a very serious problem:

Consider the same density field, but smoothed on two different mass scales, )/ and
My, where My > M. Let dm be a mass element associated with a peak of §; = §(&; M)
but also with a peak of 05 = d(Z; Ms) . Is dm part of a halo of mass M or M- ?

O If 02 < 01the obvious interpretation is that dm is part of )/ at some early time 1,
and part of My > M at some later time to > ;.

O If 99 > d1then dm can never be part of a halo with mass M; apparently, contrary to the
‘ansatz’, not every peak in 01 can be associated with a halo...
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Peak Formalism & Cloud-in-Cloud Problem

This idea was explored in a seminal paper by Bardeen et al. (1986), known as “BBKS”.

Using elegant, clever mathematics they were able to compute the number density,
clustering properties, shapes and density profiles of peaks in a smoothed Gaussian

random field (w?ich i’[sel(}c is also a Gaussian random field), all as function of the peak
pk e Gl

height Vpk = - E o (see MBW §7.1 for details)

Unfortunately, it soon became clear that the identification

peak in §,; <=,> halo with mass> M

faces a very serious problem:

Apparently, some peaks (those that are part of a
higher peak when smoothed with a larger filter) have
to be excluded when identifying peaks with haloes...
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The Press-Schechter Mass Function

Because of the cloud-in-cloud problem, the peak formalism of BBKS has largely been
abandoned in favor of the less rigorous, but more succesfull, Press-Schechter formalism

FORMATION OF GALAXIES AND CLUSTERS OF GALAXIES BY
SELF-SIMILAR GRAVITATIONAL CONDENSATION*

WiLLiAM H. PRESS AND PAUL SCHECHTER
California Institute of Technology
Received 1973 August 1

ABSTRACT 1 '
We consider an expanding Friedmann cosmology containing a *“ gas™ of self-gravitating mas i
Bill Press e masses condense into aggregates which (when sufficiently bound) we identify as single particll=FI| KTel s 1=1e 01 (=18

of a larger mass. We propose that after this process has proceeded through several scales, the mas

spectrum of condensations becomes ‘‘self-similar’ and independent of the spectrum initially
assumed. Some details of the self-similar distribution, and its evolution in time, can be calculated
with the linear perturbation theory. Unlike other authors, we make no ad hoc assumptions about
the spectrum of long-wavelength initial perturbations: the nonlinear N-body interactions of the
mass points randomize their positions and generate a perturbation to all larger scales; this should
fix the self-similar distribution almost uniquely. The results of numerical experiments on 1000
bodies are presented ; these appear to show new nonlinear effects: condensations can “ bootstrap™
their way up in size faster than the linear theory predicts. Our self-similar model predicts relations

between the masses and radii of galaxies and clusters of galaxies, as well as their mass spectra. We
compare the predictions with available data, and find some rather striking agreements. If the
model is to explain galaxies, then isothermal ‘““seed’ masses of ~3 x 107 My must have existed
at recombination. To explain clusters of galaxies, the only necessary seeds are the galaxies them-
selves. The size of clusters determines, in principle, the deceleration parameter go; presently available
data give only very broad limits, unfortunately.

Subject headings: cosmology — galaxies — galaxies, clusters of
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The Press-Schechter Mass Function

Because of the cloud-in-cloud problem, the peak formalism of BBKS has largely been
abandoned in favor of the less rigorous, but more succesfull, Press-Schechter formalism

Press & Schechter (1974) postulated that:

For a Gaussian random field, one has that

1
7)(5]\/_[ > 5C) — \/%
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The Press-Schechter Mass Function

This may seem logical from the fact that P(6 < 0) = %; l.e., only regions that are initially
overdense end up in collapsed objects...

However, underdense regions can be enclosed within larger overdense regions, giving them
a finite probability of being included in some larger collapsed object (see illustration)

large over-density

5lin

region

W/ W

Press & Schechter solved’ this problem by simply introducing a fudge factor two:

F(> M.t) = 2P [0a > 0a(t) n
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The Press-Schechter Mass Function

We are now ready to write down the PS halo mass function:

We define the mass function as n(M, t) d M, which is the number of haloes with

Beware of units and different notations!!!!

We have that 2 EE@M ) dM is equal to the fraction of mass that is locked up in
haloes with masses in the range [M, M + dM].

