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ASTR 610
 Theory of Galaxy Formation

Lecture 7: The Transfer Function & 
                  Cosmic Microwave Background



Topics that will be covered include:

Harrison-Zel’dovich spectrum
Transfer Function
Gaussian Random Fields
Two-Point Correlation Function
Power Spectrum
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Evolution of the Linear Density Field

So far we have seen how (individual) linear perturbations evolve in an expanding

space-time. We will now develop some useful `machinery’ to describe how the

entire cosmological density field (in the linear regime) evolves as function of time.



Since        is believed to be the outcome of some random process in the early 
Universe (i.e., quantum fluctuations in inflaton), our goal is to describe the 
probability distribution

�(�x)

P(�1, �2, ..., �N ) d�1 d�2 ...d�N

�1 = �(�x1)where                   , etc. For now we will focus on the cosmological density 
field at some particular (random) time. We will address its time evolution later 
on in this lecture

��l1
1 �l2

2 ...�lN
N � =

�
�l1
1 �l2

2 ...�lN
N P(�1, �2, ..., �N ) d�1 d�2 ...d�N

This probability distribution is completely specified by the moments

First Moment ��� =
�

�P(�) d� =
�

�(�x) d3�x = 0

ergodic principle: ensemble average = spatial average

How can we describe the cosmological (over)density field,           , without 
having to specify the actual value of    at each location in space-time,         ? (�x, t)�

�(�x, t)
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The Cosmological Density Field



Second Moment ��1 �2� � �(r12) r12 = |�x1 � �x2|

�(r) is called the two-point correlation function

Poisson distributionClustered distribution

�(r)

r

1 + �(r) =
npair(r ± dr)

nrandom(r ± dr)

Note that this two-point correlation function is defined for a continuous 
field,        . However, one can also define it for a point distribution:�(�x)
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The Two-Point Correlation Function



Thus far we discussed the first and second 
moments; how many moments do we need to 
completely specify the matter distribution?

However, there are good reasons to believe that the density distribution

of the Universe is special, in that it is a Gaussian random field...

A random field        is said to be Gaussian if the distribution of the field values

at an arbitrary set of N points is an  N-variate Gaussian:

�(�x)

Q � 1
2

�

i,j

�i (C�1)ij�j

Cij = ��i�j� = �(r12)
P(�1, �2, ..., �N ) =

exp(�Q)
[(2�)N det(C)]1/2

In principle infinitely many......

As you can see, such a Gaussian random field is completely specified

by its second moment, the two-point correlation function       !!!!�(r)
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Gaussian Random Fields



Often it is very useful to describe the matter field in Fourier space:

�(�x) =
�

k

��k e+i�k·�x

Here V is the volume over which the Universe is assumed to be periodic.

Note: the perturbed density field can be written as a sum of plane waves 

          of different wave numbers k (called `modes’)

��k =
1
V

�
�(�x) e�i�k·�x d3�x

The Fourier transform (FT) of the two-point correlation function is

called the power spectrum and is given by

A Gaussian random field is completely specified by either the two-point

correlation function       , or, equivalently, the power spectrum�(r) P (k)

Note: P(k) has

units of volume!

P (�k) � V �|��k|2�

=
�

�(�x) e�i�k·�x d3�x

= 4�

�
�(r)

sin kr

kr
r2 dr
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The Power Spectrum



Our goal in what follows is to derive the evolution of the Power Spectrum P (k, t)

d2��k

dt2
+ 2

ȧ

a

d��k

dt
=

�
4�G�̄� k2c2

s

a2

�
��k �

2
3

T̄

a2
k2 S�k

As we have seen, in the linear regime the linearized fluid equations reduce to

which show that each mode,         , evolves independently!��k(t)

Since                                    , we therefore need to solve the above equation for

each individual mode. In the previous lecture, we have seen how to do this. All

we need is a convenient and concise way to write this down...

P (k, t) = V �|��k(t)|2�

As we shall see, we can simply write

is the initial power spectrum (i.e., shortly after creation of perturbations)

T (k)               is called the transfer function, and will be defined below
D(t)               is the linear growth rate, defined in the previous lecture.

