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Lecture 2: Overview of Cosmology |
Riemannian'Geometry & FRW metric
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The Friedmann-Robertson-Walker Metric

In this first part of our brief review of cosmology we focus on geometry.
Using Riemannian geometry, and the Cosmological Principle,

we show how one arrives at the Friedmann-Robertson-Walker (FRW)
metric, which features predominantly in modern cosmology.

Topics that will be covered include:

® Riemannian Geometry

® Concept of metric

o
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Cosmology

NOTE: what follows is a very brief review of cosmology.
Students are strongly encouraged to read Chapter 3 of MBW

® Cosmology is the study of the structure & evolution of the Universe as a whole.

® Modern cosmology is founded upon Einstein’s GR, according to which the structure
of space-time is governed by its matter/energy density.

® Note that this is very different from classical physics, where space and time are
eternal and absolute, independent of the existence of matter.

® Since cosmology (without perturbations) is a very simple application of GR,
it can be understood without a detailed knowledge of GR.

® |n this review we focus on geometry (how to describe a curved space-time),
which we use to derive the Friedmann-Robertson-Walker (FRW) metric, and on
GR, which we use to derive the Einstein equation.
Substitution of FRW metric in Einstein equation yields the Friedmann equations.
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Lecture 2

Cosmological Principle

Universe is homogeneous & Isotropic

@

Riemannian Geometry X

"

Friedmann-Robertson-Walker Metric

Cosmology in a Nutshell

ds® = a?(7) [d7% — dx® — [ (x) (d6° + sin® 0 dg?)]
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Lecture 3

o

- Einstein’s Field Equation

c?

1 8rG
‘. o4 Ry — 59uwR — g = — T

. N,
. Friedmann ’E_g‘mtions

a 2_87TG K02+Ac2
a 3p a? S
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Geometry of Space Time

® To specify where and when an event occurs in any space or space-time we typically
require a coordinate system z*, where p is an index.

® Note that this coordinate system has no physical meaning: any physical law
should be independent of the choice of this coordinate system.

® \We can make physical laws manifest invariant (valid for any coordinate system)
by writing them in tensor form.

Tensors are geometric objects that can be represented as multi-dimensional arrays
of numerical values. The rank (or order) of a tensor is the dimensionality of the array
(i.e., the number of indices needed to label a component).

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch,Yale University



Geometry of Space Time

The defining properties of tensors are their transformation rules:
i.e., how do their values change under a coordinate transformation |x* — '/

thus, the value of a scalar field at a given point

; TN 1
® Scalar: D (x ) = (:Ij ) is independent of coordinate system used...
L ox b example of a contra-variant vector is the
- ; Ll i ) z
Contra-variant vector: A" = = A T
i s s Qa’ A, example of a covariant vector is the
: k o'k ( normal to a surface...

Einstein summation convention
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Intermezzo: covariant vs. contravariant

Consider a curve "' = z"(\)where ) is called the affine parameter (which is used
to parameterize the curve). The direction of the curve’s tangent at any point along
the curve is given by the contravariant vector: A” = dx" /dA
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Intermezzo: covariant vs. contravariant

Consider a scalar function ¢(x" ). The equation ¢ = constant describes a
hyper-surface whose normal is given by the covariant vector: A,, = 0¢/0z"
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Geometry of Space Time

Q: How can we describe space-time in a coordinate independent way???

A: We need to focus on the physical invariants, which are the actual
‘distances’ between events/locations.
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Geometry of Space Time

Example I: 2D Euclidean Space

Consider the Cartesian coordinate system = = (x,y

o )

1
di? = dz? + dy? Gigiz= i
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Geometry of Space Time

Example I: 2D Euclidean Space
Next, consider the curvi-linear, polar coordinate system z* = (7, 0)

In order to compute d/? for this new coordinate system, we use that di° is an

invariant. Coordinate transformations wrt Cartesian: T = 7 cos @
y =1 sin6
a?‘ " di? = dz? + dy? = dr’® + r’d¢’
Y Y
| —db
dy or = 06 o
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Geometry of Space Time

Example 2: 4D Minkowski Space

Consider the coordinate system =" = (ct, x, y, 2

In Minkowski space, M, we have that ds* = ¢*dt® — dz? — dy* — dz°
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Geometry of Space Time

Example 2: 4D Minkowski Space

The Minkowski metric is used in Special Relativity (SR).

