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ASTR 610
 Theory of Galaxy Formation

Lecture 3: Overview of Cosmology II 
                     (General Relativity & Friedmann Eqs)



Topics that will be covered include:

Critical Density
Friedmann Equations
Einstein Field Equations
More Riemannanian Geometry
Equivalence Principles
General Relativity (conceptual)
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The Friedmann Equations

In this second part of our brief review of cosmology, we follow Einstein’s 
thought-process that resulted in his derivation of the GR Field Equations. Next 
we derive the all-important Friedmann equation by substituting the FWR 
metric in the  Field Equation and briefly discuss some implications.



 the halo bias function

General Relativity

Einstein’s Field Equation

Rµ� � 1

2
gµ�R� gµ�� =

8�G

c4
Tµ�

Friedmann Equations
✓
ȧ

a

◆2
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8�G

3
⇥� Kc2

a2
+

�c2

3

ds2 = a2(�)
�
d�2 � d�2 � f2

K(�)
�
d�2 + sin2 � d�2

��
Friedmann-Robertson-Walker Metric

Riemannian Geometry

Cosmological Principle
Universe is homogeneous & Isotropic

Lecture 2 Lecture 3
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Cosmology in a Nutshell



A frame of reference is a standard relative to which motion and rest may be measured.

Any set of points or objects that are at rest with respect to each other can serve as a 

frame of reference (i.e., coordinate system, Earth).

An inertial frame is a frame of reference that has a constant velocity with respect to the 
`distant stars’ (CMB), i.e., it is moving in a straight line at a constant speed, or it is 
standing still.  It is a non-accelerating frame, in which the laws of physics take on their 
simplest forms, because there are no fictitious forces.

A non-inertial frame is a frame of reference that is accelerating. In a non-inertial frame 

the motion of objects is affected by fictitious forces (e.g, centrifugal & coriolis force).

An invariant is a property or quantity that remains unchanged under some transformation 

of the frame of reference (i.e., charge of an electron, Planck’s constant, any scalar)

Covariance is the invariance of the physical laws or equations under some transformation

of the frame of reference.

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Inertial Frames, Invariance & Covariance



What have we learned thus far?

Cosmological Principle

Riemannian Geometry
FRW metric}

a(t)

K
}

expansion/contraction

(constant) curvature

Note that thus far we have said NOTHING about gravity!!!

Newtonian Gravity �Fg = �Gm1 m2

r2

is a central force�Fg �g = �r�can be written as the gradient of a scalar

This scalar is called the (Newtonian) gravitational potential, and it is related to the 
matter density distribution according to the Poisson equation:

r2� = 4�G⇥
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Cosmology



Newton’s law of gravity only holds in inertial systems, and is covariant under 
Galilean transformations; however, according to SR inertial systems transform 
according to Lorentz transformations, which leave Maxwell equations invariant.

According to Newton’s law of gravity, moving a distant object has an 
immediate effect all throughout space; violation of Special Relativity.

Since there is matter in the Universe, and you can not shield yourself from it

(i.e., no equivalent to Faraday cage), inertial systems do not exist...

Newton’s law of gravity appears to give an accurate description of what 
happens, but gives no explanation of gravity

These issues deeply disturbed Einstein. In 1907, beginning with a simple thought 
experiment involving an observer in free fall, he embarked on what would be an 
eight-year search for a manifest covariant, relativistic theory of gravity (GR).  

This culminated in November 1915 when he presented what are now known as the 
Einstein Field Equations to the Prussian Academy of Science. 
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Problems with Gravity around 1905

http://en.wikipedia.org/wiki/Thought_experiment
http://en.wikipedia.org/wiki/Thought_experiment
http://en.wikipedia.org/wiki/Prussian_Academy_of_Science


This argues against the notion of absolute velocity; only relative motion is 
measurable in physics. This concept that there is no such thing as absolute 
velocity is called Newtonian Relativity. 

The outcome of every experiment done by stickman is 
completely independent of the velocity of his inertial 
frame. When he throws his ball up in the air, it looks 
exactly the same as if he was at rest wrt distant stars...

