In this lecture we discuss how to characterize the large scale distribution of matter and galaxies using n-point correlation functions both in the continuous and the discrete limit. We also discuss galaxy samples and redshift surveys, and what they teach us about the large scale distribution of galaxies.

Topics that will be covered include:

- Ergodic Principle
- Gaussian Random Fields
- n-point correlation functions
- Poisson sampling
- Galaxy surveys
- The Limber equations
- Redshift Space Distortions
Notation & Convention: Fourier modes

\[\delta_k = \frac{1}{V} \int \delta(x) e^{-i k \cdot x} \, d^3 x \]

\[\delta(x) = \sum \delta_k e^{+i k \cdot x} \]

Interpretation:

the cosmological density field is the sum over a discrete number of modes

\[\delta_k = A_k + i B_k = |\delta_k| e^{i \phi_k}, \text{ where } \vec{k} = \frac{2\pi}{L} (i_x, i_y, i_z) \]

amplitude

phase

Note: since \(\delta(x) \) is real, we have that the complex conjugate \(\delta^* = \delta \) and thus \(A_k = A_{-k} \) and \(B_k = -B_{-k} \). This implies that one only needs Fourier modes in the upper-half space to fully specify \(\delta(x) \)

Remember:

Dirac Delta function:

\[\delta^D(\vec{k} - \vec{k}') = \frac{1}{(2\pi)^3} \int e^{\pm i(\vec{k} - \vec{k}') \cdot \vec{x}} \, d^3 \vec{x} \]

Kronecker Delta function:

\[\delta^D_{kk'} = \frac{1}{V} \int e^{i(\vec{k} - \vec{k}') \cdot \vec{x}} \, d^3 \vec{x} \]
The Cosmological Density Field

How can we describe the cosmological (over)density field, \(\delta(\vec{x}, t) \), without having to specify the actual value of \(\delta \) at each location in space-time, \((\vec{x}, t)\)?

Since \(\delta(\vec{x}) \) is believed to be the outcome of some random process in the early Universe (i.e., quantum fluctuations in inflaton), our goal is to describe the probability distribution

\[
P(\delta_1, \delta_2, ..., \delta_N) \, d\delta_1 \, d\delta_2 \, ... \, d\delta_N
\]

where \(\delta_1 = \delta(\vec{x}_1) \), etc. For now we will focus on the cosmological density field at some particular (random) time. It’s time evolution has been addressed in Lectures 4 - 8.

This probability distribution is completely specified by the moments

\[
\langle \delta_{l_1}^{l_1} \delta_{l_2}^{l_2} \, ... \, \delta_{l_N}^{l_N} \rangle = \int \delta_{l_1}^{l_1} \delta_{l_2}^{l_2} \, ... \, \delta_{l_N}^{l_N} \, P(\delta_1, \delta_2, ..., \delta_N) \, d\delta_1 \, d\delta_2 \, ... \, d\delta_N
\]

Cosmological Principle: Universe is homogenous & isotropic.
- all positions/directions are equivalent
- all moments are invariant under spatial translation & rotation
NOTE: \(\langle \ldots \rangle \) denotes an ensemble average. For instance, \(\langle \delta(\vec{x}) \rangle \) means the average overdensity at \(\vec{x} \) for many realizations of the random process.

PROBLEM: Theory specifies ensemble average, but observationally we have only access to one realization of the random process.

Ergodic Hypothesis: Ensemble average is equal to spatial average taken over one realization of the random field...

\[
\langle \delta \rangle = \int \delta \mathcal{P}(\delta) \, d\delta = \frac{1}{V} \int_V \delta(\vec{x}) \, d^3\vec{x}
\]

Essentially, the ergodic hypothesis requires spatial correlations to decay sufficiently rapidly with increasing separation so that there exists many statistically independent volumes in one realization.

The ergodic hypothesis is proven for Gaussian random fields, which are our main focus in what follows.
A random field $\delta(\vec{x})$ is said to be Gaussian if the distribution of the field values at an arbitrary set of N points is an N-variate Gaussian:

$$\mathcal{P}(\delta_1, \delta_2, ..., \delta_N) = \frac{\exp(-Q)}{\left[(2\pi)^N \det(C)\right]^{1/2}}$$

where we have defined the two-point correlation function $\xi(\vec{r}) = \langle \delta(\vec{x}) \delta(\vec{x} + \vec{r}) \rangle$

NOTE: because of invariance to spatial translation & rotation, we have that $\langle \delta_i \delta_j \rangle = \xi(r_{12})$, where $r_{12} = |\vec{x}_i - \vec{x}_j|$.

In particular, the one-point distribution function of the field is

$$\mathcal{P}(\delta) \, d\delta = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{\delta^2}{2\sigma^2}\right) \, d\delta$$

where $\sigma^2 = \langle \delta^2 \rangle = \xi(0)$ is the variance of the density perturbation field.

