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Lecture 8:  Non-Linear Collapse & Virialization 
        



Topics that will be covered include:

Phase-Mixing
Violent Relaxation
Ellipsoidal Collapse
Zel’dovich approximation
Secondary Infall Model
Top-Hat Spherical Collapse
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Non-Linear Collapse & Virialization

Having discussed linear theory, we now focus on the non-linear regime. Using simple, 
analytical models, we will gain insight into how virialized dark matter haloes emerge 
out of the cosmological density field. We also discuss various relaxation mechanism 
that bring the collapsed halo into virial equilibrium.



As shown in Lecture 6, after recombination the growth of linear perturbations on our scales 
of interest (                                        ) is governed by the linear growth rate;  106M� < M < M15M� D(a)

In this linear regime, all modes    evolve similarly and independently:k ��k � D(a)

Once perturbations become of order unity, structure formation becomes non-linear....

P (k, t) = Pi(k) T 2(k) D2(t)

Recap: Linear Perturbation Growth
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Baryons CDM

1 growth growth

2 oscillations stagnation

3 oscillations free-streaming

4 oscillations growth

5 Silk-damping free-streaming

6 Silk-damping growth

7 growth growth

8 oscillations growthtime
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In the non-linear regime (         ) perturbation theory is no longer valid. Modes

start to couple to each other, and one can no longer describe the evolution of the 
density field with a simple growth rate: in general, no analytic solutions exist...

In the linear regime (          ) we can calculate the evolution of a density field of

arbitrary form using linear perturbation theory.

� ⌧ 1

� > 1
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Non-Linear Evolution



In the non-linear regime (         ) perturbation theory is no longer valid. Modes

start to couple to each other, and one can no longer describe the evolution of the 
density field with a simple growth rate: in general, no analytic solutions exist...

Because of this mode-coupling, the density field looses its Gaussian properties,

i.e., in the non-linear regime, we no longer have a Gaussian random field.

Hence, higher-order moments are required to completely specify density field.

In the linear regime (          ) we can calculate the evolution of a density field of

arbitrary form using linear perturbation theory.

� ⌧ 1

� > 1
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Non-Linear Evolution



In the non-linear regime (         ) perturbation theory is no longer valid. Modes

start to couple to each other, and one can no longer describe the evolution of the 
density field with a simple growth rate: in general, no analytic solutions exist...

Because of this mode-coupling, the density field looses its Gaussian properties,

i.e., in the non-linear regime, we no longer have a Gaussian random field.

Hence, higher-order moments are required to completely specify density field.

How to proceed?

Numerical simulations (lecture 18)

Higher-order perturbation theory (not covered, see MBW §4.1.7)

Oversimplified, but insightful, analytical model (this lecture)

The Halo Model (lecture 13)

In the linear regime (          ) we can calculate the evolution of a density field of

arbitrary form using linear perturbation theory.

� ⌧ 1

� > 1
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Non-Linear Evolution



In order to gain insight into the non-linear evolution of density perturbations, we 
now consider the highly idealized case of Top-Hat Spherical Collapse.

Einstein-de Sitter (EdS) cosmology

⇢

x

y

Universe is homogeneous, except for a

single, top-hat, spherical perturbation.

Collisionless fluid        treatment is only 
valid for collisionless Dark Matter.

Universe is in matter-dominated phase, 
after recombination...

Although the following treatment is only valid 
for an EdS cosmology, similar models can be 
constructed for other cosmologies as well, 
including ΛCDM       (see MBW §5.1.1 + 5.1.2)

Furthermore, since all cosmologies behave 
similar to EdS at early times, this treatment 

is always good approximation at high z....

NOTE:

H(t) · t = 2

3

D(a) = a / t2/3⇥̄ =
1

6�Gt2

�(t) = 1.0
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Top-Hat Spherical Collapse



Onion Model

you can think of overdensity 

as consisting of many 


individual, thin mass shells

the evolution of a single mass shell

consisting of collisionless dark matter


in a homogeneous universe
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Illustration of Spherical Collapse



Because of collisionless nature, the shell 
crosses itself and starts to oscillate

Onion Model

you can think of overdensity 

as consisting of many 


individual, thin mass shells

the evolution of a single mass shell

consisting of collisionless dark matter


in a homogeneous universe
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Illustration of Spherical Collapse



Onion Model

the evolution of a single mass shell

consisting of baryonic matter

in a homogeneous universe

you can think of overdensity 

as consisting of many 


individual, thin mass shells
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Illustration of Spherical Collapse



Because of pressure a shock develops, 
which heats the gas and makes it expand

Onion Model

the evolution of a single mass shell

consisting of baryonic matter

in a homogeneous universe

you can think of overdensity 

as consisting of many 


individual, thin mass shells
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Illustration of Spherical Collapse



Because of pressure a shock develops, 
which heats the gas and makes it expand

Onion Model

the evolution of a single mass shell

consisting of baryonic matter

in a homogeneous universe

you can think of overdensity 

as consisting of many 


individual, thin mass shells

In what follows we focus exclusively on dark matter. We will discuss the evolution

of the baryonic component only at a much later stage (lecture 14+)...
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Illustration of Spherical Collapse



Consider our spherical top-hat perturbation:  Let    denote the radius of some 
mass shell inside the top-hat at some initial time,    , and let    and     denote the

top-hat overdensity and the back-ground density at that same time.

ri
�i ⇢̄iti

⇢

x

y

ri
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Top-Hat Spherical Collapse



Consider our spherical top-hat perturbation:  Let    denote the radius of some 
mass shell inside the top-hat at some initial time,    , and let    and     denote the

top-hat overdensity and the back-ground density at that same time.

ri
�i ⇢̄iti

⇢

x

y

riThe mass enclosed by the shell is 

where the second equality expresses mass conservation: because of spherical 
symmetry, the mass inside the shell is conserved, but only up to  shell crossing !!!

M(< r) =
4

3
⇥r3i ⇤̄i [1 + �i]

=
4

3
⇥r3(t) ⇤̄(t) [1 + �(t)]

NOTE: r is the physical radius, not the comoving radius.!!
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Top-Hat Spherical Collapse



Consider our spherical top-hat perturbation:  Let    denote the radius of some 
mass shell inside the top-hat at some initial time,    , and let    and     denote the

top-hat overdensity and the back-ground density at that same time.

ri
�i ⇢̄iti

Newton’s first Theorem: 

a spherically symmetric matter 
distribution outside a sphere 

exerts no force on that sphere

d2r

dt2
= �GM

r2

Equation of motion

⇢

x

y

riThe mass enclosed by the shell is 

where the second equality expresses mass conservation: because of spherical 
symmetry, the mass inside the shell is conserved, but only up to  shell crossing !!!

