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Halo Model & Halo Occupation Statistics

Topics that will be covered include:

Poisson statistics
Conditional Luminosity Function
Halo Exclusion
Halo Occupation Models
1-halo vs 2-halo terms
The Halo Model

Galaxy-Dark Matter Connection

In this lecture we discuss the “halo model”, an analytical model to describe the

(dark matter) mass distribution on small, non-linear scales. We also introduce the

concept of halo occupation statistics and discuss how data can constrain these. We 
end with some discussion on the galaxy-dark matter connection



The Halo Model



The Halo model is an analytical model that describes dark matter density distribution 
in terms of its halo building blocks, under ansatz that all dark matter is partitioned over 
haloes.

 the halo bias function

Throughout we assume that all dark matter haloes are spherical,

and have a density distribution that only depends on halo mass: �(r|M) = M u(r|M)

�
d3�x u(�x|M) = 1Here            is the normalized density profile:u(r|M)
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The Halo Model



x-axis

y-
ax

is

= halo center

Imagine space divided into many small volumes,        ,which are so small that

none of them contain more than one halo center.

�Vi

Then we have that

and therefore

Let      be the occupation number

of dark matter haloes in cell i

Ni

Ni = 0, 1
Ni = N 2

i = N 3
i =

This allows us to write the matter

density field as a summation:

�(�x) =
�

i

Ni Mi u(�x� �xi|Mi)
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=
�

i

�
dM M n(M) �Vi u(�x� �xi|M)

=
�

dM M n(M)
�

d3�y u(�x� �y|M)

Q.E.D.

ergodicity halo mass function

=
�

dM M n(M)

= �

�(�x) =
�

i

Ni Mi u(�x� �xi|Mi)

=
�

i

�Ni Mi u(�x � �xi|Mi)�

� =

Z
�(⇥x) d3⇥x = ⇥�(⇥x)⇤ =

*
X

i

Ni Mi u(⇥x� ⇥xi|Mi)

+
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Now that we can write the density field in terms of the halo building blocks, 

let’s focus on two-point statistics:

=
�

i

�

j

�Ni Nj MiMj u(�x1 � �xi|Mi)u(�x2 � �xj |Mj)�

convolution integral

=
�

dM M2 n(M)
�

d3�y u(�x1 � �y|M)u(�x2 � �y|M)

=
�

i

�
dM M2 n(M) �Vi u(�x1 � �xi|M)u(�x2 � �xi|M)

We split this in two parts: the 1-halo term           , and the 2-halo term (i = j) (i �= j)

�x2 = �x1 + �r

1-halo vs. 2-halo

�mm(r) � ��(�x) �(�x + �r)� = 1
�2 ��(�x) �(�x + �r)� � 1

��(�x) �(�x + �r)� =

�
�

i

Ni Mi u(�x1 � �xi|Mi) ·
�

j

Nj Mj u(�x2 � �xj |Mj)

�

For the 1-halo term we obtain:

��(�x) �(�x + �r)�1h =
�

i

�Ni M2
i u(�x1 � �xi|Mi)u(�x2 � �xi|Mi)�

N 2
i = Ni
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For the 2-halo term we obtain:

��(�x) �(�x + �r)�2h =
�

i

�

j �=i

�Ni Nj Mi Mj u(�x1 � �xi|Mi) u(�x2 � �xj |Mj)�

=
�

i

�

j �=i

�
dM1 M1 n(M1)

�
dM2 M2 n(M2) �Vi �Vj �

[1 + �hh(�xi � �xj |M1,M2)]u(�x1 � �xi|M1) u(�x2 � �xj |M2)

?

NO: dark matter haloes themselves are clustered, i.e., have a non-zero two point

       correlation function. This needs to be taken into account.

= �2

Clustering of dark matter haloes is characterized by halo-halo correlation function:

b(M)Here          is the halo bias function.                                                         Note: the above description of the halo-halo 
correlation function is only valid on large (linear) scales!  On small scales 

non-linearities and halo exclusion become important (see below).