Multiplying by p yields the total mass per unit volume that is locked up in those haloes.
p OF(> M)

M O i

Hence, the halo mass function is simply given by n(M,t) dM =

Using the Press-Schechter ansatz plus fudge factor we thus obtain:

7 . 2 5 6, 2 | i
| n(tyan =22 OP(>0c) qpp— (J2P 0 eXp( O )‘d“"M an |

OM ™ M2 oy 202, ) |dlnM
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The Press-Schechter Mass Function

Upon defining the variable v = 0.(t) /o (M )the PS mass function can be written in a
more compact form:

dln v
dln M

dM  where fpg(v) = \/§er2/2
-

A |0 an - % fos(v) ‘

frs(v) is called the multiplicity function and gives the mass fraction associated with
haloes in a unit range of In v. Note that time enters only through d.(¢) ~ 1.686/D(t)

some authors define v = §2(t) /o (M) which results in a somewnhat
modified multiplicity function.....always check how v is defined!!

If we define a characteristic mass, M, by o(M™*) = d.(t) (i.e., by v(M™) = 1) then:

o For M < M*we have that n(M,t) oc M“ % where « =dIno/dIn M

For a CDM cosmology o — 0 at low mass end so that n(M) oc M~ *

O For M > M *the abundance of haloes is exponentially suppressed.

O Since 0.(t) decreases with time, the characteristic halo mass grows as function
of time; as time passes more and more massive haloes will start to form...
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The Excursion Set Formalism

Bond et al. (1991) came up with an alternative derivation of the halo
mass function that does not suffer from a fudge-factor problem’

EXCURSION SET MASS FUNCTIONS FOR HIERARCHICAL GAUSSIAN FLUCTUATION

J. R. Bonp,! S. CoLg,> G. ErsTATHIOU,” AND N. KAISER'
Received 1990 July 23; accepted 1990 December 28

ABSTRACT

Most schemes for determining the mass function of virialized objects from the statistics of the initial den
perturbation field suffer from the “cloud-in-cloud™ problem of miscounting the number of low-mass clumps,
many of which would have been subsumed into larger objects. We propose a solution based on the theory of
the excursion sets of F(r, R;), the four-dimensional initial density perturbation field smoothed with a contin-
uous hierarchy of filters of radii R,. We identify the mass fraction of matter in virialized objects with mass
greater than M with the fraction of space in which the initial density contrast lies above a critical overdensity
when smoothed on some filter of radius greater than or equal to R (M). The differential mass function is then
given by the rate of first upcrossings of the critical overdensity level as one decreases R, at constant position
r. The shape of the mass function depends on the choice of filter function. The simplest case is “sharp k-
space” filtering, in which the field performs a Brownian random walk as the resolution changes. The first
upcrossing rate can be calculated analytically and results in a mass function identical to the formula of Press
and Schechter—complete with their normalizing “ fudge factor ™ of 2. For general filters (e.g., Gaussian or “ top
hat”) no analogous analytical result seems possible, though we derive useful analytical upper and lower
bounds. For these cases, the mass function can be calculated by generating an ensemble of field trajectories
numerically. We compare the results of these calculations with group catalogs found from N-body simulations.
Compared to the sharp k-space result, less spatially extended filter functions give fewer large-mass and more
small-mass objects. Over the limited mass range probed by the N-body simulations, these differences in the
predicted abundances are less than a factor of 2 and span the values found in the simulations. Thus the mass
functions for sharp k-space and more general filtering all fit the N-body results reasonably well. None of the
filter functions is particularly successful in identifying the particles which form low-mass groups in the N-body
simulations, illustrating the limitations of the excursion set approach. We have extended these calculations to
compute the evolution of the mass function in regions that are constrained to lie within clusters or under-
densities at the present epoch. These predictions agree well with N-body results, although the sharp k-space
result is slightly preferred over the Gaussian or top hat results.

Subject headings: cosmology — galaxies: clustering — numerical methods
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The Excursion Set Formalism

In what follows we adopt S = o*(M) as our mass variable. For
a hierarchical cosmogony such as CDM, S is a monotonically
declining function of halo mass, so that there is a clear, one-to-
one relation between S and M.

Consider a point &, for which the overdensity, linearly
extrapolated to the present day is dy(Z). For each value of
the filtering mass M , i.e. for each value of S, the smoothed
overdensity 6 = d,,(Z) will have a different value.

= Qilsashesieasseenisalmicsionisy
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Markovian Random Walks

A random walk is a mathematical formalization of a path that consists of a succession of

random steps. If the next step depends only on the current state (i.e., has no memory’ of
its prior path), the random walk is called Markovian.