M(< r) =
4

3
⇥r3i ⇤̄i [1 + �i]

=
4

3
⇥r3(t) ⇤̄(t) [1 + �(t)]

NOTE: r is the physical radius, not the comoving radius.!!
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Consider our spherical top-hat perturbation:  Let    denote the radius of some 
mass shell inside the top-hat at some initial time,    , and let    and     denote the

top-hat overdensity and the back-ground density at that same time.

ri
�i ⇢̄iti

Newton’s first Theorem: 

a spherically symmetric matter 
distribution outside a sphere 

exerts no force on that sphere

d2r

dt2
= �GM

r2

Equation of motion

⇢

x

y

riThe mass enclosed by the shell is 

where the second equality expresses mass conservation: because of spherical 
symmetry, the mass inside the shell is conserved, but only up to  shell crossing !!!

M(< r) =
4

3
⇥r3i ⇤̄i [1 + �i]

=
4

3
⇥r3(t) ⇤̄(t) [1 + �(t)]

the GR equivalent of this is known as Birkhoff’s theorem

NOTE: r is the physical radius, not the comoving radius.!!
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Top-Hat Spherical Collapse



Integrating the equation of motion once yields 1

2

✓
dr

dt

◆2

� GM

r
= E

where the integration constant E is clearly the specific energy of our shell.

Recall Classical Mechanics:            corresponds to the gravitationally bound 

                                                 case, which for our mass shell implies `collapse’

E < 0
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Top-Hat Spherical Collapse



Integrating the equation of motion once yields 1

2

✓
dr

dt

◆2

� GM

r
= E

where the integration constant E is clearly the specific energy of our shell.

Recall Classical Mechanics:            corresponds to the gravitationally bound 

                                                 case, which for our mass shell implies `collapse’

E < 0

For           the solution to the above equation is simple:E = 0 r(t) =

✓
9GM

2

◆1/3

t2/3

which shows that          ; the mass shell (and hence the top-hat) grows at the

same rate as Universe                         (no growth)

r / a
�(t) = �i

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Top-Hat Spherical Collapse



Integrating the equation of motion once yields 1

2

✓
dr

dt

◆2

� GM

r
= E

where the integration constant E is clearly the specific energy of our shell.

Recall Classical Mechanics:            corresponds to the gravitationally bound 

                                                 case, which for our mass shell implies `collapse’

E < 0

For           the solution to the above equation is simple:E = 0 r(t) =

✓
9GM

2

◆1/3

t2/3

which shows that          ; the mass shell (and hence the top-hat) grows at the

same rate as Universe                         (no growth)

r / a
�(t) = �i

For           the solution can be written in parametric form:      E < 0

r = A (1� cos �)

t = B (� � sin �)

A =
GM

2|E| B =
GM

(2|E|)3/2
A3 = GMB2

� 2 [0, 2⇥]
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Top-Hat Spherical Collapse



shell expands from           at            (         )

shell collapses back to           at              (                           )

r = A (1� cos �)

t = B (� � sin �)

A =
GM

2|E| B =
GM

(2|E|)3/2
A3 = GMB2

⇢

x

y

ri

This solution implies the following evolution for our mass shell:

t = 0r = 0 ✓ = 0

shell reaches a maximum radius         at            (                        )rmax ✓ = ⇡ t = tmax = �B

t = tcoll = 2tmax✓ = 2⇡r = 0

The time of maximum size is often called the turn-around time,                  ,

while the time of collapse is also called the virialization time                   

tta = tmax
tvir = tcoll = 2tta
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Top-Hat Spherical Collapse



shell expands from           at            (         )

shell collapses back to           at              (                           )

r = A (1� cos �)

t = B (� � sin �)

A =
GM

2|E| B =
GM

(2|E|)3/2
A3 = GMB2

⇢

x

y

ri

This solution implies the following evolution for our mass shell:

t = 0r = 0 ✓ = 0

shell reaches a maximum radius         at            (                        )rmax ✓ = ⇡ t = tmax = �B

t = tcoll = 2tmax✓ = 2⇡r = 0

The time of maximum size is often called the turn-around time,                  ,

while the time of collapse is also called the virialization time                   

tta = tmax
tvir = tcoll = 2tta

We will use both notations intermittently...
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Top-Hat Spherical Collapse



To get some further insight into the non-linear evolution of (spherical)

overdensities, we can use the concept of energy conservation:  

The initial, specific energy of the mass shell is Ei = Ki +Wi =
1

2
H

2
i r

2
i �

GM

ri

Under the approximation that the initial velocity of our mass shell is simply

the Hubble flow, we have
where    is the radius of the mass shell in comoving units.x

vi = dri/dt = d(axi)/dt = ȧ xi + a ẋi � ȧ xi = Hi ri
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Top-Hat Spherical Collapse



To get some further insight into the non-linear evolution of (spherical)

overdensities, we can use the concept of energy conservation:  

The initial, specific energy of the mass shell is Ei = Ki +Wi =
1

2
H

2
i r

2
i �

GM

ri

Using that                                                               we obtain Ei = Ki �Ki(1 + �i)

Collapse requires             which thus translates into Ei < 0 �i > 0

Hence, in an EdS cosmology, all overdensities will (ultimately) collapse. 

M =
4

3
⇥r3i ⇤̄i (1 + �i) =

H2
i r

3
i

2G
(1 + �i)

Under the approximation that the initial velocity of our mass shell is simply

the Hubble flow, we have
where    is the radius of the mass shell in comoving units.x

vi = dri/dt = d(axi)/dt = ȧ xi + a ẋi � ȧ xi = Hi ri
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To get some further insight into the non-linear evolution of (spherical)

overdensities, we can use the concept of energy conservation:  

The initial, specific energy of the mass shell is Ei = Ki +Wi =
1

2
H

2
i r

2
i �

GM

ri

In a non-EdS cosmology, it is straightforward to show that the above

criterion becomes                       ; overdensities can be prevented from 

collapse if background density is sufficiently low....Note though, that all 
cosmologies  behave as EdS at early times... 

�i > ��1
i � 1

Using that                                                               we obtain Ei = Ki �Ki(1 + �i)

Collapse requires             which thus translates into Ei < 0 �i > 0

Hence, in an EdS cosmology, all overdensities will (ultimately) collapse. 

