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Structure & Formation of Ellitpical Galaxies

Topics that will be covered include:

Formation Scenarios
Sizes & the Merger picture
Monolithic collapse picture
Intrinsic Shapes
Fundamental Plane
Dichotomy of ellipticals

In this lecture we discuss the structure and formation of elliptical galaxies.

After a very brief overview of some of the main observational properties of  
ellipticals, we discuss two `competing’ pictures for the formation of ellipticals.



Elliptical galaxies have 
surface brightness profiles 
that are well described by

a Sersic profile:

Surface Brightness Profiles
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n: Sersic index

Re: effective radius that encloses half of the total light

For n=4 this is known as the `de Vaucouleurs’ profile, while n=1 corresponds to an exponential profile

Typically, brighter ellipticals have a larger Sersic index

Faintest ellipticals (dwarf spheroidals) have n~1,

corresponding to an exponential profile
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Observational Facts



Surface Brightness Profiles

disk (stars)

Brighter ellipticals are larger and have higher surface brightness

But, trends are not continuous: for MB < -20.5 surface brightess decreases with 
increasing luminosity, while there is little to no magnitude-size trend for dwarfs…
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Observational Facts



disk (stars)

The isophotes of elliptical galaxies are elliptical, but not perfectly so. They show 
deviations that are typically either ‘disky’ or ‘boxy’
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best fit elliptical

disky and boxy correspond to a4>0 and a4<0, respectively
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Brighter ellipticals are more likely boxy (disky fraction decreases with luminosity)
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Isophotal Shapes



disk (stars)

Some ellipticals reveal isophotal twists, with direction 
of major axis of isophote changing with isophotal level 

The simplest explanation is that (these) elliptical 

galaxies are triaxial (rather than oblate/prolate),

and have their intrinsic axis ratios change with radius.

Such a system in projection will reveal isophote twist

Most of these ellipticals are boxy

The presence of isophote twists

among (bright/boxy) ellipticals is

often taken as evidence that, as 
a class, they must be triaxial.
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Isophotal Twist



High resolution imaging with the HST revealed that the central regions of ellipticals 
reveal a dichotomy in their central surface brightness profile; ‘cusps’ vs ‘cores’

cuspy elliptical

cored elliptical

cuspy

cored

Typically cored ellipticals are bright (MB ≲ -20.5) and boxy,

while cuspy ellipticals are fainter and disky.

Whether this is a true `dichotomy’ or not is still debated…
Nuclei of elliptical galaxies also often harbour small 
(few 100pc) disks of gas/dust and/or stars
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The Nuclei of Elliptical Galaxies
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The Nuclear Dust Disk of NGC 4261

Dust disk ~100 pc size, oriented perpendicular to radio jets; is this the material that

feeds the accretion disk surrounding the SMBH at the center?

100 pc
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Creating Cores with Scouring SMBH Binaries

Milosavljevic & Merritt, 2001, ApJ, 563, 34

Cores can be created due to scouring by 
a SMBH binary. Dynamical friction acting 
on the SMBHs tightens the binary, and 
transfers momentum to the cusp stores, 
thereby creating a core. This process 
becomes inefficient once gravitational 
wave radiation becomes important..

Mej ~ 0.5 (M●,1 + M●,2) ln(ah/agr)Rule of thumb
ah = semi-major axis of SMBH binary when binary

       first becomes hard
ah = semi-major axis of SMBH binary when gravitational 

        radiation starts to dominate
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SOURCE: vdBosch, Jaffe & vdMarel, 1998, MNRAS, 293, 343
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The Nuclear Stellar Disk of NGC 4342



The observed spectrum of an elliptical galaxy is a convolution of the template spectrum, 
which  is the luminosity weighted spectrum of all the various stars along the line-of-sight 
(LOS) and a broadening function, which is a combination of an instrumental broadening 
function an the line-of-sight velocity distribution (LOSVD)

A typical functional form for the LOSVD

is a simple Gaussian.

