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Lecture 6: Newtonian Perturbation Theory 
                     III. Dark Matter
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Describes evolution of individual modes in Fourier space, sourced by gravity & 
pressure (i.e., by isentropic and isocurvature perturbations).
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Adiabatic evolution of isentropic, 
baryonic perturbations

Silk damping arises from photon-
diffusion close to recombination.

After recombination, perturbations 
larger than Jeans length grow 
according to linear growth rate, D(a)

Perturbations smaller than Jeans 
scale undergo acoustic oscillations
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The Evolution of Baryonic Perturbations



This was the picture for structure formation developed by Zel’dovich and his colleagues during 
the 1960’s in Moscow. However, it soon became clear that this picture was doomed....

To allow sufficient time for fragmentation, the 

large-scale perturbations need large amplitudes 

in order to collapse sufficiently early. At recombination 
one requires |�m| > 10�3

Using that                                  , which follows 
from fact that perturbations are isentropic and 
from            , this model implies CMB fluctuations 

�T = 1/4�r = 1/3�m

�r / T 4

�T/T > 10�3

Such large fluctuations were already ruled out 
in early 1980s (e.g., Uson & Wilkinson 1984)

Nature 1984

If matter is purely baryonic, and perturbations are isentropic (`adiabatic’),

structure formation proceeds top-down by fragmentation of perturbations 
larger than Silk damping scale at recombinationMd ⇠ 1013M�
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The Adiabatic, Baryonic Model

Yakov Zel’dovich



While Zel’dovich was working on his adiabatic model, Peebles and his colleagues at 
Princeton developed an alternative model for structure formation, in which the 
perturbations were assumed to be isothermal (i.e.,            ), which is a good

approximation for isocurvature perturbations prior to the matter era.

�r = 0

In addition, isothermal perturbations are fairly “unnatural”. 

All these problems dissapear when considering a separate matter component: dark matter

Similar to adiabatic model, this isothermal

baryonic model requires large temperature 
fluctuations in CMB to explain observed structure

In this model, sound speed prior to recombination 
is much lower, resulting in much lower Jeans mass. 
Also, since there are no radiation perturbations, 
there is NO Silk damping. All perturbations with                                          

                                 survive, and structure 
formation proceeds hierarchical (bottom-up). 
M > MJ ⇠ 106M�

Prior to recombination, radiation drag prevents

perturbations from growing (they are `frozen’), but at 
least they are not damped... 
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The Isothermal, Baryonic Model

Jim Peebles



We now turn our attention to Collisionless Dark Matter. Here `Dark’ indicates

that this matter has no EM interaction (no interaction with photons).

In what follows we use X to indicate some generic particle species produced

in the early Universe. We call such particles `cosmic relics’.

Cold Dark Matter

Non-thermal Relics Thermal Relics

Hot Dark Matter

not produced in thermal equilibrium 
(TE) with rest of Universe.

particles are still relativistic at 
decoupling, i.e., 

particles are non-relativistic 

at decoupling i.e., 

Cosmic Relics

are held in TE with other components of 
Universe until they `decouple’, which happens 
when interaction rate                  drops below 
expansion rate

� = n��v�
H(a)

3kBTd > mXc2 3kBTd < mXc2

e.g., axions (FDM), monopoles, 

cosmic strings

e.g., massive neutrinos e.g., WIMPS
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Collisionless Dark Matter



In order to describe evolution of collisionless dark matter, in general one

cannot use the fluid description. Instead, one has to resort to the 

Collisionless Boltzmann Equation (CBE):

Let                                          be the distribution function, which expresses the 
number of particles per unit volume in phase-space. 

f(�x,�v, t) = dN/d3�x d3�v

For a collisionless system we have that df

dt
= 0

This is the CBE, which expresses that in a collisionless system the phase-space 
density around each particle is conserved (i.e., there is no diffusion or scattering).

�f

�t
+ vi

�f

�xi
� ��

�xi

�f

�vi
= 0

df =
�f

�t
dt +

�f

�xi
dxi +

�f

�vi
dviUsing that                                                              (Einstein summation convention)

and that                                  we can write the CBE as: dvi/dt = ���/�xi
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Collisionless Fluids



vk

continuity equation

Rather than solving CBE itself, one normally focusses on the moment equations. 
These are obtained by multiplying all terms by     and integrating over velocity 

space. When using comoving coordinates in an expanding space with scale 
factor       , one obtains, for a(t) k = 0

Similarly, for          one obtains
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These are called the Jeans equations, and are the collisionless analog of the 
Euler equations for a fluid. The only difference is that the stress tensor

now plays the role of the pressure...