For a sharp k-space filter the smoothed density field is given by

55(5) :/d3E/W75k(ER) 5]270 ei]z'f:/lC ) d3E5~ eiz'f
<Kec

Here k. = 1/ R is the size of the top-hat in k-space, and d;: , are Fourier modes of (%)

When increasing S (decreasing R, and thus increasing kc), you add new and independent
modes (at least for a Gaussian random field). Since these new and independent modes
have random phases, the step A(ds) associated with the change A S is Markovian.

for any other filter, the trajectories d5(.5) will not be Markovian!!

In what follows we will always assume a sharp k-space filter (unless stated otherwise), so
that our trajectories can be considered Markovian.
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The Excursion Set Formalism
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Source: Bond et al. (1991)

for any filter other than sharp k-space filter, the random walks are NOT Markovian
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The Excursion Set Formalism

Three trajectories
corresponding to
three different mass
elements in a
Gaussian random
field. Note that =’ is
obtained mirroring
trajectory = in the
line 0g = J. for

S > S5. Since the
trajectories are
Markovian - and
are equally likely!

Considerd, (Z) smoothed on a mass scale M; corresponding to S1 = (M)

According to PS ansatz, mass elements whose trajectory s > . at S reside in
dark matter haloes with mass M > M, E> neither or arein halo with M > M,

OQ according to same PS ansatz, mass element associated with trajectory
=, resides in a halo with M/ > M, > M;: PS ansatz is not self-consistent!!!
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The Excursion Set Formalism

Three trajectories
corresponding to
three different mass
elements in a
Gaussian random
field. Note that 5’ is
obtained mirroring
trajectory £ in the
line dg = O, for

S > S,. Since the
trajectories are
Markovian - and
are equally likely!

The problem with the PS ansatz is that it fails to account for trajectories such as
when counting mass elements in haloes with mass M > M;.

Correcting for this is easy though, by realizing that each trajectory = has a mirror
version, , that is equally likely (as a result of the Markovian nature of the trajectories).

Double-counting trajectories with 0g > 0. at .S corrects for ‘missed trajectories’.....
oY . . .
E> A natural explanation for the fudge-factor two in PS formalism!

-
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The Excursion Set Formalism

In the excursion set formalism , also called the Extended Press-Schechter (EPS)
formalism, one uses the (statistics of) Markovian random walks (the trajectories of
mass elements in (S5, ds)-space) to infer the halo mass function (and more).

fraction of mass elements with 65 > d.(%) is equal to the mass

fraction of trajectories with a first upcrossing (FU) of the

EPS ansatz:

=D | F(< My) =1—F(> M)
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The EPS Mass Function

Based on the EPS ansatz, we can write the EPS mass function as:

_p OF(> M) _ p OF(< M)

n(M,t)dM = i N dM = Wi N dM
~_ p OFpu(>S5) dS 7 ds
= as an M= gy frulSoe) || dM

Here fry (S, d.) dS is the fraction of trajectories that have their first
upcrossing of barrier d.(t) between S and S + d.S.

2
Without proof: | fry(v) = & ] _ ! Fps(v) (see MBW §7.2.2

for derivation)

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch,Yale University



The EPS Mass Function

Although the EPS mass function is used very frequently in modern astronomy, it is important
to be aware of its assumptions, shortcomings and pitfalls:

Consider two mass elements (yellow dots’) in the same dark matter halo:
one near the center, the other near the outskirts.

Since both particles have very similar large-scale environments (on
scales larger than halo itself), their
trajectories are very similar for small S: dg
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The EPS Mass Function

Although the EPS mass function is used very frequently in modern astronomy, it is important
to be aware of its assumptions, shortcomings and pitfalls:

-3

In particular, the real-space filter is not
spatially localized; it has oscillating wings
that extent out to large distances...

Trajectories have to be constructed with sharp k-space filter in
order to guarantee Markovian nature of the random walks.

However, the corresponding real-space filter has complicated (sinc-like) form;
difficult to interpret....

Yet, according to EPS formalism, this structure
corresponds to a collapsed dark matter halo,
which *is* spatially localized...
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The EPS Mass Function

Although the EPS mass function is used very frequently in modern astronomy, it is important
to be aware of its assumptions, shortcomings and pitfalls:

The Spherical Cow: The upcrossing barrier used is based on the
spherical collapse model; as we have seen collapse is believed to
be ellipsoidal instead...
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Comparison with Numerical Simulations

Given the various crude assumptions
underlying the PS & EPS formalisms,
it is important to test their predictions
for halo mass function against
numerical simulations...