P (k, t) = Pi(k) T 2(k) D2(t)

Pi(k)
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Evolution of the Power Spectrum



We define the transfer function as T (k) =
��k(am)
��k(ai)

Here     is the scale factor at our `initial’ time. Note that the transfer function 

is independent of     , which follows from the fact that potential modes are frozen

during the EdS phase where      is defined.

ai

am

am
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The Transfer Function
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�d

ai am

described by
transfer function



However, accurate calculations of         requires solving the Boltzmann equation in a 
perturbed FRW metric.  This is a formidable task, that will not be covered in this course.

                  (if interested, see MBW §4.2 or textbook Modern Cosmology by S. Dodelson). 

T (k)

T (k) =
��k(am)
��k(ai)

Thus, in order to compute         we need to evolve 
different modes from their initial conditions to some 
fiducial time shortly after recombination (EdS phase).

T (k)

In Lecture 4 we have seen how this can be done using Newtonian perturbation theory.

d2��k

dt2
+ 2

ȧ

a

d��k

dt
=

�
4�G�̄� k2c2

s

a2

�
��k �

2
3

T̄

a2
k2 S�k

T (k)Fortunately, nowadays a number of codes to compute         are publicly available:

The next two pages show examples of mode-evolution computed using such codes....

CMBFAST: http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm

http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/CMBEASY:
CAMB: http://camb.info/

Websites:

CLASS: http://class-code.net/
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The Transfer Function

http://class-code.net
http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
http://camb.info
http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/
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Growth of Isentropic Perturbation Mode

1 2
3

4

5

Identify epochs 1 and 2.

Curves 3, 4 and 5 correspond to overdensities in different components; which?

Give an estimate of the wavelength/mass of this mode. Justify your answer.
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Text

The above example shows the evolution of the amplitude of a mode corresponding 
to a mass scale of             in an EdS cosmology. Note that

so that there is no Silk damping.

1015M� Md(zrec) < M < MJ(zrec)

EdS
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Growth of Isentropic, Baryonic Perturbation
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Same mode/cosmology as before, except that we have now added dark matter.

Since this mode (                     ) enters horizon after matter-radiation equality, there 
is no Meszaros effect. After recombination, baryons quickly catch-up with dark 
matter (they fall in the dark matter potential wells)

M = 1015M�

EdS
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Growth of Isentropic Perturbation



This figure shows examples 
of three transfer functions for 
isentropic perturbations.

CDM = Cold Dark Matter

HDM = Hot Dark Matter

baryon = no Dark Matter

The Meszaros effect:  suppression on small scales due to stagnation
Free streaming damping: HDM only (in CDM only on very small scales)

Silk damping: erasing small scale baryonic perturbations

1
2
3
4

Acoustic oscillations: dotted lines indicate negative T(k)

Question: what are the

   physical processes giving 

   rise to 1, 2, 3, and 4?

2

3

1

4
small  
scales

large  
scales

1.0
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Examples of Transfer Functions



As we have seen,                                               . It is common practice to assume 
that the initial power spectrum has a power-law form 

Pi(k) � kn

P (k, t) = Pi(k) T 2(k) D2(t)

where    is called the spectral index. As described in MBW §4.5, the power spectra 
predicted by inflation models typically have this form (roughly).

n

Recall that the power spectrum         has the units of volume. It is often useful to 
define the dimensionless quantity

P (k)

�2(k) � 1
2�2

k3P (k)

which expresses the contribution to the variance by the power in a unit logarithmic

interval of   . For the initial power spectrum: k �2

i (k) � k3+n

The corresponding quantity for the gravitational potential is

�2
�(k) � 1

2�2
k3P�(k) � k�4�2(k) � kn�1

where the second step follows straightforward from the Poisson equation..
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The Initial Power Spectrum



�2
�(k) � 1

2�2
k3P�(k) � k�4�2(k) � kn�1

Note that            is independent of    for           . This special case is called 

the Harrison-Zel’dovich spectrum or scale-invariant spectrum, which has the 

desirable property that the gravitational potential is finite on both small and

large scales. Inflation predicts that the `tilt‘              is very small, which is

supported by observations of the CMB power spectrum.   

�2
�(k) k n = 1

|n� 1|

Komatsu et al. (2009)

The normalization of the initial 
power spectrum is normally defined 
via the parameter     , which will be 
described in detail once we discuss 
filtering of the cosmological density 
field.

