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ASTR 610
 Theory of Galaxy Formation

Lecture 2: Overview of Cosmology I 
                     (Riemannian Geometry & FRW metric)



In this first part of our brief review of cosmology we focus on geometry. 
Using Riemannian geometry, and the Cosmological Principle,

we show how one arrives at the Friedmann-Robertson-Walker (FRW)

metric, which features predominantly in modern cosmology.

Topics that will be covered include:

Distance Measures
Fundamental Observers
Cosmological Principle
Geometry of Space-Time
Concept of metric
Riemannian Geometry

Thermodynamics of expanding

space-time
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The Friedmann-Robertson-Walker Metric



 the halo bias function

NOTE: what follows is a very brief review of cosmology. 

Students are strongly encouraged to read Chapter 3 of MBW

Cosmology is the study of the structure & evolution of the Universe as a whole.

Modern cosmology is founded upon Einstein’s GR, according to which the structure 
of space-time is governed by its matter/energy density.

Note that this is very different from classical physics, where space and time are 
eternal and absolute, independent of the existence of matter.

Since cosmology (without perturbations) is a very simple application of GR, 

it can be understood without a detailed knowledge of GR.

In this review we focus on geometry (how to describe a curved space-time),

which we use to derive the Friedmann-Robertson-Walker (FRW) metric, and on 

GR, which we use to derive the Einstein equation. 

Substitution of FRW metric in Einstein equation yields the Friedmann equations.

Cosmology
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 the halo bias function

General Relativity

Einstein’s Field Equation

Rµ� � 1

2
gµ�R� gµ�� =

8�G

c4
Tµ�

Friedmann Equations
✓
ȧ

a

◆2

=
8�G

3
⇥� Kc2

a2
+

�c2

3

ds2 = a2(�)
�
d�2 � d�2 � f2

K(�)
�
d�2 + sin2 � d�2

��
Friedmann-Robertson-Walker Metric

Riemannian Geometry

Cosmological Principle
Universe is homogeneous & Isotropic

Lecture 2 Lecture 3
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Cosmology in a Nutshell



 the halo bias function

Note that this coordinate system has no physical meaning: any physical law

should be independent of the choice of this coordinate system.

We can make physical laws manifest invariant (valid for any coordinate system)

by writing them in tensor form.

To specify where and when an event occurs in any space or space-time we typically 
require a coordinate system      , where μ is an index.xµ

Tensors are geometric objects that can be represented as multi-dimensional arrays 
of numerical values. The rank (or order) of a tensor is the dimensionality of the array 
(i.e., the number of indices needed to label a component).

Newtonian potential:               tensor of rank 0 (= scalar)
Electrical field:                tensor of rank 1 (= vector)

Metric:                tensor of rank 2

�(xµ)

g↵�(x
⌫)

�E(xµ)

Geometry of Space Time
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 the halo bias function

thus, the value of a scalar field at a given point

is independent of coordinate system used...

Temperature:             tensor of rank 0 (= scalar)

Scalar:

The defining properties of tensors are their transformation rules:
i.e., how do their values change under a coordinate transformation xi ! x0j

Contra-variant vector:

Covariant vector:

A0k =
�x0k

�xi
Ai

A0
k =

�xi

�x0k Ai

example of a contra-variant vector is the

tangent to a curve...

example of a covariant vector is the

normal to a surface...

Covariant tensor (rank 2): T 0
ik =

�xm

�x0i
�xn

�x0k Tmn

Mixed tensor (rank 2): T 0i
k =

�x0i

�xm

�xn

�x0k Tm
n

etc.

�0(x0j) = �(xi)

NOTE:

Einstein summation convention

when an index appears twice in a 
single term, it implies summation

of that term over all the values of

the index.
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Geometry of Space Time



 the halo bias functionTemperature:             tensor of rank 0 (= scalar)

Clearly, it transforms as a tensor, which is consistent with the fact that the 
concept `tangent to a curve’ is physical, and therefore has to be an invariant.

Consider a curve                      where    is called the affine parameter (which is used 
to parameterize the curve). The direction of the curve’s tangent at any point along 
the curve is given by the contravariant vector:

xµ = xµ(�) �

A⌫ = dx⌫/d�

A0µ =
dx0µ

d�
=

dx�

d�

⇥x0µ

⇥x�
= A� ⇥x0µ

⇥x�

Intermezzo: covariant vs. contravariant
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 the halo bias function

Clearly, it transforms as a tensor, which is consistent with the fact that the 
concept `normal to a surface’ is physical, and therefore an invariant.