�hh(r|M1,M2) = b(M1) b(M2) �lin
mm(r)
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convolution integral

For the 2-halo term we obtain:

��(�x) �(�x + �r)�2h =
�

i

�

j �=i

�Ni Nj Mi Mj u(�x1 � �xi|Mi) u(�x2 � �xj |Mj)�

= �2 +
�

dM1 M1 n(M1)
�

dM2 M2 n(M2) �
�

d3�y1

�
d3�y2 u(�x1 � �y1|M1) u(�x2 � �y2|M2) �hh(�y1 � �y2|M1,M2)

= �2 +
�

dM1 M1 b(M1) n(M1)
�

dM2 M2 b(M2) n(M2)�
�

d3�y1

�
d3�y2u(�x1 � �y1|M1) u(�x2 � �y2|M2) �lin

mm(�y1 � �y2)

=
�

i

�

j �=i

�
dM1 M1 n(M1)

�
dM2 M2 n(M2) �Vi �Vj �

[1 + �hh(�xi � �xj |M1,M2)]u(�x1 � �xi|M1) u(�x2 � �xj |M2)
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�2h(r) =
1
�2

�
dM1 M1 b(M1) n(M1)

�
dM2 M2 b(M2) n(M2)�

�
d3�y1

�
d3�y2u(�x� �y1|M1) u(�x + �r � �y2|M2) �lin

mm(�y1 � �y2)

�1h(r) =
1
�2

�
dM M2 n(M)

�
d3�y u(�x� �y|M)u(�x + �r � �y|M)

�(r) = �1h(r) + �2h(r)

Halo Model Ingredients:
 the halo mass function n(M)
 the halo bias function b(M)

the halo density profiles �(r|M) = Mu(r|M)

�lin
mm(r)the linear correlation 

function of matter

All of these are (reasonably) well calibrated against numerical simulations.
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P (k) = P 1h(k) + P 2h(k)

P 1h(k) =
1
�2

�
dM M2 n(M) |ũ(k|M)|2

P 2h(k) = P lin(k)
�
1
�

�
dM M b(M) n(M) ũ(k|M)

�2

Since convolutions in real-space become multiplications in Fourier space,

the halo model expression for the power spectrum is much easier.

Therefore, in practice, one computes         and then uses Fourier

transformation to obtain two-point correlation function

P (k)
�(r)

ũ(�k|M) =
�

u(�x|M)e�i�k·�x d3�x = 4�

� �

0
u(r|M)

sin kr

kr
r2 dr

P lin(k) = Pi(k) T 2(k) = kns T 2(k)
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The Halo Model in Fourier Space



Source: Cooray & Sheth (2002)

Dashed line: true non-linear power spectrum
Solid line: halo model

�2(k) =
1

2�2
k3P (k)

Dimensionless power spectrum

large scales small scales
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The Halo Model in Fourier Space



 the halo bias function

P 1h(k) =
1
�̄2

�
dM M2 n(M) |ũ(k|M)|2

P 2h(k) = P lin(k)
�
1
�̄

�
dM M b(M) n(M) ũ(k|M)

�2

However, this is ONLY true under the simplifying assumption that

In reality, on small scales, in the (quasi)-linear regime, this description of the 

halo-halo correlation function becomes inadequate for two reasons:

�hh(r|M1,M2) = b(M1) b(M2) �lin
mm(r)

is no longer adequate

halo exclusion

RR1

R2�lin
mm(r) is no longer adequate

halo exclusion
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The Halo Model: complications

Properly accounting for this is complicated        (if interested, see vdBosch+13)



Halo Occupation
Modelling



The above equations describe the halo model predictions for the matter power spectrum

The same formalism can also be used to compute the galaxy power spectrum:

Here           describes average number of galaxies (with certain properties) that reside 
in a halo of mass     ,      is the average number density of those galaxies, and 

is the normalized, radial number density distribution of galaxies in haloes of mass     .      

hNiM
M n̄g ug(r|M)

M

simply replace:

hNiM
n̄g

M

�̄

ũ(k|M) ũg(k|M)

M2

�̄2

hN(N � 1)iM
n̄2
g
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P 1h(k) =
1
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�
dM M2 n(M) |ũ(k|M)|2

P 2h(k) = P lin(k)
�
1
�

�
dM M b(M) n(M) ũ(k|M)

�2

The Galaxy Power Spectrum



When describing halo occupation statistics, it is important 
to treat central and satellite galaxies separately. 