�8
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The Initial Power Spectrum



The Cosmic Microwave
Background



The Cosmic Microwave Background is one of the three pillars of Big Bang 
cosmology. Its anisotropy power spectrum has a rich structure that can tell us much 
about our cosmological world-models. Understanding these structures is a perfect 
application of what we have learned above regarding perturbation growth.

Many of the materials used in this section are taken from Wayne Hu’s website (background.uchicago.edu)

The Cosmic Microwave Background

Topics that will be covered include:

Cosmological Parameters
Diffusion damping
Sachs-Wolfe effect
CMB acoustic peaks
CMB dipole
CMB Power Spectrum
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COBE WMAP

launched Nov 1989 
angular resolution: 7 degrees

launched Jun 2001 
angular resolution: 13 arcminutes

increasing tem
perature sensitivity

increasing spatial resolution

�T

T
= 1.5

�T

T
= 3⇥ 10�3

�T

T
= 7⇥ 10�5
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CMB Anisotropy



The WMAP all sky map, after removal of the radiation coming from the Milky Way disk

�T

T
= 7⇥ 10�5

“cold” spot;

T = 2.7262 K

“hot” spot;

T = 2.7266 K
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CMB Anisotropy
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…and then there was Planck…
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…and then there was Planck…
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…and then there was Planck…



Recombinationtime

neutral hydrogenphoton-baryon fluid

Rather                    , where the latter is the redshift of decoupling, defined as the epoch at 
which the Thomson scattering rate                       is equal to the Hubble expansion rate

zLSS = zdec

H(z)�T = ne �T c

CMB radiation comes to us from 
last scattering surface (LSS). 
Since recombination is not 
instantaneous, in general 

                   . Here, the redshift of 
recombination,       , is defined as 
the redshift at which the 
ionization fraction drops below 
some value (typically 0.1).

zLSS �= zrec

zrec

Detailed calculations, using Boltzmann codes, show that for                              , the 
probability          that a photon had a last scattering at redshift z has a median at

                    and a width                (see MBW §3.5.2).

�b,0/�m,0 � 0.17

zdec � 1100
P (z)

�z � 80

As we shall see, this non-zero width of the LSS causes damping (called diffusion damping) 
of the CMB anisotropies on smal scales.
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Recombination and Decoupling



It is useful to expand this in Spherical Harmonics:

NOTE: this is similar to an expansion in plane-waves (i.e., Fourier Transform), except that here a different 

            set of basis-functions is used, optimized to describe a distribution on a spherical surface.

‡

Similar to        , the CMB has to be considered

a particular realization of a random process.

�(⇥x)

‡

Cl = �|alm|2⇥

⇥(n̂) ⌘ �T

T
(n̂) =

T (n̂)� T̄

T̄

�(n̂) =
X

l,m

alm Ylm(⇥,�)

Define the CMB anisotropy distribution

T̄
n̂ = (⇥,�)Here                   is direction on the sky, 


and     is the average CMB temperature.  

We expand this in Spherical Harmonics:

and define the power spectrum as

Almost always, the power spectrum that people plot is not     but                . The reason is

that for a Harrison-Zel’dovich spectrum in a EdS cosmology, the latter is independent of 

on large scales (= small   ).  The small upturn at large scales in the WMAP power spectrum  

therefore indicates that            and/or                 (due to integrated Sachs-Wolfe effect). 

Cl l(l + 1)Cl
l

l
ns 6= 1 �m,0 6= 1
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The CMB Power Spectrum



It is useful to expand this in Spherical Harmonics:

As a rule of thumb, the relation between

   and the associated angular scale    is:l ✓

� ⇠ ⇥

l
rad ⇠ 180�

l

A comoving length         at last scattering 
surface (i.e., at              ), subtends an angle

�com

z = zdec

For a flat ΛCDM cosmology, this yields: � � 0.3�
�

�com

1h�1Mpc

� �
�m,0

0.3

�1/2

An important scale is the comoving Hubble radius at decoupling,                           , which

is similar to the particle horizon at        except for a factor of order unity.

rH = c/H(zdec)
zdec

For a flat ΛCDM cosmology                                     , which corresponds to             . �H � 0.87�
� zdec

1100

��1/2
l � 200

CMB anisotropies with              correspond to super-horizon scale perturbations.l < 200

� =
�phys

dA(zdec)
=

�com

dA(zdec) (1 + zdec)
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The CMB Power Spectrum