��2
ij

Here                                                            , and        is the mean streaming 
motion in the   -direction.i

�vi�⇥com(⇤x) =
R
f d3⇤v = ⇥̄ a3 [1 + �(⇤x)]
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[(1 + �) �vj�] = 0
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Collisionless Fluids

NOTE: summation signs have been added 
for clarity, but can be removed according 
to the Einstein summation convention



The velocity dispersion tensor is defined as �2
ij � �vi vj� � �vi� �vj�

Since this tensor is manifest symmetric, i.e.,                 it is characterized by 6 
independent numbers. Thus, whereas fluid pressure is characterized by a 
single scalar quantity, the stress tensor has 6 unknowns.

�ij = �ji

This also means that a simple `Equation-of-State’ will NOT suffice to close

the set of equations           in general the Jeans equations cannot be solved.

One typically proceeds by making a number of simplifying assumptions (see 
MBW §5.4). In what follows, we will do the same and assume that the velocity

dispersion is isotropic �ij = � �ij

���2

�̄
= �2��If we further assume that    is independent of location, then�

Substituting this in the Jeans equations, and comparing the result to the Euler 
equations, it is clear that the velocity disperion                     now plays the same 
role as the sound speed,    , in the fluid equations.

� = �v2
i �1/2

cs
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Collisionless Fluids
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Collisional vs. Collisionless Fluids



Thus, a collisionless fluid with isotropic and homogeneous velocity dispersion 

can be described by exactly the same continuity and momentum equations as a 

collisional fluid, but with the sound speed     replaced by � = �v2

i �1/2cs

Hence we can define the collisionless analog of the Jeans length:

�prop
J = a(t)�com

J = a(t)
2⇥

kJ
= ⌅

r
⇥

G⇤̄

Free streaming damping arises because particles disperse in random directions due to 
their non-zero velocity dispersion. This `erases’ perturbations with            . 
� < �J

Collisionless Fluid

� < �J

� > �J gravitational collapse

free streaming damping

However, there is one very important difference wrt a collisional fluid:

Collisional Fluid

� < �J

� > �J gravitational collapse

acoustic oscillations

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

The Jeans Length of a Collisionless Fluid



The time for collisionless particles to disperse over a distance    is                 .⌧disp =
�

�
�

The fact that perturbations with             damp due to `free streaming’ is easy

to understand:

� < �J

Hence, the criterion             implies that                         , where we have used

the definition of the Jeans length. 

� < �J ⇤disp <

r
�

G⇥̄

The Friedmann equation for a flat Universe (without cosmological constant) is:

H(a) =

r
8�G⇥̄

3

from which we see that (roughly)  �disp < �H = 1/H(a)

Hence for perturbations with             the dispersion time is shorter than the

Hubble time, and those perturbations will thus have dispersed (=damped). 

� < �J
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Free Streaming Damping



We now proceed to estimate how far these neutrinos could have free-streamed

up to the time of equality. We define the free-streaming length as the comoving 
distance travelled, i.e., 

As an example, consider massive neutrinos with a mass m⌫c
2 ⇠ 30eV

This was actually a popular dark matter candidate during early 1980s for two reasons:
There was a (false) experimental claim that neutrinos indeed were this massive.
One can show that                                                  (of order unity, as required).�⌫ ⇠ 0.32h�2(m⌫c

2/30 eV)

These neutrinos become non-relativistic when 3kBT� ⇠ m⌫c
2

Using that                                this yields T� = 2.7K(1 + z) (1 + zNR) ' 4.3⇥ 104

A more accurate calculation that accounts for fact that after decoupling

               yields (1 + zNR) ' 6.0⇥ 104T⌫ 6= T�

For comparison, neutrinos decouple (`freeze-out’) at 

so that we clearly have                                massive neutrinos are HDM 

(1 + zdec) ⇠ 4.3⇥ 109

zNR ⌧ zdec

�com
fs =

� teq

0

v(t�)
a(t�)

dt�
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Free Streaming Damping See MBW §3.3.3 
for more details



Using that the peculiar velocity of neutrinos is            prior to        and               
thereafter, one obtains that at the time of equality

v � c v � a�1tNR

Where we have used that                    during the radiation dominated era. a(t) � t1/2

�com
fs =

2 c tNR

aNR
[1 + ln(aeq/aNR)]

Thus, all perturbations on scales below that of a massive cluster will have been 
erased by the time of equality. 

In problem set 2 you will compute        for a CDM model, and find it to be negligible.... MfsNote:

Structure formation in HDM cosmologies proceeds top-down. 