Any two observers will agree on the interval ds between two events A and B,
even if they use different coordinate systems. Hence, in SR ds represents

the absolute (=invariant) quantity that replaces the Newtonian concepts of
absolute space and time. It has the following meaning:

For photons travelling at speed of light, ds = 0

If ds® > 0 then ds is the measured time interval between A
Eelluns ‘ 1 obsen both
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Geometry of Space Time

Example 3: 2D surface of a sphere

It is useful (though not necessary) to imagine
this 2D sphere embedded in 3D Euclidean space

That means we can use (x,y,z) to specify a point
P on this surface, where we have the constraint
that 2 + y* + 2 = a°. Alternatively, we can
define the coordinate system x* = (, 0)

Note that unlike (x,y,z), the coordinates (X, 9) are intrinsic to the surface.
The parameter a is just a scale-factor, which appears in the transformation relations, and
whose relevance becomes clear later.

di? = dz? + dy? + d2? = a?(dx? + sin®d§?)

x = asin y sin 6

Yy = asin y cos 6

2= acosy e a’ 0
EJ> Jid e
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Geometry of Space Time

Example 3: 2D surface of a sphere

Alternatively, one can define the unitless parameter

r = sin x (which obeysr € [0, 1]). In terms of this
parameter, we have that

r=arsinb

Yy = arcosf

z=a\1—r?

which implies that:

2
d 2 0 O
di* = dz? + dy? + d2? = o? [1 4 —|—r2d6’2] = Jij = ( R )

_ 2

The 2D sphere is a Riemann space with a constant, positive curvature.
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Geometry of Space Time

Example 4: 2D saddle’ surface (pringle chips)

This geometry differs from the 2D sphere in that it has a
negative curvature. Unlike the 2D sphere,

it cannot be embedded in 3D Euclidean space (which is
why it is difficult to draw/imagine). Note, though, that it
*can® be embedded in a 3D pseudo-Euclidean space,
i.e., it obeys 2 + y? — 22 = —@?, and has that

dI? = da* + dy® — dz?

Pick coordinate system z* = (, 6) that is intrinsic to | © = asinhy sinf
~ the surface, and related to (x,y,z) via y = asinhy cosf

2z = a coshy
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Geometry of Space Time

Summary: 2D surfaces

2D Euclidean dl® = a? [dr? + r2d6?

Note that for all these surfaces each point on the surface is equwalent which means
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Geometry of Space Time

Now that we have seen how to derive the metric of a general Riemann space,
let’s focus on the metric of space-time.

Cosmological Principle:
The Universe is homogeneous & isotropic on large scales.

® Copernican principle: our location in the Universe is in no way special
e In that case, why would ANY location be special (Occam’s razor)

® Consistent with observations

Isotropy ¥ the only motion possible is global expansion or contraction; a = a(t)

Homogeneity ¥ the metric is independent of location; gW(:IJO‘) = Juv

Thus, we seek a general 3D Riemann space, to be embedded in a (3+1)D space-time.
The metric of a homogeneous and isotropic 3D Riemann space is
Note: (7, K, 0, ¢) are all

dr2 unitless. Only the
dI? = a?(¢t r2(d6? + sin? 6 do? scale-factor a(t) has
(®) 1 — Kr? + 7 U ¢°) the dimensions of
length!
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The Friedmann-Robertson-Walker Metric

Upon embedding this 3D Riemann sphere in a (3+1)D space-time, we
obtain the so-called Friedmann-Robertson-Walker (FRW) metric:

dr?

2 21,2 2
ds® = ¢*dt* — a“(t) T e

+ r2(d6? + sin® 0 d¢?)

Fundamental Observers: A fundamental observer is an observer who, in a (unperturbed)

FRW metric, observes the universe to be isotropic. The set of
all fundamental observers defines a cosmological rest-frame’ at each location in space.

® The coordinates (7, 6, ¢) label fundamental observers and are called comoving
coordinates (i.e., they don’t change under expansion/contraction).

® The parameter ¢ in the FRW metric is called the proper time. It is the time on a standard
clock of a fundamental observer.
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The Friedmann-Robertson-Walker Metric

e [he proper distance is defined as the distance between two fundamental
observers at some proper time

| = / dl = a(t) /O r 7 f’;ﬁﬂ = a(t) x(r)

Here x(7)is the comoving distance between the fundamental observers

sin~'r if K =1
x(r)y=x r if K =0
sinh~'r if K =—1

Q NOTE:

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch,Yale University



The Friedmann=-Robertson-Walker Metric

® |[n addition to the proper time, ¢ , one can also define the conformal time:

T(t) =

“edt!
/ a(t) [7‘] = unitless
0

The conformal time is the total comoving distance X light could have travelled.