Galileo, and later Newton, realized that in an inertial frame there is no physical 
experiment that can reveal the velocity of that inertial frame.

All uniform motion is relative

The windowless Lab

v

This principle is still valid in Special Relativity.  Main change is that inertial 
frames now transform according to Lorentz transformation (to satisfy constancy 
of speed of light, required by Michelson-Morley experiment)
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Newtonian & Special Relativity



Consider stick-man in a windowless lab, moving with constant 
speed (i.e., his lab is an inertial frame)

According to Special Relativity, stick-man can perform no 
experiment from which he can determine his velocity!

v

Now imagine stick-man’s lab being accelerated due to 
the gravitational field of the Earth (i.e., stick-man’s lab 

is a non-inertial frame in free-fall) 

What experiment(s) can stick-man do from which 
he can determine his acceleration?

�ac

Gravity can be transformed away by going to a non-inertial, free-fall frame

Stick-man doesn’t notice 

acceleration since gravitational force is 

exactly balanced by centrifugal force.

NONE:    
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Einstein’s thought experiments



Einstein realized that there is no experiment that Stick-man can do that tells

him the difference between gravity and acceleration.

Einstein, who had this revelation in 1907, describes it as `the happiest thought of my life’.

Principle of Relativity is really a principle of impotence: you are unable to tell the difference 
between being at rest, moving at constant speed or being in free-fall, and you’re unable to 

tell the difference between being in a gravitational field or being accelerated.

Stick-man’s lab is accelerated. He 
experiences an inertial force, which 

gives him a non-zero weight.

Stick-man’s lab is inhibited in its free-fall 
due to the normal force of the Earth. 

Stick-man  experiences the gravitational 
force, giving him a non-zero weight.

acceleration gravity
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Einstein’s thought experiments



Newton’s 2nd law of motion:
Newton’s law of gravity:

�F = mi �a
�Fg = mg �g

in a gravitational field

�a =
mg

mi
�g}

Weak Equivalence Principle: 

           all material objects in free-fall undergo the same acceleration in

           a gravitational field, regardless of their mass and composition

                                inertial mass,      , is equal to gravitational mass, mi mg

If Weak Equivalence Principle were violated, different

objects would be on different free-fall trajectories 

(e.g., objects in Stick-man’s lab would fly against walls)
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Weak Equivalence Principle



Torsion 
Balance

Already in 1889 Eötvös was able to show that there is no 
difference between inertial and gravitational masses to an 
accuracy of 1 part in 20 million

Modern versions of the Eötvös torsion balance experiment 

show that 

WEP has been confirmed experimentally to high precision

����
mi

mg
� 1

���� < 5⇥ 10�14
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Newton’s 2nd law of motion:
Newton’s law of gravity:

�F = mi �a
�Fg = mg �g

in a gravitational field

�a =
mg

mi
�g}

Weak Equivalence Principle: 

           all material objects in free-fall undergo the same acceleration in

           a gravitational field, regardless of their mass and composition

                                inertial mass,      , is equal to gravitational mass, mi mg

Weak Equivalence Principle



According to WEP, there is no gravity (locally) in free-falling system.
Einstein’s SR (Minkowksi space) applies to systems in absence of gravity

  space time of freely falling observer is Minkowski space (M4)

Alternative formulations: 

         For an observer in free-fall in a gravitational field, the results of all (local)

         experiments are independent of the magnitude of the gravitational field.

All local, freely falling, non-rotating laboratories are fully equivalent for

the performance of any physical experiment 

G is constant (the same at every space-time point)
there is a fundamental equivalence between acceleration and gravity

Strong Equivalence Principle: in free-fall in an arbitrary gravitational field, all physical 

          processes (not just the trajectories of material objects) take place in the same

          way that they would if the gravitational field was absent (i.e., in uniform motion)
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Strong Equivalence Principle



In stick-man’s accelerated lab, the laser-beam 
appears to follow a curved trajectory, which is 

simply a reflection of upwards acceleration

acceleration

laser

gravity

laser

Based on the strong equivalence 
principle, the laser-beam must follow  
same trajectory in gravitational field.