M =
4

3
⇥r3i ⇤̄i (1 + �i) =

H2
i r

3
i

2G
(1 + �i)

Under the approximation that the initial velocity of our mass shell is simply

the Hubble flow, we have
where    is the radius of the mass shell in comoving units.x

vi = dri/dt = d(axi)/dt = ȧ xi + a ẋi � ȧ xi = Hi ri
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Top-Hat Spherical Collapse



At turn-around (                         ), the shell has zero kinetic energy; 
� = ⇥, t = tmax Kta = 0

Eta = Wta = �GM

rmax
= �H2

i r
3
i

2rmax
(1 + �i)

Energy conservation then implies that Eta

Ei
= 1 =

ri
rmax

1 + �i
�i

rmax

ri
=

1 + �i
�i

' ��1
i

Hence, the turn-around radius depends only on the initial overdensity

(not on the actual mass enclosed by the shell).  Note also that smaller 
perturbations have larger radii at turn-around (which implies that they

turnaround/collapse later...

We can compare this to our initial energy: Ei = �Ki�i = �H2
i r

2
i

2
�i
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Top-Hat Spherical Collapse



Now let us focus on the evolution of the actual overdensity:

The mean density of the top-hat is ⇤ =
3M

4⇥r3
=

3M

4⇥A3
(1� cos �)�3

The mean density of the background is ⇤̄ =
1

6⇥Gt2
=

1

6⇥GB2
(� � sin �)�2

Hence, the actual overdensity of our spherical top-hat region, according

to the spherical collapse (SC) model, which in general will be non-linear, is 

1 + � =
⇢

⇢̄
=

9

2

(✓ � sin ✓)2

(1� cos ✓)3

where we have used that                     . A3 = GMB2

Before we examine this SC model in some detail, we first compare it

to predictions from linear theory....
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Top-Hat Spherical Collapse



In order to use the correct initial conditions (ICs), we have to use our 

parametric solution of        in the limit           . Using a Taylor series expansion

of         and         one can show that (see problem set 3):   sin ✓ cos ✓

r(t) ✓ ⌧ 1

 the halo bias function

For a number of reasons (in particular for use in EPS theory), it is also useful 

to compare this SC overdensity model to what linear theory predicts for       .�(t)

According to linear theory, perturbation in EdS cosmology evolve as

�lin / D(a) / a / t2/3

�i =
3

20
(6⇥)2/3

✓
ti

tmax

◆2/3

(�i ⌧ 1)
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In order to use the correct initial conditions (ICs), we have to use our 

parametric solution of        in the limit           . Using a Taylor series expansion

of         and         one can show that (see problem set 3):   sin ✓ cos ✓

r(t) ✓ ⌧ 1

 the halo bias function

For a number of reasons (in particular for use in EPS theory), it is also useful 

to compare this SC overdensity model to what linear theory predicts for       .�(t)

According to linear theory, perturbation in EdS cosmology evolve as

�lin / D(a) / a / t2/3

�i =
3

20
(6⇥)2/3

✓
ti

tmax

◆2/3

(�i ⌧ 1)

NOTE: this implies that since             constant inside the top-hat, each  

            mass shell that is part of the top-hat will turn-around (reach

            maximum expansion) at the same time....

�(r) =
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For a number of reasons (in particular for use in EPS theory), it is also useful 

to compare this SC overdensity model to what linear theory predicts for       .�(t)

According to linear theory, perturbation in EdS cosmology evolve as

�lin / D(a) / a / t2/3

Combining the above, we have that, according to linear theory:

�lin = �i

✓
t

ti

◆2/3

=
3

20
(6⇥)2/3

✓
t

tmax

◆2/3
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Top-Hat Spherical Collapse

In order to use the correct initial conditions (ICs), we have to use our 

parametric solution of        in the limit           . Using a Taylor series expansion

of         and         one can show that (see problem set 3):   sin ✓ cos ✓

r(t) ✓ ⌧ 1

�i =
3

20
(6⇥)2/3

✓
ti

tmax

◆2/3

(�i ⌧ 1)



1 + � =
⇢

⇢̄
=

9

2

(✓ � sin ✓)2

(1� cos ✓)3
�lin = �i

✓
t

ti

◆2/3

=
3

20
(6⇥)2/3

✓
t

tmax

◆2/3

Spherical Collapse (SC) model: Linear Theory
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Turn Around & Collapse



1 + � =
⇢

⇢̄
=

9

2

(✓ � sin ✓)2

(1� cos ✓)3
�lin = �i

✓
t

ti

◆2/3

=
3

20
(6⇥)2/3

✓
t

tmax

◆2/3

Turn-Around:

SC model: 

linear theory: �lin(tta) =
3
20

(6�)2/3 � 1.062

1 + �(tta) =
9�2

16
� 5.55

(tta = tmax; � = �)

Spherical Collapse (SC) model: Linear Theory
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1 + � =
⇢

⇢̄
=

9

2

(✓ � sin ✓)2

(1� cos ✓)3
�lin = �i

✓
t

ti

◆2/3

=
3

20
(6⇥)2/3

✓
t

tmax

◆2/3

Turn-Around:

SC model: 

linear theory: �lin(tta) =
3
20

(6�)2/3 � 1.062

1 + �(tta) =
9�2

16
� 5.55

(tta = tmax; � = �)

Spherical Collapse (SC) model: Linear Theory

Collapse (shell crossing)

SC model: 

linear theory: 

�(tcoll) =�

�(tcoll) =
3
20

(12�)2/3 =
3
5

�
3�

2

�2/3

� 1.686

(tcoll = 2tta)
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Turn Around & Collapse



Note, though, that our derivation is only valid for an EdS cosmology. Fortunately, 
similar calculations also exist for non-EdS cosmologies (see MBW §5.1.1 & 5.1.2)

The non-EdS results are well approximated by:

According to linear theory, regions in the linearly extrapolated density field 
with                    should have collapsed. This is often called the “critical 
overdensity for collapse”, and denoted by the sybol     . As we will see,     
plays an important role in (extended) Press-Schechter theory!

�lin � 1.686
�c �c

�c = �lin(tcoll) =
3
5

�
3�

2

�2/3

[�m(tcoll)]
0.0185 � 1.686 [�m(tcoll)]

0.0185

�c = �lin(tcoll) =
3
5

�
3�

2

�2/3

[�m(tcoll)]
0.0055 � 1.686 [�m(tcoll)]

0.0055

(�� = 0.0)

(�� �= 0.0)

Both approximations are accurate to better than 1%, and show that     has only a very 
weak dependence on cosmology: to good approximation one can simply adopt

�c
�c � 1.686
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Critical Overdensity for Collapse



Hubble f
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Hubble flo
w

time
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e

turn-around

The top-hat SC model discussed above is only valid up to the point of collapse.

According to the SC model,                    , which would result in the formation 

of a black hole. However, in reality, the collapse is never perfectly spherical. 

�(tcoll) =�
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Shell Crossing & Virialization
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The top-hat SC model discussed above is only valid up to the point of collapse.