These follow the growth & collapse of
structures directly by solving the
equations of motion for dark matter
particles. However, as will be
discussed later, identifying haloes

in simulations is a non-trivial task.....

Until end of 1990s, most simulations
yielded results in fair agreement with
PS predictions....

However, when larger and more
accurate simulations became
available, it became clear that there
where some problems....
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Comparison with Numerical Simulations

The Millenium Simulation
followed the evolution of 21603
(~10 billion) particles in a
periodic box 500 Mpc/h on a
side in a ACDM cosmology.
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At the time it was run (2005) it
was one of the biggest
simulations to date. Because
of its superb statistics, it is
ideally suited to test the PS
mass functions...
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At low redshift, the PS mass function under- (over)-predicts the abundance of massive
(low mass) haloes. These problems become more pronounced at higher redshifts...

this statement is sensitive to how haloes are identified in the simulation box.
Here a Friends-Of-Friends (FOF) algorithm has been used (see lecture 11)
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EPS with Ellipsoidal Collapse

llipsoidal collapse and an improved model for the number and spatial
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ABSTRACT

The Press—Schechter, excursion set approach allows one to make predictions about the
shape and evolution of the mass function of bound objects. The approach combines the
assumption that objects collapse spherically with the assumption that the initial density
fluctuations were Gaussian and small. The predicted mass function is reasonably accurate,
although it has fewer high-mass and more low-mass objects than are seen in simulations of
hierarchical clustering. We show that the discrepancy between theory and simulation can be

a spherical, collapse. In the original, standard, spherical model, a region collapses if the

reduced substantially if bound structures are assumed to form from an ellipsoidal, rather than \ : l
initial density within it exceeds a threshold value, & .. This value is independent of the initial >

size of the region, and since the mass of the collapsed object is related to its initial size, this

means that é . is independent of final mass. In the ellipsoidal model, the collapse of a region Houjun Mo
depends on the surrounding shear field, as well as on its initial overdensity. In Gaussian .
random fields, the distribution of these quantities depends on the size of the region =
considered. Since the mass of a region is related to its initial size, there is a relation between

the density threshold value required for collapse and the mass of the final object. We provide

a fitting function to this &..(m) relation which simplifies the inclusion of ellipsoidal

dynamics in the excursion set approach. We discuss the relation between the excursion set

predictions and the halo distribution in high-resolution N-body simulations, and use our new

formulation of the approach to show that our simple parametrization of the ellipsoidal

collapse model represents an improvement on the spherical model on an object-by-object

basis. Finally, we show that the associated statistical predictions, the mass function and the

large-scale halo-to-mass bias relation, are also more accurate than the standard predictions.

Key words: galaxies: clusters: general — cosmology: theory — dark matter. Gluseppe Tormen l
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As we have seen, because of the non-zero tidal
field, collapse will not be spherical, but ellipsoidal.

In that case, the critical (linear) over density for collapse is given by

9 10.615
2
5SC

56C

SC

Ellipsoidal collapse

~ 1+ 0.47 [5(62 + p?)

>,

Here dec = dec(€, p) is the critical overdensity for ellipsoidal collapse, Js. = 0. ~ 1.686
is the critical overdensity for spherical collapse, and the parameters e and p characterize
the asymmetry of the initial tidal field. (see lecture 8)

Adopting the most probable values for e and p, Sheth, Mo & Tormen (2001; SMT) showed
that the upcrossing boundary for ellipsoidal collapse can be written as:

S 0.6157
ec ec(Sa t) c(t) < 52@))

Contrary for spherical collapse, for which the boundary is constant, the boundary for
ellipsoidal collapse increases with S (less massive structures need higher overdensity for
collapse). Because of this S-dependence, J... , is called a “moving barrier”.
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EPS Mass Function for Ellipsoidal Collapse

Knowing the critical overdensity for ellipsoidal collapse, we can compute the corresponding
PS mass function: all we need to do is to work out the first-upcrossing statistics....

Unfortunately, for a moving barrier one
cannot compute this analytically.