Consider a scalar function           . The equation    = constant describes a 
hyper-surface whose normal is given by the covariant vector:

�(x⌫)
Aµ = ⇥�/⇥xµ

�

A0
µ =

⇥�

⇥x0µ =
⇥�

⇥x�

⇥x�

⇥x0µ = A�
⇥x�

⇥x0µ
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Intermezzo: covariant vs. contravariant



Q: How can we describe space-time in a coordinate independent way???

A: We need to focus on the physical invariants, which are the actual 

    `distances’ between events/locations.

space-time:

space:

Einstein 
summation 
convention

ds2 = gµ� dx
µ dx�

dl2 = gij dx
i dxj

Thus, for a given coordinate system      , the geometry of a space or space-time

is described by the metric, which in general depends on location:


NOTE: the numerical values of the metric tensor depend on the choice of the

            coordinate system!

gµ⇥ = gµ⇥(x
�)

x↵

Geometry of Space Time
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Example 1: 2D Euclidean Space

Consider the Cartesian coordinate system xi = (x, y)

In general: For any Cartesian coordinate system in Euclidean space,      , we

                  have that                 , where (i,j) = (1,2,...,n) and       is the

                  Kronecker delta function

gij = �ij
En

�ij

dl2 = dx2 + dy2 gij =

✓
1 0
0 1

◆

Note: Euclidean manifolds are a subset of more general Riemannian manifolds.

          They are characterized by having zero curvature everywhere.

Geometry of Space Time
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Example 1: 2D Euclidean Space

Next, consider the curvi-linear, polar coordinate system xi = (r, �)

Note that                 even though the space *is* Euclidean.  This demonstrates 
that the metric also depends on the coordinate system.

However, it is *always* true that 

gij 6= �ij

A space is Euclidean if a coordinate systems exists for which                 at

each location. If so, this is the Cartesian coordinate system. 

gij = �ij

In order to compute       for this new coordinate system, we use that       is an 
invariant. Coordinate transformations wrt Cartesian:

dl2dl2

dx =
⇥x

⇥r
dr +

⇥x

⇥�
d�

dy =
⇥y

⇥r
dr +

⇥y

⇥�
d�

dl2 = dx2 + dy2 = dr2 + r2d�2}
gij =

✓
1 0
0 r2

◆

dl2 = gij dx
i dxj

x = r cos �
y = r sin �

Geometry of Space Time
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Example 2: 4D Minkowski Space

In Minkowski space,      , we have that 

Minkowski space is an example of a pseudo-Euclidean space.

Consider the coordinate system xµ = (ct, x, y, z)

M4 ds2 = c2dt2 � dx2 � dy2 � dz2

gµ� = �µ� ⌘

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

ds2 = �c2dt2 + dx2 + dy2 + dz2NOTE: one is also allowed to define

           The choice of this signature has no impact on the physics as

            long as one is consistent.

Geometry of Space Time

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University



Example 2: 4D Minkowski Space

The Minkowski metric is used in Special Relativity (SR).

Any two observers will agree on the interval ds between two events A and B, 
even if they use different coordinate systems. Hence, in SR ds represents 

the absolute (=invariant) quantity that replaces the Newtonian concepts of 
absolute space and time. It has the following meaning:

For photons travelling at speed of light, ds = 0

If                then ds is the measured time interval between A 
and B in the restframe of an observer who sees both events 
occurring at his location. 

ds2 > 0

ds2 < 0If                then no observer can experience both events, and 
|ds| is the space-interval between A and B in a frame in which 
the events are simultaneous.

Geometry of Space Time
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Example 3: 2D surface of a sphere

It is useful (though not necessary) to imagine

this 2D sphere embedded in 3D Euclidean space

That means we can use (x,y,z) to specify a point

P on this surface, where we have the constraint

that                                . Alternatively, we can 

define the coordinate system 

x2 + y2 + z2 = a2

a�

Note that unlike (x,y,z), the coordinates            are intrinsic to the surface. 