It is useful to expand this in Spherical Harmonics:

As a rule of thumb, the relation between

   and the associated angular scale    is:l ✓

� ⇠ ⇥

l
rad ⇠ 180�

l

A comoving length         at last scattering 
surface (i.e., at              ), subtends an angle

�com

z = zdec

CMB anisotropies with              correspond to super-horizon scale perturbations.l < 200

� =
�phys

dA(zdec)
=

�com

dA(zdec) (1 + zdec)
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The CMB Power Spectrum

On these super-horizon scales, only two effects can contribute to non-zero �T/T

fluctuations in the gravitational potential       (photons lose energy 

           when climbing out of a potential well....)

��k

fluctuations in the energy density of the photons �� � �r

The combination of these two effects is known as the Sachs-Wolfe effect.
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Power Spectrum; current status



Origin of CMB dipole 

is Doppler effect due to 

our peculiar motion

directio
n of m

otion

hotter

colder

Photons coming from the direction in which we are moving are blueshifted (as if that 
direction is moving towards us). Photons of a shorter wavelength correspond to 
photons of a higher temperature (i.e., Wien’s law)

Our peculiar motion is made up of:

Total vector sum of 369 km/s

Motion of Earth around Sun (~30 km/s)
Motion of Sun around MW center (~220 km/s)
Motion of MW towards Virgo cluster (~300 km/s)
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The CMB Dipole



After entering horizon, baryonic perturbations below Jeans mass start acoustic 
oscillations. These are driven by the potential perturbations in the dark matter.

Adiabatic compression of gas heats it up  

Adiabatic expansion of gas cools it down Temperature fluctuations

Enormous pressure of tightly coupled photon-baryon fluid, due to Thomson scattering of 
photons off free electrons, resists  gravitational compression.

       acoustic oscillations (compression --> rarefaction --> compression --> rarefaction).

The resulting sound waves in photon-baryon fluid create temperature fluctuations
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Origin of Acoustic Peaks



After entering horizon, baryonic perturbations below Jeans mass start acoustic 
oscillations. These are driven by the potential perturbations in the dark matter.

Red is Cold
Blue is Hot

Compression results in higher temperature

Rarefaction  results in lower temperature

Oscillations:   Compression in valley (hot)   & rarefaction    at hill (cold) 

   is followed by  rarefaction in valley (cold) & compression at hill (hot) 

is followed by compression in valley (hot)   & rarefaction     at hill (cold), etc

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Origin of Acoustic Peaks



Since sound speed of photon-baryon fluid is the same for all modes, 

those with a smaller wavelengths oscillate faster....

At recombination, photons are released, and pressure of photon-baryon fluid 
abruptly drops to (almost) zero. Temperature of photons at release is frozen 
at that at recombination. Put differently; the last-scattering surface is a snap-
shot view of oscillation phases of all different modes. 


 long-wavelength  
mode
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Origin of Acoustic Peaks

 short-wavelength  
mode



Useful mnemonic:

CMB photons observed today
CMB photons observed 2 Gyrs ago

CMB photons observed 105 yrs from today

At each point in time, one observes 
CMB photons coming from jack-in-the-
boxes at different locations...

The CMB photons observed today 
were all released at decoupling from  
jack-in-the-boxes that are equi-
distant from us (indicated by blue, 
dashed circle. 
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Observing the CMB



Shown is the time-evolution of a single perturbation mode, 

together with the locations of six `jack-in-the-boxes’.

Space

Sp
ac

e
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Origin of Acoustic Peaks



At recombination, jack-in-the-boxes open (photons `decouple’) and the 
photons start to free-stream through space. 

Space

Sp
ac

e

=observer
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Origin of Acoustic Peaks



Space

Sp
ac

e

=observer

The observer sees this mode as angular temperature fluctuation on the sky,

 with a characteristic angular scale set by the wavelength of the mode.
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Origin of Acoustic Peaks



The first acoustic peak is due to the mode that just reaches maximal 
compression in valley/rarefaction on hill top for first time at recombination

∆
T/

T

time RecombinationBig Bang

At recombination

Sachs-Wolfe

large
scales

small
scales

hot cold hot

Inflation Decoupling
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The Origin of the first Acoustic Peak