The proper time a photon travels in a proper time interval At is simply Al = cAt.
In a conformal time interval A7 the photon has travelled a comoving distance Ay = At

e |[nterms of X and 7, the FRW metric can be rewritten as:

ds® =

az(T) [dT2 —dy? — f?{(x) (d6’2 + sin? 9d¢2)}

where

fe(x) =1 =

siny
X
sinhy

it K =+1
it K =0
it K =—1

The advantage of this form of the FRW metric is that X is an actual
distance measure. This is NOT the case for 1, which is just’ a coordinate.
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The Friedmann-Robertson-Walker Metric

A word of caution about units:

In what we discussed above, the coordinates (r, x, 0, ¢) are all unitless.

However,

It is common practice (and we will adopt this as well), to define the
dimensionless scale factor a(t) = a(t)/ag, where ag is the present-day
value of the scale factor. Hence, this dimensionless scale factor is
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The Hubble Parameter

The rate at which the proper distance between two fundamental observers
changes as a function of time can be written as

which defines the Hubble parameter, H (¢). Using that [ = a(t)x, with X
the comoving distance between the fundamental observers, we have that:

ASTR 610:Theory of Galaxy Formation

© Frank van den Bosch,Yale University



e See MBW §3.1.3
Red S h Ift eefor deta§ils

Photons move along geodesics, ds = (. Substitution in FRW metric implies
that dr = d, where without losing generality we assumed df = d¢ = 0

cdi _

dr = =
O

Hence, if the comoving distance between emitter and observer remains fixed
(i.e., in the absence of peculiar velocities), proper time intervals scale with the
scale factor of the Universe:

5t0bs 6tem
a(tobs) a(tem)

Since the wavelength of a photon is proportional to the period between the
arrival of two wavecrests, we have that

Thus, for a(tohs) = ap = 1 we have that
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Peculiar Velocities

The proper velocity of a particle wrt a fundamental observer at the origin is
defined as v = di/dt, with [(t) the proper distance between particle & observer.

Using that [(¢) = a(t)x(t) we obtainthat |v = aX + aX = Vexp + Upec
a

Vexp = gax — H [ reflects the “velocity” due to the Hubble expansion

Upec IS the “peculiar velocity” wrt a co-spatial fundamental observer

The observed redshift from an objectis |1 4+ zops = (1 + Zcos) (1 + Zpec)

Lo o= ait )

is cosmological redshift due to expansion of space-time

14w C
e = e is Doppler redshift due to peculiar velocity (along los)
1 B vpec/c

v
In non-relativistic limit (vpee < ¢), this reduces to: | Zobs = Zcos - pcec (1 + zcos)

Due to the expansion, the peculiar velocities of particles that do not
experience an external force decay with time as v o qi
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Distances

So far we have encountered two different distances. The comoving distance X
and the proper distance [, which are related accordingto [ = a

In a static, Euclidean space the angular extent © and flux f of an object are related
to its physical size D and luminosity L according to

D, L
da 4mds

O

and the angular diameter distance dx is equal to the luminosity distance dr,

However, in an expanding space time, this is no longer the case. If we use
the above equations to define d and dy,, then it can be shown that:

aogT

:1—|—z dr,(z) =aor (1 + 2)

CZA(Z)

where r = r(z) = fk(x)is the coordinate in the FRW metric. Hence, for an object

at redshift z one distinguishes three distances: X', da, and dj..
To compute the z-dependence of these distances requires Friedmann eq.
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Energy Density of the Universe

Our cosmological fluid consists of multiple components:

pc® = pmc® + pme + prc® + pac’

2 e
Pm C = contribution due to rest-mass of matter

PmE = contribution due to internal energy of matter : C
Pr 02 = contribution due to energy of radiation ogp= Stefan Boltzmann constant
OA ¢ = contribution due to energy of vacuum € = internal energy per unit mass

® As we will see, one can use simple Newtonian thermodynamics to infer how
these different energy components evolve in an expanding space-time.

® Since energy densities of baryons & dark matter evolve in the same way,
it is sufficient to describe the (non-relativistic) matter as one component .