Central Galaxies: those galaxies that reside at the center

                             of their dark matter (host) halo

Satellite Galaxies: those galaxies that reside at the center

                               of a dark matter sub-halo, and are 

                               orbitting inside a larger host halo. = central

= satellite

Central Galaxies

uc(r|M) = �D(r)

�Nc⇥M =
1X

Nc=0

Nc P (Nc|M) = P (Nc = 1|M)

�N2
c ⇥M =

1X

Nc=0

N2
c P (Nc|M) = P (Nc = 1|M) = �Nc⇥M

us(r|M) = TBD

�Ns⇥M =
1X

Ns=0

Ns P (Ns|M)

�N2
s ⇥M =

1X

Ns=0

N2
s P (Ns|M)

Satellite Galaxies
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Calculating galaxy-galaxy correlation functions requires following halo occupation statistic 
ingredients:

Halo occupation distribution for centrals
Halo occupation distribution for satellites

Radial number density profile of satellites

P (Nc|M)

P (Ns|M)

us(r|M)

In principle, as we will see, one also requires the probability function                       , but it

is common practice to assume that the occupation statistics of centrals and satellites are

independent, i.e., that 

P (Nc, Ns|M)

P (Nc, Ns|M) = P (Nc|M)� P (Ns|M)
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Halo Occupation Statistics
Central Galaxies

uc(r|M) = �D(r)

�Nc⇥M =
1X

Nc=0

Nc P (Nc|M) = P (Nc = 1|M)

�N2
c ⇥M =

1X

Nc=0

N2
c P (Nc|M) = P (Nc = 1|M) = �Nc⇥M

us(r|M) = TBD

�Ns⇥M =
1X

Ns=0

Ns P (Ns|M)

�N2
s ⇥M =

1X

Ns=0

N2
s P (Ns|M)

Satellite Galaxies



Consider a luminosity threshold sample; all galaxies brighter than some threshold luminosity. 
The halo occupation statistics for such a sample are typically parameterized as follows:

hNciM =
1

2


1 + erf

✓
logM � logMmin

�logM

◆�

hNsiM =

( ⇣
M
M1

⌘�
if M > Mcut

0 if M < Mcut

= characteristic minimum mass of haloes that 
   host centrals above luminosity threshold

= characteristic transition width due to 
   scatter in L-M relation of centrals

= cut-off mass below which you have zero     
   satellites above luminosity threshold

= normalization of satellite occupation numbers

= slope of satellite occupation numbers

Mmin

Mcut

M1

�logM

↵

hN
siM

/
M

�

Mmin

�logM

(Mmin,M1,Mcut,⇥logM ,�)

This particular HOD model, which is fairly 
popular in the literature, requires 5 
parameters                                              to 
characterize the occupation statistics of a 
given luminosity threshold sample, and is 
(partially) motivated by the occupation 
statistics in hydro simulations of galaxy 
formation...
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Increasing the slope                                       boosts the 1-halo term of the 
correlation function. It also boosts the 2-halo term, but to a lesser extent.

� = d log�Ns�/d log M

The latter arises because a 
larger value of α implies that 
satellites, on average, reside in 
more massive haloes, which are 
more strongly biased.

The 1-halo term scales with 
satellite occupation numbers as

            while the 2-halo term 
scales as           . This means that 
the relative clustering strengths in 
the 1-halo and 2-halo regimes 
constrains the satellite fractions.