However, the LOSVD is generally not 
Gaussian and is has become standard 
practice to adopt a Gauss-Hermite series 
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Typically one truncates the series at N=4, 
such that LOSVD is described by four 
parameters: V, 𝜎, h3, h4

related to skewness related to kurtosis

van der Marel & Franx 1993
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Kinematics



The h4 Gauss-Hermite moment is 
especially powerful as it is sensitive 

to the orbital distribution of the galaxy, 
and can therefore be used to

break the mass-anisotropy degeneracy

that hampers kinematic models.

van der Marel & Franx 1993
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Kinematics



Disky ellipticals typically reveal strong rotation along major axis, consistent with them 
being `oblate rotators’  (oblate in shape, with flattening due to rotation)

long-slit spectroscopy IFU spectroscopy
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Boxy ellipticals reveal little rotation, and occasionaly rotation along the minor axis.

Latter is a clear sign that (boxy) ellipticals are triaxial
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Kinematics
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box orbit

In triaxial potentials, there are four families of regular orbits. 

Box orbit have no net angular momentum; the orbit comes arbitrarily close to the 
centre. Tube orbits, on the other hand, have an angular momentum barrier

short-axis 
tube orbit

outer long-axis 
tube orbit

inner long-axis 
tube orbit
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Orbital Families in Triaxial Potentials



We now examine how the structure of elliptical galaxies relates to their kinematics.

The dynamics of (elliptical) galaxies are governed by the CBE:  df/dt = 0

Mutiplying the CBE with velocity, and integrating over velocity-space yields the 

Jeans equations (which are momentum equations)
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Using integration by parts, the first terms on the rhs can be written as
Z
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where we have defined the kinetic energy tensor, Kkj

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

The Tensor Virial Theorem



We split the kinetic energy tensor into contributions from ordered and random motions:
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In addition to the kinetic energy tensor, we also define the potential energy tensor:
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Combining the above, and using that both     and      are symmetric, we have thatK W
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Centrifugal Support vs. Pressure Support



Finally, we define the moment of inertia tensor

Differentiating wrt time and using the continuity equation (i.e., zeroth moment of CBE): 
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which allows us to write the Tensor Virial Theorem as

1
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= 2Tjk +⇧jk +Wjk

which relates the gross kinematic and structural properties of gravitational systems

students: try this at home
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The Tensor Virial Theorem



If the system is in a steady state, the moment of inertia tensor is stationary, 
and the tensor virial theorem reduces to

The common (scalar) virial theorem (2K+W=0) is simply the trace of this tensor equation. 

2Kjk +Wjk = 0

We now use this tensor virial theorem, to relate the flattening of an elliptical to

its kinematics. Consider an oblate system with it’s symmetry axis along the z-direction.

Because of symmetry considerations we have that

hvRi = hvzi = 0 hvRv�i = hvzv�i = 0
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hvxi = hv�i sin� hvyi = hv�i cos�If we write                             and then we obtain

A similar analysis shows that all other non-diagonal elements of   ,    and     have to be zero    T W⇧

In addition, because of symmetry considerations we must also have that                 , and

similar for     and  

Txx = Tyy
⇧ W
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The Tensor Virial Theorem



Given these symmetries, the only independent, non-trivial virial equations are

2Txx +⇧xx +Wxx = 0 2Tzz +⇧zz +Wzz = 0

If the only streaming motion is rotation about the z-axis, then              and Tzz = 0
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where v0 is the mass-weighted rotation velocity. Similarly we can write
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The Tensor Virial Theorem



As shown by Roberts (1962), for systems stratified on similar coaxial oblate ellipsoids,

the ratio                depends only on the ellipticity Wxx/Wzz "
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The above expression therefore makes it clear that a stellar system can be flattened 

either by rotation, or by anisotropic velocity dispersion (i.e., 𝛿 > 0)


It is customary to identify     with   , the mean velocity dispersion interior to half the

effective radius, and      with            , with       the maximum rotation velocity

�0 �̄
v0 4vm/⇡ vm (Binney 2005) 

changing inclination angle 

Solid lines are for edge-on system; dashed lines show 

impact of projection for decreasing inclination angle.