According to the SC model,                    , which would result in the formation 

of a black hole. However, in reality, the collapse is never perfectly spherical. 

�(tcoll) =�
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The top-hat SC model discussed above is only valid up to the point of collapse.

According to the SC model,                    , which would result in the formation 

of a black hole. However, in reality, the collapse is never perfectly spherical. 

�(tcoll) =�
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Hubble f
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Hubble flo
w

time

ph
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virialization

The top-hat SC model discussed above is only valid up to the point of collapse.

According to the SC model,                    , which would result in the formation 

of a black hole. However, in reality, the collapse is never perfectly spherical. 

�(tcoll) =�
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Shell Crossing & Virialization



Individual oscillating shells interact gravitationally, exchanging energy (virializing). 

This process, to be described in more detail below, results in a virialized dark matter halo

Hubble f
low

Hubble flo
w

time

ph
ys

ic
al

 s
iz

e

turn-around

virialization

The top-hat SC model discussed above is only valid up to the point of collapse.

According to the SC model,                    , which would result in the formation 

of a black hole. However, in reality, the collapse is never perfectly spherical. 

�(tcoll) =�
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Shell Crossing & Virialization



Virialization means that the system relaxes towards virial equilibrium:

We can use the virial theorem to make a simple estimate of the final density 

of our collapsed & virialized dark matter halo:

2 Kf + Wf = 0

Ef = Kf + Wf = Ei = EtaEnergy conservation:

Virial Equilibrium:
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Density of a Collapsed Dark Matter Halo



Virialization means that the system relaxes towards virial equilibrium:

We can use the virial theorem to make a simple estimate of the final density 

of our collapsed & virialized dark matter halo:

2 Kf + Wf = 0

Ef = Kf + Wf = Ei = EtaEnergy conservation:

Virial Equilibrium:

A mass shell is expected to virialize at half its turn-around radius.

Hence, after virialization, the average density of the material enclosed

by the mass shell is 8 times denser than at turn-around....

Eta = Wta = �GM

rta

Ef = Wf/2 = �GM

2rvir

rvir = rta/2}
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We now compute the average overdensity of a virialized dark matter halo:

1 + �vir � 1 + �(tcoll) =
�(tcoll)
�̄(tcoll)

NOTE: for consistency with many textbooks and journal articles, we use the symbol        ,

            rather than       to indicate the virialized overdensity.... 

�vir

�vir
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We now compute the average overdensity of a virialized dark matter halo:

1 + �vir � 1 + �(tcoll) =
�(tcoll)
�̄(tcoll)

NOTE: for consistency with many textbooks and journal articles, we use the symbol        ,

            rather than       to indicate the virialized overdensity.... 

�vir

�vir

Using that                         (EdS), and that                   we have that  �̄ � a�3 � t�2 tcoll = 2tta

1 + �vir =
8 �ta

�̄(tta)/4
= 32 (1 + �ta) = 18�2 � 178
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We now compute the average overdensity of a virialized dark matter halo:

1 + �vir � 1 + �(tcoll) =
�(tcoll)
�̄(tcoll)

NOTE: for consistency with many textbooks and journal articles, we use the symbol        ,

            rather than       to indicate the virialized overdensity.... 

�vir

�vir

Using that                         (EdS), and that                   we have that  �̄ � a�3 � t�2 tcoll = 2tta

1 + �vir =
8 �ta

�̄(tta)/4
= 32 (1 + �ta) = 18�2 � 178

For non-EdS cosmologies, the virial overdensities are well approximated by 

�vir � (18�2 + 60 x� 32 x2)/�m(tvir)

�vir � (18�2 + 82 x� 39 x2)/�m(tvir) (�� �= 0)

(�� = 0)

Here                             . These equations are often used to `define’ dark matter 
haloes in N-body simulations or in analytical models.... 

x = �m(tvir)� 1

 (Bryan & Norman 1998)
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�vir � (18�2 + 60 x� 32 x2)/�m(tvir)

�vir � (18�2 + 82 x� 39 x2)/�m(tvir) (�� �= 0)

(�� = 0)

The linearly extrapolated density field collapses when �lin = �c � 1.686

Virialized dark matter haloes have an average overdensity of �vir � 178

Although the SC model 
becomes inaccurate (brakes 
down) shortly after turn-around 
it is still a useful model to 
identify important epochs in the 
linearly evolved density field...
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linear model 1.062 1.686

� = �/�̄� 1



Thus far we have mainly focussed on the non-linear evolution of a spherical top-hat

perturbation, embedded in a homogeneous universe.

As we have seen, a mass shell (made out of collisionless matter) oscillates back

and forth between r=0 and r=rmax.

Furthermore, for the top-hat perturbations, all mass shells turn-around and

collapse simultaneously.

We now move to more realistic cases.  In particular, we will consider perturbations

with more realistic, initial density profile

with non-zero angular momentum

without spherical symmetry

(Secondary Infall Models)

(Zel’dovich approximation)

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Beyond Top-Hat Spherical Collape



Hubble f
low

Hubble flo
w

time

ph
ys

ic
al

 s
iz

e

turn-around

The SC model for arbitrary density profile is only valid up to shell crossing.
Afterall, after shell crossing M(r) is no longer a conserved quantity!
According to the SC model,                    , which would result in the formation 

of a black hole. However, in reality, the collapse is never perfectly spherical. 

�(tcoll) =�
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According to the SC model,                    , which would result in the formation 
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Individual oscillating shells interact gravitationally, exchanging energy (virializing). 

This process, to be described in more detail below, results in a virialized dark matter halo
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The SC model for arbitrary density profile is only valid up to shell crossing.
Afterall, after shell crossing M(r) is no longer a conserved quantity!
According to the SC model,                    , which would result in the formation 

of a black hole. However, in reality, the collapse is never perfectly spherical. 

�(tcoll) =�
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Unless           (which corresponds to a top-hat), mass shells will not all collapse

at the same time. For realistic profiles (          ), inner shells collapse earlier.

Such models, with extended infall of new shells, are called secondary infall models.

� = 0
� > 0

Consider an initial perturbation with a density profile �i � r�3�
i �M��
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Unless           (which corresponds to a top-hat), mass shells will not all collapse

at the same time. For realistic profiles (          ), inner shells collapse earlier.

Such models, with extended infall of new shells, are called secondary infall models.

� = 0
� > 0

Consider an initial perturbation with a density profile �i � r�3�
i �M��

Gunn & Gott (1972) assumed that each oscillation the shell expands back out to a

radius that is a fixed, constant fraction of rmax

Since a shell spends most of its time near apocenter, Gunn & Gott postulated that the 
mass enclosed by a shell is the same as its originally enclosed mass (at           )....    t = ti

r(M) � rta(M)where                            and      is the mass enclosed by the shell at t = tiM

�vir(r) =
3M

4�r3(M)
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Unless           (which corresponds to a top-hat), mass shells will not all collapse

at the same time. For realistic profiles (          ), inner shells collapse earlier.