Implication: Gravitational Lensing
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Strong Equivalence Principle
According to WEP, there is no gravity (locally) in free-falling system.
Einstein’s SR (Minkowksi space) applies to systems in absence of gravity

  space time of freely falling observer is Minkowski space (M4)

Strong Equivalence Principle: in free-fall in an arbitrary gravitational field, all physical 

          processes (not just the trajectories of material objects) take place in the same

          way that they would if the gravitational field was absent (i.e., in uniform motion)



NOTE: gravity can be transformed away by going to

            a non- inertial, free-falling reference frame. 

BUT:   this is only true locally, because of the tidal 

            field arising from a non-zero                     ,

            one can only transform away the effects of 

            gravity on scales that are small compared to     

            variations in the gravitational field.


(�2�/�x �y)
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Strong Equivalence Principle
According to WEP, there is no gravity (locally) in free-falling system.
Einstein’s SR (Minkowksi space) applies to systems in absence of gravity

  space time of freely falling observer is Minkowski space (M4)

Strong Equivalence Principle: in free-fall in an arbitrary gravitational field, all physical 

          processes (not just the trajectories of material objects) take place in the same

          way that they would if the gravitational field was absent (i.e., in uniform motion)



Next Einstein realized that `permanence’ of gravity (can only be transformed away 
locally), implies it must be related to some intrinsic property of space-time itself.

gravity manifests itself via gµ�

At any point in any Riemannian space-time      one can find a coordinate system

for which                  locally. This must then be the coordinate system of a 

freely falling observer.

gµ� = �µ�
R4

gµ� = �µ�
Hence, if                  everywhere (i.e.,                 ) then there can be no gravity

anywhere. After all, gravity only allows you to have                  locally. 

gµ� = �µ� R4 = M4

In other words, flat space-time means no gravity...

gravity originates from curvature in space-time
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Towards a Manifest Covariant Theory



Once Einstein realized that gravity is a manifestation of curved space-time, he was 
ready for the next step: to find a manifest covariant version of Poisson equation.

r2� = 4�G⇥

Step 1: if                 then it makes sense that                      . Here         is 

             any tensor that is made out of second derivatives of the metric              

� $ gµ� r2� $ Bµ� Bµ�

gµ�

gµ�

Step 2:  replace density with the energy momentum tensor of a fluid
Tµ� = (�+ P/c2)Uµ U� � Pgµ�

Here we have simply replaced       (SR) with the general metric       (GR)⌘µ�

Hence, our manifest covariant version of the Poisson equation is going to

looking something like

Bµ� = kTµ�

where    is some constant.k
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Towards a Manifest Covariant Theory



To make progress (i.e., determine       ) let us look at Riemannian geometry. 

The geometry of any manifold is fully described by the metric tensor             where 
once again we make it explicit that in general       will be a function of location.

Bµ�
gµ�(x)

gµ�

The metric tensor is also used to raise or lower indices

Aµ = gµ�A�

Aµ = gµ�A
�

gµ� g⇥� = �µ⇥

From the metric tensor, one can also construct a number of other quantities that 
are useful to describe geometry, such as the Christoffel Symbols

Christoffel Symbol of 1st kind

Christoffel Symbol of 2nd kind 
= affine connection

where we have used the notation (...),µ ⌘ �µ(...) ⌘ �(...)/�xµ

��⇥⇤ ⌘ 1

2
(g�⇥,⇤ + g�⇤,⇥ � g⇥⇤,�)

��
⇥⇤ ⌘ 1

2
g�µ (gµ⇥,⇤ + gµ⇤,⇥ � g⇥⇤,µ)

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Riemannian Geometry



Important property of affine connection is in defining covariant derivatives:

Aµ,� = �Aµ/�x
�On the previous page we defined 

Now consider a new coordinate system x̄↵ = x̄↵(x)