‡

‡

Using that                                                    one obtains a (comoving)

free-streaming length of 

1/aNR = (1 + zNR) � 6� 104

�com
fs � 30 Mpc

The corresponding free-streaming mass is Mfs ⌘
⇥

6
⇤̄m,0 (�com

fs )3 ' 1.3⇥ 1015M�
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Free Streaming Damping See MBW §3.3.3 
for more details



When particles are still relativistic: 

In order to compute the Jeans length, and thus also the Jeans mass, for dark

matter, all we need is to determine the velocity dispersion as a function of time.

Hot Relics Cold Relics

t < tNR

t > tdec

tNR < t < tdec

�X =
cp
3

�X =
cp
3

⇣aNR

a

⌘1/2

�X =
cp
3

✓
aNR

adec

◆1/2 adec
a

t < tNR

t > tNR

�X =
cp
3

�X =
cp
3

aNR

a

vX ' c

vX / a�1

Particles that are non-relativistic, but still coupled to photons: vX / a�1/2

This follows from the fact that                             and that                .3kBT� = mXv2X T� / a�1
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Velocity Dispersion of Dark Matter

Particles that are non-relativistic, and decoupled:

‡

‡
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The Jeans Length of Dark Matter 

Hot Relics (HDM) Cold Relics (CDM)
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In order to complete our description of the growth of dark matter perturbations 

we now focus on perturbations with             during the matter-dominated era:� > �J

PX = �X ⇥2
X / a�5Since                   we have that the `equivalent of pressure’ �X / a�1

Hence, the `pressure’ drops like a rock, and we may thus treat our collisionless

fluid as a pressureless fluid (but only for             !!!) � > �J

EdS cosmology D(a) � a

D(a) � a�ΛCDM cosmology (� < 1)

Once the cosmological constant starts to dominate, the accelerated expansion suppresses 
structure formation. This is simply a consequence of the increased Hubble drag.

As we have already seen, the (linearized) fluid equation 
describing perturbation growth of pressureless fluid is

d2��k
dt2

+ 2
ȧ

a

d��k
dt

= 4⇥G⇤̄m ��k

When discussing baryonic perturbation growth, we have already 

seen  that the growing mode solution for such perturbations is given by � / D(a)

This linear growth rate applies to both baryonic matter and collisionless dark matter!
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Perturbations Growth during the Matter Era



Since                  whereas               , one has different growth rates during the

matter- and radiation-dominated periods. Introducing the new time variable   

                                 this can be written as:

�̄m / a�3 �̄r / a�4

� ⌘ ⇥̄m/⇥̄r = a/aeq

d2��k
d⇣2

+
(2 + 3⇣)

2⇣(1 + ⇣)

d��k
d⇣

=
3

2

��k
⇣(1 + ⇣)

for which the growing mode solution is �+ / 1 +
3

2
⇣

t � teq

t ⌧ teq ⇣ ⌧ 1

⇣ � 1

�+ constant

�+ / a

stagnation

growth

During radiation-dominated era, but after decoupling, we have that                               , so 
once again we may treat our collisionless fluid as a pressureless fluid (but only for            !!!) 

PX = �X ⇥2
X / a�6

� > �J

d2��k
dt2

+ 2
ȧ

a

d��k
dt

= 4⇥G(⇤̄m + ⇤̄r) ��k

However, since now                we need to modify our linearized fluid equation to:⇢̄r � ⇢̄m

(for              ) t < teq

new term
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Perturbations Growth during the Matter Era



The stagnation of growth in pressureless matter perturbations 

during radiation dominated era is known as the Meszaros effect

Peter Meszaros

This differs from stagnation due to radiation drag that plays role 
in isothermal, baryonic perturbations. After all, CDM experiences 
no radiation drag (i.e., has no EM interaction).

The Meszaros effect is simply a manifestation of the fact that the Hubble

drag term during the radiation dominated era is larger than during the

matter dominated era. Consider the following qualitative argument:

Characteristic time for growth (`collapse’) of perturbation of pressureless material

(e.g., dark matter) is the free-fall time  ⇥� / (G�m)

�1/2

For comparison, the characteristic time for the expansion of the Universe is the

Hubble time                   . Using the Friedmann equation, one immediately sees that

                         during radiation era, and                            during matter era.