Such models, with extended infall of new shells, are called secondary infall models.

� = 0
� > 0

Consider an initial perturbation with a density profile �i � r�3�
i �M��

Gunn & Gott (1972) assumed that each oscillation the shell expands back out to a

radius that is a fixed, constant fraction of rmax

Since a shell spends most of its time near apocenter, Gunn & Gott postulated that the 
mass enclosed by a shell is the same as its originally enclosed mass (at           )....    t = ti

r(M) � rta(M)where                            and      is the mass enclosed by the shell at t = tiM

�vir(r) =
3M

4�r3(M)

For an EdS cosmology,                                    , which implies that  rta � ri/�i �M1/3+�

�vir(r) � r�� � =
9 �

1 + 3�
with

For           , i.e., point-mass initial conditions, one obtains that � = 1 � = �9/4
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Unfortunately, the Gunn & Gott treatment is not accurate. The total mass within a mass shell 
at apocenter is not only the mass enclosed initially, but also the mass from shells initially 
outside it, but with current radii that place it interior....

Hence, to improve upon the Gunn & Gott treatment one needs to solve the equations of 
motion for all shells simultaneously.....this can be done, but only numerically.... 

Fillmore & Goldreich (1984) and Bertschinger (1985) showed, however, that under

certain conditions the problem can be made self-similar, admitting analytical solutions.

Evolution of the scaled radius,                    , as a function 
of the scaled time                   , in two self-similar, spherical 
collapse models (with purely radial orbits).

� = r/rmax

� = t/tmax

Note that the shell’s apocenter decreases with time, as 
does its oscillation period. This is due to more and more 
mass shells having turned-around...

         each mass shell becomes buried deeper & deeper in              

         the collapsed halo with the passage of time...
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(see MBW §5.2.1 for derivation)

The self-similar solution predicts a final 
density profile

�vir(r) � r�� � =
�

2 � � 2/3
9�

1+3� � > 2/3with

A problem with all models discussed thus 
far is that they only consider purely radial 
orbits. This has two shortcomings:

a collisionless system with purely radial orbits 
suffers from radial orbit instability (Antonov 1973) 
and will rapidly evolve into an elongated bar-
shaped configuration (see images).

in real universe, tidal torques from neigboring 
perturbations will impart angular momentum on 
the particles/mass shells...
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White & Zaritsky (1992) considered a SC model with non-radial particle orbits:

Let specific angular momentum of particle in a mass shell be L = J
�

GMmaxrmax

where                                                     .Mmax = M(< rmax) = M(< ri)

dr2

dt2
= �GM

r2
� L2

r3
The equation of motion of the mass shell is

Because of the centrifugal force, there is now a centrifugal barier and mass shells can 
no longer reach r=0. Instead, mass shells oscillate between apocenter and pericenter.

Under the assumption that     is the same for all mass shells, one can again obtain a 

self-similar solution: 

J

(Nusser 2001)
�vir(r) � r�� with � =

9�

1 + 3�
(� > 0)

Note that, somewhat surprisingly, this is exactly the Gunn & Gott solution....
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If     is different for different mass shells, there are no longer any self-similar,

analytical solutions. Rather, one has to resort to numerical simulations (in 1D) to 
follow the `orbits’ of each individual mass shell....

J

Lu et al. (2006) performed such a calculation in which they assumed that the 
velocity of each particle is isotropized during the collapse. 

Their results suggest that the end-state of collapse

is a power-law density profile

�vir(r) � r�� with � =
�

1 � � 1/6
9�

1+3� � > 1/6

As we will see later, virialized dark matter haloes

in realistic (3D) N-body simulations have 

in their inner regions. The results of Lu et al. 
suggest that this may well be a manifestation of 
orbit isotropization during the early (rapid) collapse 
phase of the halo...

� � r�1
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So far we considered perturbations in Eulerian (`grid’) coordinates. Individual

overdensities stay at a fixed (comoving) position and grow or decay in amplitude....

We now switch to Lagrangian description, which follows motion of individual particles. 
This gives insights into dynamics of structure formation process, and, unlike its 
Eulerian counterpart, remains (fairly) accurate in the mildly non-linear regime...

It is easy to see that Eulerian description brakes down in mildly non-linear regime:

Once overdensities (          ) reach amplitudes of order unity, the underdensities 

(           ) have grown to             , which would imply a negative (=unphysical) density...  

�i > 0
�i < 0 � < �1
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So far we considered perturbations in Eulerian (`grid’) coordinates. Individual

overdensities stay at a fixed (comoving) position and grow or decay in amplitude....

We now switch to Lagrangian description, which follows motion of individual particles. 
This gives insights into dynamics of structure formation process, and, unlike its 
Eulerian counterpart, remains (fairly) accurate in the mildly non-linear regime...

It is easy to see that Eulerian description brakes down in mildly non-linear regime:

Once overdensities (          ) reach amplitudes of order unity, the underdensities 

(           ) have grown to             , which would imply a negative (=unphysical) density...  

�i > 0
�i < 0 � < �1

Zel’dovich (1970) came up with a Lagrangian formalism that is based on the

following approximation (known as Zel’dovich Approximation, ZA):

particles continue to move in the direction of their initial displacement

�xi initial (Lagrangian), comoving coordinates
function of time, to be determined below
vector function of initial coordinates, specifying direction of velocity�f(�xi)

�x(t) = �xi � c(t) · �f(�xi)

c(t)
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Note: the ZA is exact if perturbation is a 1D sheet in an otherwise homogeneous

           universe; in that case direction of velocity remains fixed...

ZA:

Here        is the scale-factor normalized to unity at the initial time    : the scaling with 

         is required since     are comoving coordinates. The equation of mass conservation 
is valid (up to orbit crossing) for any geometry; no spherical symmetry is required!!

a(t) ti
a3(t) �x

�x(t) = �xi � c(t) · �f(�xi)
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The Zel’dovich Approximation

Mass conservation

�(�x, t) a3(t) d3�x = �i(�xi) d3�xi



Note: the ZA is exact if perturbation is a 1D sheet in an otherwise homogeneous

           universe; in that case direction of velocity remains fixed...