Because of this term,  

         is not a tensorĀµ,�

We have that Āµ,� =
�Āµ

�x̄�
=

�

�x̄�

�
�x�

�x̄µ
A�

�

=
�x�

�x̄µ

�A�

�x̄�
+

�2x�

�x̄��x̄µ
A�

=
�x�

�x̄µ

�x�

�x̄�

�A�

�x�
+

�2x�

�x̄��x̄µ
A�

@µThe operator      can not be used in physical laws. Rather, we need to find

a covariant derivative, which properly transforms as a tensor, so that our

equations can be made manifest covariant.
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Covariant Derivatives



As it turns out (without proof), the covariant derivatives are:

Aµ;⇥ ⌘ D⇥Aµ ⌘ DAµ

Dx⇥
= Aµ,⇥ � ��

µ⇥ A�

Aµ
;⇥ ⌘ D⇥A

µ ⌘ DAµ

Dx⇥
= Aµ

,⇥ � �µ
�⇥ A

�

which contain the affine connection.

NOTE: For a scalar field, one has that �;� = �,�

NOTE: The metric tensor obeys gµ⇥;� = gµ⇥ ;� = 0

NOTE: in a Cartesian coordinate system in (pseudo)-Euclidean space,

             and thus also in       , one has that  ��

µ� = 0M4

NOTE: Christoffel symbols are NOT tensors (they don’t transform as such) 
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Covariant Derivatives



From the affine connection, one can construct the Riemann tensor:

R�
⇥⇤⌅ = ���

⇥⇤,⌅ + ��
⇥⌅,⇤ + �⇧

⇥⌅�
�
⇧⇤ � �⇧

⇥⇤�
�
⇧⌅

Note that this Riemann tensor contains derivatives of the affine connection,

and therefore is related to the second derivative of the metric tensor.

Using contraction, once can construct the Ricci tensor from the Riemann tensor

R�� ⌘ R�
��� = g↵�R↵���

This is the only tensor of rank 2 that can be constructed from the Riemann tensor

by contraction!

Finally, by contracting the Ricci tensor one obtains the curvature scalar

R ⌘ g��R��
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Riemannian Geometry



Now let’s head back to our suggestion for the manifest covariant Poisson equation:

Bµ� = kTµ�

Conservation of energy & momentum in SR implies that Tµ�
;� = 0

This implies that we seek a tensor         that obeys Bµ�
;� = 0Bµ�

which is a tensor constructed from second-order derivatives of the metric tensor, 
that obeys

Gµ� � Rµ� �
1
2

R gµ�

Gµ�
;� = 0

Einstein used this knowledge to seek a tensor that is covariantly conserved.

Using the Ricci tensor, the metric tensor, and the curvature scalar, Einstein

constructed what is nowadays known as the Einstein tensor:
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The Einstein Tensor



Based on the above considerations, Einstein proposed the following tensor 
equation (= manifest covariant), as the GR replacement of the Poisson equation

Einstein Field Equation Gµ� = Rµ� �
1
2

R gµ� =
8�G

c4
Tµ�

where the constant comes from constraint that it reduces to Poisson equation

in Newtonian limit: gravitational field is static and weak (                ) and test-
particles move at low speed (              ).

�/c2 ⌧ 1
v/c ⌧ 1

Since                 , it is clear that rather than using        one could also use any

combination                     , and still obey the constraint                  .

gµ� ;� = 0 Gµ�

Gµ� + k gµ� Bµ�
;� = 0

Hence, there are plausible alternatives to the above Field Equation. 

Einstein himself used that freedom at a later stage: in order to obtain a 

static Universe he decided to change his Field Equation to

Gµ� � � gµ� =
8�G

c4
Tµ�

where    is the cosmological constant. ⇤
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The Einstein Field Equation



General Relativity

ds2 = c2dt2 � a2(t)


dr2

1�Kr2
+ r2(d�2 + sin2 � d⇥2)

�

Gµ� � � gµ� =
8�G

c4
Tµ�

Cosmological Principle

Gµ�

Substitute FRW metric in gµ� �↵
�� R↵

��� Rµ� R}
For homogeneous & isotropic Universe: Tµ� = diag(�c2,�P,�P,�P )

What you get out is:

00- or time-time component:

ii- or space-space components:

ä

a
= �4�G

3

✓
⇥+

3P

c2

◆
+

�c2

3

ä

a
+ 2

ȧ2

a2
+ 2

Kc2

a2
= 4�G

✓
⇥� P

c2

◆
+ �c2

Substituting the 00-component in the ii-component yields
✓
ȧ

a

◆2

=
8�G

3
⇥� Kc2

a2
+

�c2

3
The Friedmann Equation

Students: do this at hom
e; great exercise
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The Friedmann Equation



We can rewrite the Friedmann equation as
The Friedmann equation relates   , and hence       , to energy density & curvature.ȧ a(t)

✓
ȧ

a

◆2

=
8�G

3
⇥� Kc2

a2

where we have absorbed the term with the cosmological constant in   , i.e., we

have “interpreted”    as an energy component with ⇥� = �c2/8�G

⇢
⇤

As we have seen in Lecture 2:
⇢� = ⇢�,0

�m = �m,0(a/a0)
�3

�r = �r,0 (a/a0)
�4

Which allows us to write the Friedmann equation in the following form:

✓
ȧ

a

◆2

= H2(t) =
8�G

3

"
⇥m,0

✓
a

a0

◆�3

+ ⇥r,0

✓
a

a0

◆�4

+ ⇥�,0

#
� Kc2

a2
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Friedmann Equation



Interestingly, the Friedmann eq. can also be derived (almost) from Newtonian physics....

Consider a small spherical region of mass M and radius R. Since the Universe is 
homogeneous and isotropic, Newton’s first theorem implies that

R̈ = �GM

R2

Newton’s first theorem: a body that is inside a spherical shell of matter experiences no net

                                       gravitational force from that shell. 

Integrating this equation once gives                           , where C is the integration constant.1

2
Ṙ2 � GM

R
= C

Note that C is the sum of kinetic and potential energy per unit mass. It is the specific energy 
of the spherical shell of radius R. Let’s write                   , and use that 

Then:

R = a(t)R0 M = 4�R3⇥̄/3

K = � 2E

c2R2
0

, where

The only difference wrt the relativistic version is that the matter density,      , is now replaced 
by the energy density/c2, where the energy density includes radiation as well

as the contribution from the cosmological constant, ⇥� = �c2/8�G

⇢̄m

✓
ȧ

a

◆2

=
8�G

3
⇥̄m � Kc2

a2

1

2
ȧ2R2

0 =
4�G

3
⇥̄ma

2R2
0 + E

ȧ2 =
8�G

3
⇥̄ma

2 +
2E

R2
0
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Friedmann Equation



Using the Friedmann equation H2(t) =
8�G

3
⇥(t)� Kc2

a2(t)

⇥(t) =
3H2(t)

8�G
we see that a flat Universe (i.e.           ) implies that K = 0 ⌘ �crit(t)

This is called the critical density.

�crit = 2.78⇥ 1011h�1M�/(h
�1Mpc)3At z=0 we have that

In cosmology, it is customary to write the various density components in 
unitless form:

�x(t) ⌘
�x(t)

�crit(t)

where x can be matter (DM, baryons, or both), radiation, neutrinos, 
cosmological constant, etc. For the total density, we use

�(t) =
X

x

�x(t)
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The Critical Density



Now let us rewrite the Friedmann equation in terms of the    ‘s �

H2(t) =
8�G

3

�
�m,0

�
a

a0

��3

+ �r,0

�
a

a0

��4

+ ��,0

�
� Kc2

a2

= H2
0

�
�m,0(1 + z)3 + �r,0(1 + z)4 + ��,0

�
� Kc2

a2

At            (present), this becomest = t0 H2
0 = H2

0 �0 �
Kc2

a2
0

which allows us to write �Kc2

a2
= � Kc2

H2
0 a2

0

�
a

a0

��2

H2
0 = (1� �0) H2

0 (1 + z)2

This is the commonly used, compact form of the Friedmann equation.