The parameter a is just a scale-factor, which appears in the transformation relations, and 
whose relevance becomes clear later.

x = a sin⇥ sin �

y = a sin⇥ cos �

z = a cos�

dl2 = dx2 + dy2 + dz2 = a2(d⇥2 + sin⇥2d�2)

gij =

✓
a2 0
0 a2 sin2 �

◆

xi = (�, �)

(�, �)

Geometry of Space Time
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Example 3: 2D surface of a sphere a�

gij =

✓
a2

1�r2 0
0 a2r2

◆
dl2 = dx2 + dy2 + dz2 = a2


dr2

1� r2
+ r2d�2

�

Alternatively, one can define the unitless parameter

                 (which obeys                ). In terms of this 
parameter, we have that 
r ⌘ sin� r 2 [0, 1]

x = a r sin �

y = a r cos �

z = a
p

1� r2

which implies that:

The 2D sphere is a Riemann space with a constant, positive curvature.

Geometry of Space Time
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Example 4: 2D `saddle’ surface (pringle chips)

This geometry differs from the 2D sphere in that it has a 
negative curvature. Unlike the 2D sphere,

it cannot be embedded in 3D Euclidean space (which is 
why it is difficult to draw/imagine). Note, though, that it 
*can* be embedded in a 3D pseudo-Euclidean space, 
i.e., it obeys                                    , and has thatx2 + y2 � z2 = �a2

If we define the unitless parameter                   we obtain that

dl2 = dx2 + dy2 � dz2

Pick coordinate system                     that is intrinsic to 
the surface, and related to (x,y,z) via 

x = a sinh⇥ sin �
y = a sinh⇥ cos �
z = a cosh�

r = sinh�

dl2 = dx2 + dy2 � dz2 = a2


dr2

1 + r2
+ r2d�2

�
gij =

✓
a2

1+r2 0
0 a2r2

◆

xi = (�, �)

Geometry of Space Time

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University



Summary: 2D surfaces

By introducing the curvature parameter K = (+1,0,-1), we obtain the general metric:

dl2 = a2


dr2

1 + r2
+ r2d�2

�
dl2 = a2


dr2

1� r2
+ r2d�2

�
dl2 = a2

⇥
dr2 + r2d�2

⇤

2D Saddle

2D Sphere

2D Euclidean

gij =

✓
a2

1�Kr2 0
0 a2r2

◆

Note that for all these surfaces each point on the surface is equivalent, which means 
that the metric is independent of the location on the surface....

Geometry of Space Time
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Now that we have seen how to derive the metric of a general Riemann space, 
let’s focus on the metric of space-time.

The Universe is homogeneous & isotropic on large scales.
Cosmological Principle: 

Copernican principle: our location in the Universe is in no way special

In that case, why would ANY location be special (Occam’s razor)
Consistent with observations 

Isotropy  ☛ the only motion possible is global expansion or contraction;
Homogeneity  ☛ the metric is independent of location; gµ⇥(x

�) = gµ⇥

Thus, we seek a general 3D Riemann space, to be embedded in a (3+1)D space-time.

The metric of a homogeneous and isotropic 3D Riemann space is

dl2 = a2(t)


dr2

1�Kr2
+ r2(d�2 + sin2 � d⇥2)

�

a = a(t)

(r,K, �,⇥)Note:                   are all 
unitless. Only the

scale-factor         has 
the dimensions of 
length!

a(t)

Geometry of Space Time
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Upon embedding this 3D Riemann sphere in a (3+1)D space-time, we

obtain the so-called Friedmann-Robertson-Walker (FRW) metric:

ds2 = c2dt2 � a2(t)


dr2

1�Kr2
+ r2(d�2 + sin2 � d⇥2)

�

The parameter    in the FRW metric is called the proper time. It is the time on a standard 
clock of a fundamental observer.

t

The parameter     in the FRW metric is called the curvature parameter. It indicates

the global curvature of space-time, and can take on the values +1, 0, -1.

K

aThe parameter    in the FRW metric is called the scale factor. It relates the coordinates               
to true physical distances [recall;                 is dimensionless].r 2 [0, 1]

The coordinates               label fundamental observers and are called comoving 
coordinates (i.e., they don’t change under expansion/contraction).

(r, �,⇥)

Fundamental Observers: A fundamental observer is an observer who, in a (unperturbed) 
FRW metric, observes the universe to be isotropic. The set of 

all fundamental observers defines a cosmological `rest-frame’ at each location in space. 
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The Friedmann-Robertson-Walker Metric



The proper distance is defined as the distance between two fundamental

observers at some proper time t

NOTE: proper distance = scale factor x comoving distance

l =

Z
dl = a(t)

Z r

0

dr0p
1�Kr02

= a(t)�(r)
✢

We have assumed here that one of the fundamental observers is located at                             , while the other 

is at                              : I can always pick my coordinate system such that this is the case.... 