�Ns�2M
�Ns�M
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An alternative parameterization, which has the advantage that it describes the 
occupation statistics for any luminosity sample (not only threshold samples), is 
the conditional luminosity function.

�(L|M) = �c(L|M) + �s(L|M)

The CLF describes the average number of galaxies of luminosity L that reside in 
a dark matter halo of mass M.

�Nx⇥M =

Z L2

L1

�x(L|M) dL

�L⇥M =

Z 1

0
�(L|M)L dL

�(L) =

Z 1

0
�(L|M)n(M) dM CLF is the direct link between the halo mass 

function and the galaxy luminosity function.

CLF describes link between luminosity and mass

CLF describes first moments of halo occupation 
statistics of any luminosity sample
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The CLF can be obtained from galaxy group catalogues. Yang, Mo & van den Bosch 
(2008) have shown that the CLF is well parameterized using the following functional form:

{Lc, Ls,⇥c,⇤s,�s}Note:                                all depend on halo mass. 
These dependencies are typically parameterized 
using ~10 free parameters.

�c(L|M)dL =
1⇤

2�⇥c

exp

⇤
�

�
ln(L/Lc)⇤

2⇥c

⇥2
⌅

dL

L

�s(L|M)dL =
�s

Ls

⇤
L

Ls

⌅�s

exp
�
�(L/Ls)2

⇥
dL
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The CLFs inferred from a SDSS galaxy group catalog. 
Symbols are data, while the solid, black line is best-fit 
using the CLF parameterization indicated above...

Free parameters are constrained by the 
data, which can be galaxy group 
catalogs, galaxy clustering, galaxy-
galaxy lensing, satellite kinematics, etc...
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The Conditional Luminosity Function



The 1-halo term of the galaxy-galaxy correlation function requires the second moment

hN(N � 1)iM = hN2
c iM + 2hNcNsiM + hN2

s iM � hNciM � hNsiM

where we assumed that occupation statistics of centrals and satellites are independent

Thus, we need to specify the second moment of the satellite occupation distribution:

⇤Ns(Ns � 1)⌅M =
1X

Ns=0

Ns(Ns � 1)P (Ns|M) ⇥ �(M) ⇤Ns⌅2

where we have introduced the function �(M)

If the occupation statistics of satellite galaxies follow Poisson statistics, i.e., 

P (Ns|M) =
�Ns e��

Ns!
� = hNsiMwith

then                  . Distributions with            (          ) are broader (narrower) than Poisson. �(M) = 1 � > 1 � < 1

The second moment of the halo occupation statistics is completely described by �(M)

= hNs(Ns � 1)iM + 2hNciM hNsiM
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It is common practice to assume that satellites obey Poisson statistics. This is motivated by 
finding that dark matter subhaloes have occupation statistics that are (close to) Poissonian

S
ou

rc
e:

 Z
he

ng
 e

t a
l.,

 2
00

5,
 A

pJ
, 6

33
, 7

91

satellites
all galaxies
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Occupation statistics of simulated galaxies 

in hydrodynamical SPH simulations. 

Satellite galaxies follow Poisson statistics...

Occupation statistics of dark matter subhaloes 
in numerical (dark-matter-only) simulations. 
Subhaloes follow Poisson statistics...

N includes 
host halo 
itself
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Even real data shows that the occupation statistics of satellites are (close to) Poissonian.
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Poisson distribution 
corresponding to <Ns>
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Halo Occupation Statistics

Even real data shows that the occupation statistics of satellites are (close to) Poissonian.



The radial number density profile of satellite galaxies is typically modelled as a 

`generalized NFW profile’:

us(r|M) �
✓

r

R rs

◆�� 
1 +

r

R rs

���3

Here     is a parameter that controls the central cusp slope, and                        sets the 
ratio between the concentration parameter of the satellites and that of the dark matter. 
For                    satellites are an unbiased tracer of the mass distribution (within 
individual haloes)

� R = csat/cdm

� = R = 1
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controls the clustering on small scales (only has

significant effect on 1-halo term).