® The energy density of radiation and any other relativistic component
(e.g., neutrinos) only depends on temperature.
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Thermodynamics in Expanding Space-Time

Consider a comoving volume V o a*(t) in a homogeneous & isotropic Universe.
We can consider V arbitrarily small --> no need for GR.

dU = increase in internal energy

1st law of thermodynamics dU = dQ + dW

gt dl
o — 8

For an isolated, adiabatically expanding volume g = 0 »

Let p ¢ be the energy density. Then U = p s

el b
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Equation of State

The equation of state (EoS) is a thermodynamic equation describing the
interconnection between various macroscopic properties of a system.

For fluids, one often considers EoS of the form P = P(p,T)

In cosmology, it is convenient, and common, to write P = wch.
Here w = w(T) is the EoS parameter describing our cosmological “fluid’

Substitution of this general EoS into our first law of thermodynamics yields

dp

da

+ 3(1 4+ w)

QD

=\ » p x g~ 30+w)
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Non-Relativistic Matter

Non-relativistic matter can be describes reasonably well as an ideal gas.

An ideal gas is a hypothetical gas that consists of identical particles of zero volume that
undergo perfectly elastic collisions and for which intermolecular forces can be neglected.

_‘> See App A

of MBW

The EoS parameter T A e b ol B
for an ideal gas is w=w(T) = L v — 1 pmpc?

2
(see problem set 1) Lllint

Since for a non-relativistic fluid kg7 < pm,c* we have that w ~ 0
Hence, non-relativistic fluid can be approximated as zero-pressure fluid (“dust®’)

w =20 $ P X CL_3 (conservation of particles) |
T ""-"wqf?:':""‘flﬁl%c :lj’;“ﬁ
2 —1 —2
kg1l o< mv vxa - = T xa
_ —5 -
P = (kBT/,Ump)P =» P xa (pressure rapidly drops)
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Radiation & Relativistic Matter

For relativistic matter (mainly photons), we have that

o= 1 pc®  (see MWB §3.3.2)

Hence we have that the EoS parameter w = 1/3, and thus

w=1/3 = poxa?
pxT* =P Toxa

P=pc’/3 = Pxa™
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Vacuum Energy

According to quantum-physics, the vacuum can also have a non-zero
energy density. We associate that with the cosmological constant,
though we caution that dark energy’ is not understood at all!!!

Consider a piston filled with

The pressure associated with @»  yacuum. Increasing its volume
the cosmological constant behaves dV increases the total ener
as P = —ppc? (see inset), which

implies an EoS parameter w = —1

w = — oncao

no temperature

—opc? = P oxca
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Lecture 2

Cosmological Principle

Universe is homogeneous & Isotropic

@

Riemannian Geometry X

"

Friedmann-Robertson-Walker Metric

Cosmology in a Nutshell

ds® = a?(7) [d7% — dx® — [ (x) (d6° + sin® 0 dg?)]
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Summary: key words & important facts

Key words
Fundamental observer Cosmological Principle
Proper time vs. conformal time FRW metric
Comoving vs. proper distance Hubble parameter
Angular diameter distance redshift
Luminosity distance peculiar velocity

® Physical laws can be made manifest invariant by writing them in tensor form.

® The geometry of space-time is described by the metric g, = guv ()

® The FRW-metric is the most general metric consistent with the cosmological principle, that
the Universe is homogeneous and isotropic (on large scales).

® Due to the expansion, the peculiar velocities of particles that do not
experience an external force decay with time as vpec X Ve

® Since energy densities of baryons & dark matter evolve in the same way,
it is sufficient to describe the (non-relativistic) matter as one component .

® Since energy densities of radiation & relativistic matter (i.e., neutrinos)
evolve in the same way, it is sufficient to describe them as one component .
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Summary: key equations & expressions

d 2
£ ds* = c*dt® — a*(t) ! 5
Two ways of writing 1 - Kr

the FRW-metric

+ 7r%(d#? + sin? § d¢?)

ds? = a*(7) [d72 —dx? = f#(x) (d92 + sin® @ dgbz)]

d _
Thermodynamics =) d—’O + 3(1 + w)ﬁ — 0 EJ> 0 X a 3(1+w)
a a
non-relativistic matter (baryons & dark matter) w = 0
relativistic matter (radiation) w=1/3

cosmological constant (dark energy) W = -
Redshift, wavelength, scale-factor & L= Aobs — Aem  a(fobs) 1
peculiar velocity " Ddem a(tem)

U = éLX + CZX = Vexp + Upec E> 1+ Zobs — (1 =+ Zcos) (1 + Zpec)

angular diameter distance
luminosity distance da(z) = dr(z) =aor (1 +2)
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