(r, �,⇥) = (0, 0, 0)
(r, �,⇥) = (r, 0, 0)

✢

�(r) =

8
<

:

sin�1r if K = +1
r if K = 0
sinh�1r if K = �1

Here        is the comoving distance between the fundamental observers�(r)

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

The Friedmann-Robertson-Walker Metric



In addition to the proper time,   , one can also define the conformal time:
t

[� ] = unitless�(t) �
� t

0

cdt�

a(t�)

The advantage of this form of the FRW metric is that     is an actual 

distance measure. This is NOT the case for   , which is `just’ a coordinate.

�
r

In terms of     and    , the FRW metric can be rewritten as:� �

ds2 = a2(�)
�
d�2 � d�2 � f2

K(�)
�
d�2 + sin2 � d�2

��

fK(�) = r =

�
�

�

sin� if K = +1
� if K = 0
sinh� if K = �1

where

a�

The conformal time is the total comoving distance     light could have travelled. �

The proper time a photon travels in a proper time interval        is simply                . 

In a conformal time interval        the photon has travelled a comoving distance �� = �⌧

�l = c�t�t
�⌧
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The Friedmann-Robertson-Walker Metric



A word of caution about units:

In what we discussed above, the coordinates                  are all unitless.(r, �, �, �)

Proper time has the units of time, but conformal time is also unitless.

Only the scale factor        has the units of length, thus making both

     and       have the units of length as well.

a(t)
dl ds

However,

It is common practice (and we will adopt this as well), to define the

dimensionless scale factor                         , where      is the present-day

value of the scale factor. Hence, this dimensionless scale factor is 

normalized to have                at the present. 

a(t) = a(t)/a0

a(t) = 1

a0

With this new convention,         is unitless, while               all carry

the units of length!  Also, the curvature scalar now has  


a(t) (r, �, �)
[K] = length�2
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The Friedmann-Robertson-Walker Metric



The rate at which the proper distance between two fundamental observers 
changes as a function of time can be written as

dl

dt
⌘ H(t) l

which defines the Hubble parameter,          . Using that                  , with

the comoving distance between the fundamental observers, we have that:

H(t) l = a(t)� �

H(t) =
ȧ

a

where                    , and we have used that                                 .ȧ = da/dt
dl

dt
= ȧ� =

ȧ

a
a� =

ȧ

a
l

The value of the Hubble parameter at the present is called the

Hubble constant                                                 .  

It describes the present-day expansion rate of the Universe. 

H0 � (70± 2) km s�1Mpc�1
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The Hubble Parameter



Redshift

Hence, if the comoving distance between emitter and observer remains fixed

(i.e., in the absence of peculiar velocities), proper time intervals scale with the 
scale factor of the Universe:

Photons move along geodesics,            . Substitution in FRW metric implies

that                , where without losing generality we assumed 

ds = 0
d� = d� d� = d� = 0

d� =
cdt

a(t)
= d�

�tobs
a(tobs)

=
�tem
a(tem)

Since the wavelength of a photon is proportional to the period between the 
arrival of two wavecrests, we have that 

z ⌘ �obs � �em

�em
=

a(tobs)

a(tem)
� 1

I.e., a photon from z=1 was emitted when the 

a =
1

1 + z

a(tobs) = a0 = 1Thus, for                                we have that

i.e., a photon from z=1 was emitted when

the Universe was half its present size.

See MBW §3.1.3  
for details

NOTE: this has NOTHING to do with Doppler effect.