ZA:

Here        is the scale-factor normalized to unity at the initial time    : the scaling with 

         is required since     are comoving coordinates. The equation of mass conservation 
is valid (up to orbit crossing) for any geometry; no spherical symmetry is required!!

a(t) ti
a3(t) �x

Here                                       with     the eigenvalues of the matrix �A� = det(A) =
�

i

�i A�i

Using Linear Algebra:                                                        �(�x, t) = �i(�xi) a�3

����
d�x

d�xi

����
�1

�x(t) = �xi � c(t) · �f(�xi)
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Mass conservation

�(�x, t) a3(t) d3�x = �i(�xi) d3�xi



Using that                                            and that                         this yields

Using that the tensor                                           we have that

where                       are the eigenvalues of the deformation tensor �1 � �2 � �3 �fi/�xj

�(�x, t) = �i(�xi) a�3 1
(1� c�1) (1� c�2) (1� c�3)

�
d�x

d�xi

�

jk

= �jk � c(t)
�fj

�xk

1 + �(�x, t) =
�(�x, t)
�̄(t)

=
1

(1� c�1) (1� c�2) (1� c�3)

�i(�xi) = �̄i [1 + �i(�xi)] � �̄i �̄(t) a3 = �̄i a
3
i

(recall that ai = 1)

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

The Zel’dovich Approximation

We can gain some useful insight from this equation (using that             ) :

if            this implies collapse in the direction of the      eigenvector.�i > 0 ith

�i < 0if            this implies expansion in the direction of the      eigenvector.ith

c(t) = 1/�iif                    `shell’ crossing happens along the direction of the      eigenvector.ith

as long as               the perturbation is still in the linear regime. c�1 � 1

c(t) > 0



1 + �(�x, t) =
1

1� c (�1 + �2 + �3)
� 1 + c (�1 + �2 + �3)

Linearization of the equation for the density perturbation yields

Hence, we have that, in the linear regime �(�x, t) = c(t) Tr(�fi/�xj) = c(t) �� · �f
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1 + �(�x, t) =
1

1� c (�1 + �2 + �3)
� 1 + c (�1 + �2 + �3)

Linearization of the equation for the density perturbation yields

If we compare this to the fact that, in the linear regime, �(�x, t) = D(t) �i(�xi)
we see that                    and                 .  c(t) = D(t) �� · �f = �i

Hence, we have that, in the linear regime �(�x, t) = c(t) Tr(�fi/�xj) = c(t) �� · �f
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1 + �(�x, t) =
1

1� c (�1 + �2 + �3)
� 1 + c (�1 + �2 + �3)

Linearization of the equation for the density perturbation yields

If we compare this to the fact that, in the linear regime, �(�x, t) = D(t) �i(�xi)
we see that                    and                 .  c(t) = D(t) �� · �f = �i

Using the Poisson equation, according to which (recall that            ) ai = 1�i = �2�i/4�G�̄i

and the fact that                        , we finally see that �2� = �� · ��� �f = ���i/4�G�̄i

�x(t) = �xi �
D(a)
4�G�̄i

���i Zel’dovich Approximation

Hence, we have that, in the linear regime �(�x, t) = c(t) Tr(�fi/�xj) = c(t) �� · �f
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1 + �(�x, t) =
1

1� c (�1 + �2 + �3)
� 1 + c (�1 + �2 + �3)

Linearization of the equation for the density perturbation yields

If we compare this to the fact that, in the linear regime, �(�x, t) = D(t) �i(�xi)
we see that                    and                 .  c(t) = D(t) �� · �f = �i

Using the Poisson equation, according to which (recall that            ) ai = 1�i = �2�i/4�G�̄i

and the fact that                        , we finally see that �2� = �� · ��� �f = ���i/4�G�̄i

�x(t) = �xi �
D(a)
4�G�̄i

���i Zel’dovich Approximation

Hence, we have that, in the linear regime �(�x, t) = c(t) Tr(�fi/�xj) = c(t) �� · �f
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The Zel’dovich Approximation

In Problem Set 3 we will use a different derivation, based on linearized Euler equation....
As we will see in Lecture 18, this ZA is ideally suited to set up ICs for Nbody simulations...



The ZA describes the non-linear evolution of density perturbations. It has two important 
advantages over the spherical collapse model:

                    it makes no oversimplified assumptions about geometry

                    it remains accurate well into the quasi-linear regime
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The ZA describes the non-linear evolution of density perturbations. It has two important 
advantages over the spherical collapse model:

                    it makes no oversimplified assumptions about geometry

                    it remains accurate well into the quasi-linear regime

To understand why the ZA is more accurate in the quasi-linear regime (brakes down at a later 
stage), have a look at its predicted evolution for an overdensity:

                   

1 + �(�x, t) =
�(�x, t)
�̄(t)

=
1

(1� c�1) (1� c�2) (1� c�3)

It is clear from this equation that collapse happens first along the axis associated with the 
first (largest) eigenvalue,              gravity accentuates asphericity! �1
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The ZA describes the non-linear evolution of density perturbations. It has two important 
advantages over the spherical collapse model:

                    it makes no oversimplified assumptions about geometry

                    it remains accurate well into the quasi-linear regime

To understand why the ZA is more accurate in the quasi-linear regime (brakes down at a later 
stage), have a look at its predicted evolution for an overdensity:

                   

1 + �(�x, t) =
�(�x, t)
�̄(t)

=
1

(1� c�1) (1� c�2) (1� c�3)

It is clear from this equation that collapse happens first along the axis associated with the 
first (largest) eigenvalue,              gravity accentuates asphericity! �1

Hence, collapse leads to flattened structures, called 
(Zel’dovich) pancakes. The ZA approximation is so 
accurate simply because, as mentioned above, it 
becomes exact in the limit of planar perturbations...

Because ZA is so accurate, it is often used in setting up

the initial conditions for N-body simulations.

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Zel’dovich Pancakes







As is evident from the ZA, in general density perturbations will collapse according to:
overdensity sheet (pancake) filament halo

For a uniform, ellipsoidal overdensity in  homogeneous universe (ellipsoidal top-hat) one can 
obtain analytical approximations for time evolution of its 3 principal axes         (see MBW §5.3). 

This can be used to compute the critical overdensity for collapse (of the longest axis =

`halo formation’) in linear theory. The result can be obtained by solving 

�ec
�sc

� 1 + 0.47


5(e2 ± p2)

�2ec
�2sc

�0.615
Sheth, Mo & Tormen (2001)

�sc = �c ' 1.686Here                         is the critical overdensity for ellipsoidal collapse, 

is the critical overdensity for spherical collapse, and the plus (minus) sign is used if p 

is negative (positive)....