Rather, one has to resort to Monte Carlo
simulations of independent random walks,
and register their first upcrossings.

collapsed

This was done by SMT, who found that the
resulting multiplicity function is well
approximated by

1

fec(v) = 0.322 [1 — %] frs(7) where 7 =0.84v

The normalization 0.322 is set by requiring that fooo n(M) M dM = py,, which implies
that all matter is in collapsed objects. The PS mass function for ellipsoidal collapse simply

follows from replacing fps(v)with fgc(v); i.e.,
av [N

-— -

TL(M,t) dM = #fEC(V) |

dlnv
dln M

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch,Yale University



Spherical vs.

Source: Millenium Simulation; Springel V., 2004 (MPA research highlight)

-------- = EPS (SC)
= EPS (EC)

n [ particles ]

Ellipsoidal Collapse

The Millenium Simulation
followed the evolution of 21603
(~10 billion) particles in a
periodic box 500 Mpc/h on a
side in a ACDM cosmology.

Clearly, the EPS mass function
based on ellipsoidal collapse is
in much better agreement with
numerical simulations than the
spherical collapse-based model
prediction...

this statement is sensitive to how haloes are identified in the simulation box.
Here a Friends-Of-Friends (FOF) algorithm has been used (see lecture 11)
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Spherical vs. Ellipsoidal Collapse

100 100

Source: Sheth, Mo & Tormen, 2001, MNRAS, 323, |

spherical Mellipsoidal

Comparison of the mass of the halo of particles in a N-body simulation vs. the halo mass
predicted by EPS based on the particle’s location in the initial (linear) density field.
Ellipsoidal collapse clearly performs much better than spherical collapse, but neither are
very impressive... EPS performs poorly for individual particles (=mass elements), but
nevertheless yields impressive results statistically....
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Spherical vs. Ellipsoidal Collapse

100 1000 100 1000
M

Source: Sheth, Mo & Tormen, 2001, MNRAS, 323, |

spherical Mellipsoidal

Same as on previous page, but this time only showing the results for the N-body
particles located at the centers of their dark matter haloes. This removes the swath of
points in the upper-left corner...for ellipsoidal collapse EPS is able to make object-by-
object predictions that are not too far off...
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Evolution of the Halo Mass Function

One can get some useful insight into how structure forms, by studying how the
halo mass function (computed using EPS under ellipsoidal collapse conditions)
evolves as function of time...

The figure to the right shows how
the comoving number density of
dark matter haloes of different
mass evolve as function of redshift
in a ACDM cosmology.

Note how the abundance of low
mass haloes has hardly evolved at
all since z=20, while the
abundance of massive haloes is a
very strong function of redshift.
This is a manifestation of
hierarchical structure formation.

Source: Mo & White, 2002, MNRAS, 336, 1 12
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Summary: key words & important facts

Key words
(Extended) Press-Schechter Mass Variance
Excursion Set Formalism Halo Mass Function
Moving Collapse Barrier Multiplicity Function
Markovian random walk Characteristic Halo Mass

® Locations in linearly extrapolated density field where 6 > 6. = 1.686 correspond to
collapsed objects (halos)

® If §(x) is Gaussian, then so is the smoothed density field §(x;R)

® Excursion sets are Markovian if, and only if, the density field is smoothed with a
sharp-k space filter

® The cosmological parameter ogis defined as the mass variance of the linearly
extrapolated density field at z=0, smoothed with a Top-Hat filter of size R=8 h-1Mpc

® The ellipsoidal collapse model gives rise to a moving barrier in excursion set formalism
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Summary: key equations & expressions

—

Mass Smoothing |d(Z; R) = /5(33"’) W(z -2 R)d° % 5(k; R) = 8(k) W (kR)

) 1 — -
Mass Variance | o~ (M) = (6*(%; R)) = 92 /P(k) W?2(kR) k* dk M = pR’

PS  F(> M,t) = 2P[0a > 6c(t)]

(E)PS ansatz
EPS  F(> M,t)=1— Fry(> S) S =o°(M)

Halo Mass dn I dn p OF(> M,t)

M — — = p—
Function M) = o = A - M oM

. 2 p O 02 dlnoyy 15 dlnv
EPS + Gaussian | n(M,t) = T M2 oy eXp<_201%4> ‘dlnM :Wfps(y) dln M

shorthand v = 6.(t)/o(M) frs(v) = 4 /2/7rye—1/2/2

o2 (M) 0.615
E(I:Iip?lsoidal g6l = el | 1o ( 62(t) ) ] Characteristic Mass
ollapse %
Model o (M*) = dc(t)
frs(v) — fec(v) = 0.322 [1 o (0.84V)0'6] frs(0.84v)
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