∆
T/

T

time RecombinationBig Bang

At recombination

large
scales

small
scales

Question: Why are temperature fluctuations at troughs not zero?
Temperature fluctuations at troughs are not zero! Although photon-baryon 
fluid has constant temperature, motions in the fluid cause Doppler shifts

DecouplingInflation
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The Origin of the first Acoustic Through



The second acoustic peak is due to mode that just reaches maximal 
rarefaction in valley/compression on hill top for first time at recombination

At recombination

∆
T/

T

time RecombinationBig Banglarge
scales

small
scales

cold coldhot

DecouplingInflation
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The Origin of the second Acoustic Peak



large
scales

small
scales

damping

Recombination is not instantaneous; rather, 
LSS has a finite thickness   . Consequently, 
temperature fluctuations due to modes with 
a wavelength          are washed out. This 
diffusion damping explains damping of CMB

power spectrum on small scales.


� < d

d

observer

last  
scattering 
     surface

d

In addition to diffusion damping, operating

on scales               , there is also Silk damping.

However, the latter only operates on scales 

                and is therefore subdominant.

l > 1000

l > 2000
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Diffusion Damping



One such triangle comes 
from angular scale of 
first acoustic peak, 
which corresponds to 
wavelength of mode that 
just managed to reach 
maximal compression at 
decoupling....

RESULT:  Our Universe is flat (K=0), i.e., has Euclidean Geometry

K > 0 K < 0K = 0
�fp�fp�fp

lsslsslss

Curvature of Universe can be probed using large-scale triangles...

�com
fp /2 = cs �dec

cs � c/
�

3
�com

fp � c �dec

= �H(zdec)

Comoving wavelength of mode at 
first peak,        , is roughly equal to 
particle horizon at decoupling.

�com
fp

As we have seen, for a flat Universe,                 corresponds to �H(zdec) l � 200
The first acoustic peak of the CMB power spectrum is observed at l � 200
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The Curvature of the Universe



Since odd peaks (first, third, etc) correspond to 
compression in valleys, whereas even peaks 
(second, fourth, etc) correspond to compression on 
hill tops, the baryon-to-dark matter ratio controls the 
ratio of odd-to-even peak heights. 

RESULT:  dark matter density ~6x higher than baryon density

Red is Cold
Blue is Hot

Increasing density of baryons relative to that of dark 
matter causes stronger compression in valleys (due to 
the self-gravity of baryons), and less compression on 
hill tops. 
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The Baryonic Mass Fraction



Lecture 7
SUMMARY



 the halo bias function

ergodic principle

Gaussian random field

two-point correlation function

Harrison-Zeldovic spectrum

Key words 
Power spectrum

recombination vs. decoupling

last scattering surface

diffusion damping

Finite thickness of lss causes diffusion damping of CMB perturbations

Location of first peak in CMB power spectrum           curvature of Universe

Ratio of first to second peak in CMB power spectrum          baryon-to-dark matter ratio

CMB dipole reflects our motion wrt last scattering surface (lss)

The power-spectrum is the Fourier Transform of the two-point correlation function

A Gaussian random field is completely specified (in statistical sense) by the 

power-spectrum. The phases of all modes are independent and random.

Summary: key words & important facts
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 the halo bias function

Q � 1
2

�

i,j

�i (C�1)ij�j

Cij = ��i�j� = �(r12)
P(�1, �2, ..., �N ) =

exp(�Q)
[(2�)N det(C)]1/2

P (k, t) = Pi(k) T 2(k) D2(t)

T (k) =
��k(am)
��k(ai)

Pi(k) = �|��k(ai)|2� =
4
9

k4�|��k, i|
2�

�2
m,0 H4

0

=
4
9

k4 P�,i(k)
�2

m,0 H4
0

��� =
�

�P(�) d� =
�

�(�x) d3�x = 0

ergodic principle: ensemble average = spatial average

Gaussian 
random 

field

two-point 
correlation 

function

first  
moment

Power 
spectrum 

& 
transfer 
function

��1 �2� � �(�r12) = �(r12)

1 + �(r) =
npair(r ± dr)

nrandom(r ± dr)

�2(k) � 1
2�2

k3 P (k)
dimensionless power spectrum

The transfer 
function T(k) is 

independent of am 
as long as Ω(am)≃1

cosmological principle: isotropy

Summary: key equations & expressions
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Hu & Dodelson 2002
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CMB Summary
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