E(z) =
�
��,0 + (1� �0) (1 + z)2 + �m,0(1 + z)3 + �r,0(1 + z)4

�1/2

where
H2(z) = H2

0 E2(z)
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Friedmann Equation



Some of the best constraints on the energy densities in the present-day Universe 
come from the temperature fluctuations in the cosmic microwave background (CMB)

Location of first accoustic peak �0 � 1.0 (i.e., Universe is flat:            )K � 0

fbar � 0.17
Ratio of 1st to 2nd peak heights �b,0 � 0.044

Ratio of 2nd to 3rd peak heights �m,0 � 0.26 }

Cepheid stars H0 � 72 km/s/Mpc

Supernovae Ia ��,0 � 0.74

CMB temperature ��,0 � 5� 10�5 (�� � T 4)

+ neutrinos �r,0 � 8� 10�5 (T� = (4/11)1/3T�)
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The Critical Density See MBW §3.2.2  
for details
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The Critical Density See MBW §3.2.2  
for details

This implies that the redshift of equality, at which the energy density of radiation is 
equal to that of non-relativistic matter, is given by (see Problem Set 1)

1 + zeq � 2.4� 104 �m,0h
2



We can write

�x(z) =
�x,0(1 + z)�x

E2(z)

�⇤ = 0

�r = 4

�m = 3

�K = 2
where

Here we have defined the density parameter “associated with the curvature” as

�K(z) ⌘ 1� �(z)

from which we infer that �(z)� 1 = (�0 � 1)
(1 + z)2

E2(z)

All cosmologies with               or              have that   ⇢m,0 6= 0 ⇢r,0 6= 0 lim
z!1

�(z) = 1

and therefore behave similar as an Einstein-de Sitter (EdS) Universe,
which is a Universe with (�m,0,��,0) = (1, 0)

�x(t) =
�x(t)

�crit(t)
=

�x(t)
�x,0

�x,0

�crit,0

�crit,0

�crit(t)
=

�
a

a0

���x

�x,0
H2

0

H2(t)

Evolution of the Density Parameters
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For specific solutions to the Friedmann equation; see MBW §3.2.3
For the relation between time and redshift; see MBW §3.2.5

Other recommended textbooks on cosmology include:

introductory

level

more

advanced


level

For Further Study…
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Lecture 3
SUMMARY



 the halo bias function

General Relativity

Einstein’s Field Equation

Rµ� � 1

2
gµ�R� gµ�� =

8�G

c4
Tµ�

Friedmann Equations
✓
ȧ

a

◆2

=
8�G

3
⇥� Kc2

a2
+

�c2

3

ds2 = a2(�)
�
d�2 � d�2 � f2

K(�)
�
d�2 + sin2 � d�2

��
Friedmann-Robertson-Walker Metric

Riemannian Geometry

Cosmological Principle
Universe is homogeneous & Isotropic

Lecture 2 Lecture 3
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Cosmology in a Nutshell



 the halo bias function

Since gravity is `permanent’ (can only be transformed away locally), it 
must be related to an intrinsic property of space-time itself.

Equivalence Principle

Christoffel symbols

covariant derivative

Key words 
Riemann tensor

Ricci tensor

Einstein tensor


Newtonian gravity only holds in inertial systems, is covariant under Galilean 
transformations, and moving mass has immediate effect all throughout space.

Why 
we 

need 
GR

Einstein Field equation is the manifest covariant version of Poisson equation

Space-time of freely falling observer (no gravity) is flat Minkowski space;

hence, gravity originates from curvature in space-time (Riemann space)

The
Key
to   
GR

inertial systems do not exist (you can’t shield yourself from gravity)
SR: inertial systems transform according to Lorentz transformations

SR: universal speed limit; no information can propagate instantaneously

but

Summary: key words & important facts
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 the halo bias function
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The Friedmann Equation

E(z) =
�
��,0 + (1� �0) (1 + z)2 + �m,0(1 + z)3 + �r,0(1 + z)4

�1/2

whereH2(z) = H2
0 E2(z)

�(z)� 1 = (�0 � 1)
(1 + z)2

E2(z)
Density Parameter
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Summary: key equations & expressions