�H = 1/H
⇥H / (G�r)

�1/2 ⇥H / (G�m)
�1/2

Hence,                                   during radiation era, strongly suppressing structure 
growth. During matter era, on the other hand,  

⇥H/⇥� / (�m/�r)
1/2

�H/�� ' 1
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Stagnation: the “Meszaros Effect”



Hot Relics (HDM) Cold Relics (CDM)
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Growth of Dark Matter Perturbations



Baryons CDM

1 growth growth

2 oscillations stagnation

3 oscillations free-streaming

4 oscillations growth

5 Silk-damping free-streaming

6 Silk-damping growth

7 growth growth

8 oscillations growth

Growth of isentropic perturbations in a mixture of radiation, baryons and CDM.
The acoustic oscillations of the baryons during 2 - 6 are now driven by the

potential perturbations in the dark matter component.     (see MBW §4.1.6c)

After recombination, baryons fall in DM potential wells; gravity `re-creates’ 
the baryonic perturbations, un-doing the effect of Silk damping.
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Baryons & CDM combined



Baryons CDM

1 growth growth

2 oscillations stagnation

3 oscillations free-streaming

4 oscillations growth

5 Silk-damping free-streaming

6 Silk-damping growth

7 growth growth

8 oscillations growth

Growth of isentropic perturbations in a mixture of radiation, baryons and CDM.
The acoustic oscillations of the baryons during 2 - 6 are now driven by the

potential perturbations in the dark matter component.     (see MBW §4.1.6c)

After recombination, baryons fall in DM potential wells; gravity `re-creates’ 
the baryonic perturbations, un-doing the effect of Silk damping.
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Baryons & CDM combined



The Poisson equation in Fourier space reads: �k2��k = 4�G�̄a2��k

EdS cosmology D(a) � a ��k � const

��k � a��1D(a) � a�ΛCDM cosmology

Since            for a typical ΛCDM cosmology, potential perturbations

(in the linear regime), will decay with time. 

� < 1

A photon moving through (linear) perturbation will fall into deeper potential well

than what it climbs out of:         it gains energy. This implies that large-scale 

(=linear) structure between last-scattering surface and us produce temperature 
fluctuations in CMB. This is called the Integrated Sachs Wolfe (ISW) effect.

NOTE: In an EdS cosmology the ISW effect is absent!

In a matter dominated Universe              , so that �̄ � a�3 ��k � D(a)/a
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The Integrated Sachs-Wolfe Effect



It is customary to distinguish

      “early-time” ISW effect: arises immediately after recombination, when

                                               radiation-contribution is still significant

       “late-time” ISW effect: arises at late times (close to z=0) due to impact of

                                              cosmological constant


ISW effect reveals itself in the form of cross-correlation between matter distribution 
(e.g., as probed by galaxies) and CMB temperature fluctuations.

Granett, Neyrinck & Szapudi (2008)

Tens of studies have tried to 
detect (late-time) ISW

effect. Most detections

are mildly significant at best 
(< 5σ). One of the most 
intruiging detections is 
shown here, based on 

SDSS-LRG vs WMAP5
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The Integrated Sachs-Wolfe Effect

Planck 2015 results



Lecture 6
SUMMARY



 the halo bias function

Thermal vs. Non-thernal relics

Cold vs. Hot relics (CDM vs. HDM)

Collisionless Boltzmann equation

Jeans equations

Key words 
Freeze-out

Meszaros effect

Free-streaming damping

ISW effect

A collisionless fluid with isotropic and homogeneous velocity dispersion is described 
by the same continuity and momentum equations as a collisional fluid, but with the 
sound speed     replaced by � = �v2

i �1/2cs

After recombination, baryons fall in DM potential wells, thereby un-doing Silk damping.

Collisional     fluid: perturbations below Jeans mass undergo acoustic oscillations
Collisionless fluid: perturbations below Jeans mass undergo free streaming

Collisionless dark matter and baryonic matter have the same linear growth rate.

A collisionless fluid does not have an EoS         moment equations are not a closed set

The integrated Sachs-Wolfe effect probes (linear) growth rate of structure. 

In an EdS cosmology               and the ISW effect is absent.D(a) � a
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Summary: key words & important facts



 the halo bias function

�com
fs =

� teq

0

v(t�)
a(t�)

dt�Free-streaming scale

EdS cosmology D(a) � a

D(a) � a�ΛCDM cosmology (� < 1)
Linear growth rate
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1
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�xj

df

dt
=

�f

�t
+ vi

�f

�xi
� ��

�xi

�f

�vi
= 0Collisionless Boltzmann Equation (CBE)

Moment equations: multiply all terms by      and integrate over all of velocity space

Jeans equations

Continuity equation

vk
i

k = 0

k = 1

Summary: key equations & expressions

Poisson equation in Fourier space: �k2��k = 4�G�̄a2��k

In matter dominated Universe:  �̄ � a�3 ��k � D(a)/a
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