The two-point correlation function of galaxies, calculated 
using the halo model. Solid dots are data from the APM 
catalogue. The solid line is the model’s matter correlation 
function, and the other lines are galaxy correlation 
functions in which the number density profile of satellite 
galaxies is varied. 
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Radial Number Density Profile of Satellites



The radial number density profile of satellite galaxies can be constrained using the 
clustering data itself, or by directly measuring the (projected) profiles of

satellite galaxies in groups/clusters, or around isolated centrals...
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The surface density profile of satellite 
galaxies in clusters. Solid line is the 
best-fit NFW profile.
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The surface density profiles of satellite galaxies around 
isolated centrals in the SDSS. Satellites are identified in 
photometric catalogue using statistical background 
subtraction. Lines are best-fit NFW profiles.
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Radial Number Density Profile of Satellites
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Although several studies have suggested that satellite galaxies follow a radial number 
density profile that is well fitted by NFW profile, others find that               has a core and 
is less centrally concentrated than the dark matter.

This is consistent with distribution of subhaloes in dark-matter-only simulations....

us(r|M)

The surface density profile of satellite galaxies around 
isolated centrals. Here both centrals & satellites are 
obtained from the spectroscopic SDSS. Note that 
cored profiles are better fit than NFW profile.
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Radial Number Density Profile of Satellites



Zehavi et al. 2011 used halo occupation models to fit the projected correlation functions 
obtained from the SDSS for 9 different luminosity threshold samples. 

    The left-hand panel shows data+fits (offset vertically for clarity).   

    The right-hand panel shows first moments of best-fit halo occupation distributions. 
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Constraints on Halo Occupation Statistics
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The Galaxy Halo Connection
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The Galaxy Halo Connection



Both these models 

fit clustering data

equally well
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Cosmology Dependence



The mass associated with galaxies lenses background galaxies

Lensing causes correlated ellipticities, the tangential shear,    , which

is related to the excess surface density,      , according to

�t

��

�t(R)�crit = ��(R) = �̄(< R)� �(R)

�(R) = �̄

� Ds

0
[1 + �g,dm(r)] d�

�� is line-of-sight projection of galaxy-matter cross correlation

background sources lensing due to foreground galaxy
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Galaxy-Galaxy Lensing



NOTE: this is not a fit, but a prediction based on CLFCombination of clustering & lensing can constrain cosmology!!!

Cacciato, vdB et al. (2009)

Data: 
SDSS measurements
by Mandelbaum+06
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Galaxy-Galaxy Lensing



New physics beyond the “vanilla” LCDM cosmology or systematic errors?

Cacciato, vdB et al. (2013)
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Cosmological Constraints



Lecture 13
SUMMARY



 the halo bias function

Halo model

halo exclusion

galaxy-galaxy lensing

Key words 
1-halo & 2-halo terms

Halo Occupation Distribution (HOD)

Conditional Luminosity Function (CLF)


The Halo model is an analytical model that describes dark matter density distribution in terms of its 
halo building blocks, under ansatz that all dark matter is partitioned over haloes.

In combination with a halo occupation model (HOD or CLF), the halo model can be used to 
compute galaxy-galaxy correlation function and galaxy-matter cross-correlation function. 

The latter is related to the excess surface density measured with galaxy-galaxy lensing.

HOD is mainly used to model clustering of luminosity threshold samples.

CLF can be used to model clustering of galaxies of any luminosity (bin).

It is common to assume that satellite galaxies obey Poisson statistics, such that 

<Ns(Ns-1)|M> = <Ns>2, and only the first moment of P(Ns|M) is required. This is not exact 

and may cause significant errors in the predicted clustering.

Summary: key words & important facts
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 the halo bias function
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halo model
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Galaxy-Galaxy lensing: tangential shear, excess surface density and galaxy-matter cross correlation

Characteristic examples of CLF and HOD for both centrals and satellites
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CLF: the link between light and mass

P (k) = P 1h(k) + P 2h(k)

Summary: key equations & expressions
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