            After all, nobody is moving...
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The proper velocity of a particle wrt a fundamental observer at the origin is

defined as                  , with        the proper distance between particle & observer.    v = dl/dt l(t)

l(t) = a(t)�(t) v = ȧ�+ a�̇ ⌘ vexp + vpecUsing that we obtain that

vexp =
ȧ

a
a� = H l reflects the “velocity” due to the Hubble expansion

vpec is the “peculiar velocity” wrt a co-spatial fundamental observer

Due to the expansion, the peculiar velocities of particles that do not

experience an external force decay with time as vpec / a�1

The observed redshift from an object is 1 + zobs = (1 + zcos) (1 + zpec)

is cosmological redshift due to expansion of space-time

1 + zpec =

s
1 + vpec/c

1� vpec/c

1 + zcos = 1/a(tem) is cosmological redshift due to expansion of space-time

is Doppler redshift due to peculiar velocity (along los)
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Peculiar Velocities See MBW §3.1.4  
for details

In non-relativistic limit (               ), this reduces to:vpec � c zobs = zcos +
vpec

c
(1 + zcos)



So far we have encountered two different distances. The comoving distance

and the proper distance   , which are related according to l = a�

�
l

In a static, Euclidean space the angular extent     and flux f of an object are related 
to its physical size D and luminosity L according to

� =
D

dA
f =

L

4�d2L

⇥

and the angular diameter distance       is equal to the luminosity distance
dA dL

However, in an expanding space time, this is no longer the case. If we use

the above equations to define       and      , then it can be shown that:  dA dL

dA(z) =
a0 r

1 + z
dL(z) = a0 r (1 + z)

where                               is the coordinate in the FRW metric. Hence, for an object 
at redshift z one distinguishes three distances:    ,      , and      .

To compute the z-dependence of these distances requires Friedmann eq.

r = r(z) = fK(�)
dA dL�

Distances See MBW §3.1.6  
for details
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Our cosmological fluid consists of multiple components:

�c2 = �mc2 + �m� + �rc
2 + ��c2

= contribution due to rest-mass of matter�mc2

�m�

��c2
�rc

2
= contribution due to internal energy of matter
= contribution due to energy of radiation
= contribution due to energy of vacuum

�rc
2 =

4�SB

c
T 4

= Stefan Boltzmann constant�SB
� = internal energy per unit mass

As we will see, one can use simple Newtonian thermodynamics to infer how

these different energy components evolve in an expanding space-time.

Since energy densities of baryons & dark matter evolve in the same way, 

it is sufficient to describe the (non-relativistic) matter as one component .

The energy density of radiation and any other relativistic component 

(e.g., neutrinos) only depends on temperature.

Energy Density of the Universe
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Consider a comoving volume                   in a homogeneous & isotropic Universe.

We can consider V arbitrarily small --> no need for GR.

V � a3(t)

dU = dQ + dW

dS = dQ/T

1st law of thermodynamics

2nd law of thermodynamics
dS

dQ
dW

dU = increase in internal energy
= heat transfer into system
= work done on system
= increase in entropy

For an isolated, adiabatically expanding volume dQ = 0 dU = �PdV

dS = 0
Let        be the energy density. Then� c2 U = � c2 V

dU =
�U

��
d� +

�U

�V
dV

= c2 V d� + � c2 dV

dU + PdV = 0
c2V d� + �c2dV + PdV = 0

V d� +
�

� +
P

c2

�
dV = 0

d�

da
+ 3

�
� + P/c2

a

�
= 0

V � a3Using that            and differentiating

with respect to the scale factor yields

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

Thermodynamics in Expanding Space-Time



The equation of state (EoS) is a thermodynamic equation describing the

interconnection between various macroscopic properties of a system. 

For fluids, one often considers EoS of the form P = P (�, T )

In cosmology, it is convenient, and common, to write                 .

Here                   is the EoS parameter describing our cosmological `fluid’

P = w�c2

w = w(T )

Substitution of this general EoS into our first law of thermodynamics yields

d�

da
+ 3(1 + w)

�

a
= 0 � � a�3(1+w)

Hence, the EoS parameter of a particular component of the cosmological fluid, 
determines how its energy density evolves with the scale parameter.
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Equation of State

 To learn more about EoS; see App I of my ASTR 501 (Dynamics of Astrophysical Many-Body Systems) lecture notes,



= mean molecular weight in units of proton massµ mp kB = Boltzmann constant

See App A 
of MBW

= adiabatic index�

Non-relativistic matter can be describes reasonably well as an ideal gas.

The EoS parameter 

for an ideal gas is 

(see problem set 1) 

Hence, non-relativistic fluid can be approximated as zero-pressure fluid (“dust‘’)

w = 0 � / a�3

kBT / mv2 v / a�1 T / a�2

P = (kBT/µmp)� P / a�5

(conservation of particles)

(pressure rapidly drops)

Ideal Gas Law:

An ideal gas is a hypothetical gas that consists of identical particles of zero volume that 
undergo perfectly elastic collisions and for which intermolecular forces can be neglected.