�ec = �ec(e, p)

continued on next page...
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�ec
�sc

� 1 + 0.47


5(e2 ± p2)

�2ec
�2sc

�0.615

The parameters e and p characterize the asymmetry of the initial tidal field:

Ellipsoidal collapse

p ⌘ �1 + �3 � 2�2

2(�1 + �2 + �3)
e ⌘ �1 � �3

2(�1 + �2 + �3)

Note that for a spherical system �1 = �2 = �3 e = p = 0 �ec = �sc ' 1.686

In general, however,                        which results in                , which implies that

structures collapse later under ellipsoidal collapse conditions (more realistic) than

under spherical collapse conditions.  

�1 > �2 > �3 �ec > �sc

Note, though, that this depends on how `collapse’ of ellipsoid is defined:

Here we associated collapse with that of the longest axis. If using collapse along the

shortest axis instead, one finds the opposite: ellipsoidal structures collapse earlier

than spherical ones....
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In general, however,                        which results in                , which implies that

structures collapse later under ellipsoidal collapse conditions (more realistic) than

under spherical collapse conditions.  

�1 > �2 > �3 �ec > �sc

Note, though, that this depends on how `collapse’ of ellipsoid is defined:

Here we associated collapse with that of the longest axis. If using collapse along the

shortest axis instead, one finds the opposite: ellipsoidal structures collapse earlier

than spherical ones....

As a final remark, as we will see later, less massive structures are more strongly 
influenced by tides and therefore more ellipsoidal...This has important implications....
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Relaxation: the process by which a physical system acquires equilibrium or returns to 

                   equilibrium after a disturbance. Often, but not always, relaxation erases   

                   the system’s “knowledge” of it’s initial conditions.

Virialization: the process by which a physical system settles in virial equilibrium

Virial Equilibrium: A system is said to be in virial equilibrium if

2K +W + � = 0

⌃

K

W

= kinetic energy
= potential energy
= work done by 

   surface pressure

Often,    can be ignored, in which case 

virial equilibrium implies that

⌃
E = �K = W/2
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                   equilibrium after a disturbance. Often, but not always, relaxation erases   

                   the system’s “knowledge” of it’s initial conditions.

Virialization: the process by which a physical system settles in virial equilibrium

Virial Equilibrium: A system is said to be in virial equilibrium if

2K +W + � = 0

⌃

K

W

= kinetic energy
= potential energy
= work done by 

   surface pressure

Often,    can be ignored, in which case 

virial equilibrium implies that

⌃
E = �K = W/2

Two-body relaxation time: the time required for a particle to change its kinetic energy 

                                             by about its initial amount due to two-body interactions 

As you learn in Galactic Dynamics, the two-body relaxation time, trelax ' N

10lnN
tcross

Here N is the number of particles and                      is the system’s crossing time. tcross ⇠ R/v

For almost all collisionless systems of interest to us (galaxies, dark matter haloes) 

it is easy to show that                                                              trelax � tHubble ' 1/H0
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 PUZZLE: if galaxies and haloes have two-body relaxations times that are 

                 orders of magnitude larger than the Hubble time, how can galaxies

                 (and haloes) appear relaxed?
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                 (and haloes) appear relaxed?

Collisionless systems such as galaxies and dark matter haloes do not relax via 
two-body interactions, but rather by a combination of four other mechanisms:
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 PUZZLE: if galaxies and haloes have two-body relaxations times that are 

                 orders of magnitude larger than the Hubble time, how can galaxies

                 (and haloes) appear relaxed?

Collisionless systems such as galaxies and dark matter haloes do not relax via 
two-body interactions, but rather by a combination of four other mechanisms:

Phase-mixing

Chaotic mixing

Violent Relaxation

Landau damping

the spreading of neighboring points in phase-space due to 
the difference in frequencies between neighboring orbits

the spreading of neighboring points in phase-space due 
to the chaotic nature of their orbits

the change in energy of individual particles due to 
changes in the overall potential

the damping and decay of perturbations due to 
decoherence between particles and waves (recall free 
streaming)
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 PUZZLE: if galaxies and haloes have two-body relaxations times that are 

                 orders of magnitude larger than the Hubble time, how can galaxies

                 (and haloes) appear relaxed?

Collisionless systems such as galaxies and dark matter haloes do not relax via 
two-body interactions, but rather by a combination of four other mechanisms:

Phase-mixing

Chaotic mixing

Violent Relaxation

Landau damping

the spreading of neighboring points in phase-space due to 
the difference in frequencies between neighboring orbits

the spreading of neighboring points in phase-space due 
to the chaotic nature of their orbits

the change in energy of individual particles due to 
changes in the overall potential

the damping and decay of perturbations due to 
decoherence between particles and waves (recall free 
streaming)

In what follows, we briefly discuss each of these in turn. As we will see violent relaxation 
and Landau damping are basically specific examples of phase mixing....
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 harmonic

oscillators

Consider a large number of harmonic oscillators, all with slightly different frequencies

(i.e, with slightly different sling-lengths). If they are close to each other initially, they 

will, over time, phase-mix (the overall system appears more relaxed).

Let     and     be the phase and frequency of oscillator  , then oscillators   and   separate

at a rate                                         :        phase mixing scales linearly with time.  


�i !i

(�⇥)ij(t) = 2�(�⇤)ijt
i i j

According to the collisionless Boltzmann equation, the (fine-grained) DF             remains

constant. However, the coarse-grained DF,             , measured at the initial region of phase-
space, decreases as a function of time, as more and more “vacuum” is mixed in. 

f(�x,�v)
fc(�x,�v)
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The collapse of a spherical system with �i / r�3/2

Phase-mixing at work:

(from: Henriksen & Widrow 1997)

Phase-mixing of dark matter 
particles in a numerical N-
body simulation. The particles 
are initially placed in a 
stratified sphere with zero-
velocities. Collapse rapidly 
phase mixes the particles 

Note that phase-mixing is a relaxation process that does not cause any loss of information:

at the fine-grained level, phase-mixing is perfectly reversible and preserves all knowledge of 
the initial conditions....

Note how the number of 
particles in the red box,

representing the coarse-
grained DF,    , becomes more 
and more similar to that of 
neighboring boxes; the system

is relaxing...

fc
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Some particles are on stochastic (or ‘chaotic’), 
rather than regular orbits (see MBW §5.4.5 for a 
detailed description). Such particles experience 
chaotic mixing (in addition to phase mixing). 

regular orbit

regular orbit stochastic orbit

divergence of

two trajectories

due to chaotic 

behavior

Chaotic mixing arises from the fact that 
stochastic orbits separate exponentially with

time (they have non-zero Lyapunov exponents)

Unlike for phase-mixing, chaotic mixing is

irreversible in the sense that an infinitely precise 
fine-tuning of the phase-space coordinates is 
required to undo its effects...

Time-scale for chaotic mixing, however,  is often 
much longer than Lyapunov time scale due to 
Arnold web diffusion...