For isotropic case, to good approximation we have

vm
�̄

⇡
r

"

1� "

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

The Tensor Virial Theorem
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a modern replacement for vm/�̄

One can split ellipticals in two kinematic classes: 

Fast rotators; kinematics consistent with oblate rotators,

    shape is flattened by rotation

Slow rotators; very little rotation; shape is due to 

    anisotropic pressure support

Typically, slow rotators are more massive, and are often

boxy. Fast rotators are disky ellipticals or S0s, and are

often less luminous.
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Fast vs. Slow Rotators



Faint ellipticals (MB ≳-20.5) Bright ellipticals (MB ≲-20.5)

disky isophotes                           boxy isophotes
cuspy SB profile                          cored SB profile
fast rotator                                   slow rotator
weak in radio/X-ray                     often strong radio/X-ray emittor
isophotal twists rare                    isophotal twists common

Disky ellipticals are consistent with being more bulge-dominated versions of S0 galaxies.
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The Dichotomy among Ellipticals



Faber-Jackson  
relation

Fundamental Plane 
relation

Kormendy 
  relation

Similar to the TF-relation for disk galaxies, 
ellipticals reveal a scaling relation between 
luminosity and velocity dispersion, known as 
the Faber-Jackson (FJ) relation: 


However, unlike the TF, the scatter in FJ *is* 
correlated with size, giving rise to a 

three-parameter Fundamental Plane relation.
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The Fundamental Plane



The FP-relation is generally written in the form logRe = a log �0 + b loghIie + cst

Best-fit parameters are a ~ 1.2 to 1.5 (depending on waveband), and b ~ -0.8

The FP-relation is usually interpreted in terms of the Virial Theorem

hRi =

hv2i =

average radius,such that lhs is abs. value of mean potential energy per unit mass

average rms velocity, such that half that value is mean kinetic energy per unit mass

GM

hRi = hv2i

If ellipticals are homologous (i.e. 𝜅R and 𝜅V constant), and the mass-to-light ratio is constant,

then the Virial Theorem predicts a FP-relation with a=2 and b=-1

Re = RhRi
�0 = V

p
hv2i

Let

although still debated, the latter option seems to explain most of the tilt.

The deviation from this prediction is called the ‘tilt’ of the fundamental plane, and reflects that 
ellipticals as a class are not homologous, and/or that                            with                . (M/L) / L↵hIi�e (↵,�) 6= 0
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2⇡GR 2
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The Fundamental Plane



As originally proposed by Bender+92, it is useful to use an orthogonal combination of the 
three observables that enter the FP-relation, which facilitates interpretation. 
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In this ‘𝜅-space’, the 𝜅1-𝜅2 projection is very close to a face-on projection of the FP,

while the 𝜅1-𝜅3 projection shows the FP nearly edge-on. In fact, if ellipticals are homologous,

and (M/L) ∝ M𝛾, the virial theorem implies that 3 =

p
2/3�1 + cst

~ mass

~ 
M

/L
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The Fundamental Plane



One ‘obvious’ scenario for why some galaxies are ellipticals and others are spirals 
is to assume this is governed by angular momentum….
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Formation of Ellitpical Galaxies



merging gas 
clouds

monolithic collapse, 
cooling, and star 

formation

feedback 
removes 

remaining gas

spheroidal

galaxy

formation of 
disk

spheroidal 

galaxy

merging

gas in merging 
dark matter 

halos

slow collapse, 
cooling, governed 

by feedback

early disk 
systems

formation of late disk

ASTR 610: Theory of  Galaxy Formation ©  Frank van den Bosch, Yale University

hierarchical merger scenariomonolithic collapse