PV = NkBT
�m = Nµmp/V

P =
kBT

µmp
�m (EoS)

w = w(T ) =
kBT

µmpc2

✓
1 +

1

� � 1

kBT

µmpc2

◆�1

Since for a non-relativistic fluid                          we have that w ' 0kBT ⌧ µmpc
2
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Non-Relativistic Matter



For relativistic matter (mainly photons), we have that  P =
1

3
�c2 (see MWB §3.3.2) 

Hence we have that the EoS parameter                 , and thusw = 1/3

w = 1/3 � / a�4

P = �c2/3 P / a�4

� / T 4 T / a�1

The fact that the energy density of radiation scales with       can be understood

as the number density of photons scaling as

while the energy per photon E = h� / a�1

n� / a�3
a�4

Also, the fact that the energy density of radiation decreases faster

than that of matter implies that radiation dominated at early times.
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Radiation & Relativistic Matter



According to quantum-physics, the vacuum can also have a non-zero

energy density. We associate that with the cosmological constant, 

though we caution that `dark energy’ is not understood at all!!!

Consider a piston filled with 
vacuum. Increasing its volume  
dV increases the total energy

 by                        . According to 
1st law of thermodynamics 
dU + PdV = 0

dU = ��c
2dV

                            . Hence, we 

have that P = ���c

2

The pressure associated with

the cosmological constant behaves

as                     (see inset), which

implies an EoS parameter

P = ���c
2

w = �1

w = �1 � / a0

P / a0P = ���c
2

no temperature
Since the properties of the vacuum 
are fixed, the energy density of the 
vacuum, and its associated pressure 
are also constant. Note that one 
cannot speak of the temperature of a 
vacuum.
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Vacuum Energy



Lecture 2
SUMMARY



 the halo bias function

General Relativity

Einstein’s Field Equation

Rµ� � 1

2
gµ�R� gµ�� =

8�G

c4
Tµ�

Friedmann Equations
✓
ȧ

a

◆2

=
8�G

3
⇥� Kc2

a2
+

�c2

3

ds2 = a2(�)
�
d�2 � d�2 � f2

K(�)
�
d�2 + sin2 � d�2

��
Friedmann-Robertson-Walker Metric

Riemannian Geometry

Cosmological Principle
Universe is homogeneous & Isotropic

Lecture 2 Lecture 3
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Cosmology in a Nutshell



 the halo bias function

Fundamental observer

Proper time vs. conformal time

Comoving vs. proper distance 

Angular diameter distance

Luminosity distance

Key words 
Cosmological Principle

FRW metric

Hubble parameter

redshift

peculiar velocity

Physical laws can be made manifest invariant by writing them in tensor form.

The geometry of space-time is described by the metric

The FRW-metric is the most general metric consistent with the cosmological principle, that 
the Universe is homogeneous and isotropic (on large scales).

gµ⇥ = gµ⇥(x
�)

Due to the expansion, the peculiar velocities of particles that do not

experience an external force decay with time as vpec / a�1

Since energy densities of baryons & dark matter evolve in the same way, 

it is sufficient to describe the (non-relativistic) matter as one component .

Since energy densities of radiation & relativistic matter (i.e., neutrinos)  
evolve in the same way, it is sufficient to describe them as one component .

Summary: key words & important facts
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 the halo bias function

ds2 = c2dt2 � a2(t)


dr2

1�Kr2
+ r2(d�2 + sin2 � d⇥2)

�

ds2 = a2(�)
�
d�2 � d�2 � f2

K(�)
�
d�2 + sin2 � d�2

��
Two ways of writing 

the FRW-metric

z ⌘ �obs � �em

�em
=

a(tobs)

a(tem)
� 1Redshift, wavelength, scale-factor & 

peculiar velocity

1 + zobs = (1 + zcos) (1 + zpec)v = ȧ�+ a�̇ ⌘ vexp + vpec

dA(z) =
a0 r

1 + z
dL(z) = a0 r (1 + z)

angular diameter distance

           luminosity distance

d�

da
+ 3(1 + w)

�

a
= 0 � � a�3(1+w)Thermodynamics 

 non-relativistic matter (baryons & dark matter) 
        relativistic matter (radiation)                      
cosmological constant (dark energy)                 

w = 0 
w = 1/3 
w = -1

Summary: key equations & expressions
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