Unlike for phase-mixing, which operates in 
all dynamical systems, chaotic mixing is 
only  important if a significant fraction of 
phase-space is occupied by stochastic 
orbits.
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Thus we see that the only way in which a particle’s energy can change in a 
collisionless system is by having  a time-dependent potential.

Since                       and                   we have that:� = �(�x, t)E = v2/2 + �

no

relaxation

particle 

looses 

energy

particle 

gains


energy

time

Exactly how a particle’s 
energy changes due to 
violent relaxation depends 
in a complex way on the 
particle’s initial position 
and energy: particles can 
gain or loose energy.

Overall, however, violent 
relaxation increases the 
width of the energy 
distribution...

dE

dt
=

�E

��v

d�v

dt
+

�E

��
d�
dt

= ��v · ��� +
d�
dt

= �⇥v · ⇥⇥�+
��

�t
+

��

�⇥x
· d⇥x
dt

=
��

�t
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A few remarks about violent relaxation:
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Note that dE/dt is independent of particle mass; hence, violent relaxation has no

tendency to segregate particles by mass (in fact, it will undo any pre-existing

segregation). This is very different from collisional relaxation, where momentum

exchange during collisions drives system towards equipartition of kinetic energy: more 
massive particles end up with lower velocities         mass segregation.

Violent relaxation is self-limiting: as soon as a system approaches any equilibrium, the 
large-scale potential fluctuations vanish; the mixing due to violent relaxation destroys 
the coherence that drives potential fluctuations        violent relaxation does not run to 
completion; not all knowledge of initial conditions is erased


The time scale for violent relaxation is of order the time scale on which the

potential changes by its own amount. This is basically the collapse time scale

(≅free fall time)        violent relaxation is very fast, hence its name

During collapse of a collisionless sytem the CBE is still valid, i.e., the fine-grained

DF does not evolve                         violent relaxation only mixes at the coarse-grained 
level. Note, though, that unlike for a steady-state system, 


df/dt = 0
�f/�t �= 0



lo
g 

dN
/d

E

energy

Differential energy distributions of particles in Nbody 
simulation of gravitational collapse. Note how violent 
relaxation broadens the energy distribution with time. 

(from: van Albada 1982)
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lo
g 

dN
/d

E

energy

initial energy

fin
al

 e
ne

rg
y

(from: van Albada 1982)

Scatter plot of final vs initial energies of the particles in

the above Nbody simulation. Note that the correlation is 

significant, indicating that violent relaxation has not completely 
erased memory of the system’s initial conditions.

Differential energy distributions of particles in Nbody 
simulation of gravitational collapse. Note how violent 
relaxation broadens the energy distribution with time. 

(from: van Albada 1982)
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Note how phase-mixing is 
the dominant relaxation 
mechanism during the initial 
phases of the collapse.

Violent relaxation leads to efficient coarse-grain mixing of the DF and erases the system’s

memory of its initial conditions in a non-reversible way. 

Note how the number of 
particles in the red box,

representing the coarse-
grained DF,    , becomes 
more and more similar to 
that of neighboring boxes; 
the system is relaxing...

fc

The collapse of a spherical system with �i / r�3/2

Violent Relaxation at work:

(from: Henriksen & Widrow 1997)

After some time there is a 
transition to a more “erratic” 
flow: due to the time-varying 
potential phase-space 
streams start to undergo 
complicated bends and 
wiggles. This is violent 
relaxation at work!
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A detailed treatment of Landau damping is beyond the 

scope of these lectures. 

Lev Landau

Donald Lynden-Bell

Landau damping is the damping of plasma waves due to 
interactions between wave and background particles.

Lynden-Bell showed that a similar phenomenon also 
applies to a collisionless, gravitational system.

It arises due to decoherence between the particle

velocities and the group velocity of the wave...

It’s main effect is to convert the energy in the wave, 
which is created due to some gravitational interaction/
disturbance, into random motions of the background 
particles.
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Students: read MBW §5.5.5 for a discussion as to why a statistical mechanics

                 treatment fails...

http://arxiv.org/abs/astro-ph/9810371

An excellent treatment of relaxation mechanisms in 
collisionless systems can be found in a review article 

by Merritt (1998):

For a more in-depth treatment, consult the excellent 
textbook “Galactic Dynamics” by Binney & Tremaine

Several people have tried to use the principles of statistical mechanics to predict 
the end-state of a relaxed, collisionless system. Unfortunately, very

little progress has been made, and there is currently no clear understanding

on how to proceed, other than use numerical N-body simulations.

The main problem is that because of the long-range nature of gravity, it isn’t

clear how (best?) to define the entropy of a gravitational system...
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Lecture 8
SUMMARY



 the halo bias function

In the non-linear regime (         ) perturbation theory is no longer valid. Modes

start to couple to each other, and one can no longer describe the evolution of the density field 
with a simple growth rate: in general, no analytic solutions exist...

� > 1

Because of this mode-coupling, the density field looses its Gaussian properties,

i.e., in the non-linear regime, density field cannot remain Gaussian.

The Zel’dovich approximation is a Lagrangian treatment of the displacement field.

 It remains accurate in the quasi-linear regime, up to first shell crossing.

Spherical Collapse (SC) model can be used to `identify’ when and where collapsed 
objects will appear. Ellipsoidal Collapse model improves upon SC by accounting for the 
impact of tides, which typically are more important for less massive objects
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Violent relaxation operates on the free-fall time, only mixes at the course-grain level of the 
distribution function, and is self-limiting.

There are four relaxation mechanisms for collisionless systems:

         - phase mixing

         - chaotic mixing

         - violent relaxation

         - Landau damping

Unlike collisional relaxation, violent relaxation does not cause mass segregation

The only way in which a particle’s energy can change in a collisionless system is by having  a 
time-dependent potential.
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 the halo bias function

ph
ys

ic
al

 d
en

si
ty SC model

bound halo

non-linearlinear
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x8

linear theory

WARNING 

not to scale

scale factoramax aviraNL

x2.686

background 

density;

x2.062

a�3

turn-around collapse

SC model 4.55 ∞
linear model 1.062 1.686

� = �/�̄� 1

1 + � =
⇢

⇢̄
=

9

2

(✓ � sin ✓)2

(1� cos ✓)3

Spherical Collapse model

�lin =
3
20

(6�)2/3

�
t

tmax

�2/3

Linear theory

Virialization:
rvir = rta/2
1 + �vir = 18�2 � 178 � 200

�x(t) = �xi �
D(a)
4�G�̄i

���i

Zel’dovich Approximation

2K +W + � = 0Virial Theorem:

Violent Relaxation: dE/dt = ��/�t

trelax ' N

10lnN
tcrosstwo-body relaxation time:
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