As you can see, for Gaussian random field the N-point probability function $\mathcal{P}(\delta_1, \delta_2, ..., \delta_N)$ is completely specified by the two-point correlation function.
Rather than specifying $P(\delta_1, \delta_2, \ldots, \delta_N) \, d\delta_1 \, d\delta_2 \ldots \, d\delta_N$, it is equivalent to specify

$$P(\delta_{k_1}, \delta_{k_2}, \ldots, \delta_{k_N}) \, d|\delta_{k_1}| \, d|\delta_{k_2}| \ldots \, d|\delta_{k_N}| \, d\phi_1 \, d\phi_2 \ldots \, d\phi_N$$

which gives the probability that the modes δ_{k_i} have amplitudes in the range $|\delta_{k_i}| \pm d|\delta_{k_i}|/2$ and phases in the range $\phi_i \pm d\phi_i/2$.

For a Gaussian random field,

$$P(\delta_{k_1}, \delta_{k_2}, \ldots, \delta_{k_N}) \, d|\delta_{k_1}| \, d|\delta_{k_2}| \ldots \, d|\delta_{k_N}| \, d\phi_1 \, d\phi_2 \ldots \, d\phi_N = \prod_i P(\delta_{k_i}) \, d|\delta_{k_i}| \, d\phi_i$$

which makes it explicit that all modes are independent. Furthermore, for each mode A_{k_i} and B_{k_i} are independent, which implies that ϕ_{k_i} is distributed uniformly over $[0, 2\pi]$.

Hence

$$P(\delta_{k}) \, d|\delta_{k}| \, d\phi_{k} = \exp \left[-\frac{|\delta_{k}|^2}{2\langle|\delta_{k}|^2\rangle}\right] \frac{|\delta_{k}| \, d|\delta_{k}| \, d\phi_{k}}{\langle|\delta_{k}|^2\rangle \, 2\pi}$$

which makes it explicit that the Gaussian random field is completely specified by the power spectrum $P(k) = V \langle|\delta_{k}|^2\rangle$. ...
Higher-Order Correlation Functions

The n-point correlation function is defined as
\[\xi^{(n)} \equiv \langle \delta_1 \delta_2 \ldots \delta_n \rangle \]

The reduced (or irreducible) n-point correlation function is defined as
\[\xi_{\text{red}}^{(n)} \equiv \langle \delta_1 \delta_2 \ldots \delta_n \rangle_c \]

where \(\langle \ldots \rangle_c \) is the cumulant or connected moment.

The cumulants \(\kappa_n \) of a probability distribution are a set of quantities that provide an alternative to the moments \(\mu_n \). They are related via the following recursion formula:

\[\kappa_n = \mu_n - \sum_{m=1}^{n-1} \binom{n-1}{m-1} \kappa_m \mu_{n-m} \]

In the case of \(P(\delta_1, \delta_2, \ldots, \delta_n) \) the moments are central (i.e., \(\mu_1 = \langle \delta \rangle = 0 \)) so that

\[\langle \delta_1 \rangle = \langle \delta_1 \rangle_c = 0 \]
\[\langle \delta_1 \delta_2 \rangle = \langle \delta_1 \rangle_c \langle \delta_2 \rangle_c + \langle \delta_1 \delta_2 \rangle_c = \langle \delta_1 \delta_2 \rangle_c \]
\[\langle \delta_1 \delta_2 \delta_3 \rangle = \langle \delta_1 \rangle_c \langle \delta_2 \rangle_c \langle \delta_3 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \rangle_c \text{ (3 terms)} + \langle \delta_1 \delta_2 \delta_3 \rangle_c = \langle \delta_1 \delta_2 \delta_3 \rangle_c \]
\[\langle \delta_1 \delta_2 \delta_3 \delta_4 \rangle = \langle \delta_1 \rangle_c \langle \delta_2 \rangle_c \langle \delta_3 \rangle_c \langle \delta_4 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \rangle_c \langle \delta_4 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \rangle_c \langle \delta_4 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \rangle_c \langle \delta_4 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \rangle_c \langle \delta_4 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \rangle_c \langle \delta_4 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \rangle_c \langle \delta_4 \rangle_c \text{ (4 terms)} + \langle \delta_1 \delta_2 \rangle_c \langle \delta_3 \rangle_c \langle \delta_4 \rangle_c \text{ (3 terms)} + \langle \delta_1 \delta_2 \rangle_c \langle \delta_3 \rangle_c \langle \delta_4 \rangle_c \text{ (3 terms)} + \langle \delta_1 \delta_2 \rangle_c \langle \delta_3 \rangle_c \langle \delta_4 \rangle_c \text{ (3 terms)} \]
Hence, we have that

\[
\begin{align*}
\langle \delta_1 \rangle_c &= \langle \delta_1 \rangle = 0 \\
\langle \delta_1 \delta_2 \rangle_c &= \langle \delta_1 \delta_2 \rangle = \xi(r_{12}) \\
\langle \delta_1 \delta_2 \delta_3 \rangle_c &= \langle \delta_1 \delta_2 \delta_3 \rangle = \xi^{(3)}_{123} \\
\langle \delta_1 \delta_2 \delta_3 \delta_4 \rangle_c &= \langle \delta_1 \delta_2 \delta_3 \delta_4 \rangle - \langle \delta_1 \delta_2 \rangle_c \langle \delta_3 \delta_4 \rangle_c \text{ (3 terms)} \\
&= \xi^{(4)}_{1234} - \xi^{(2)}_{12} \xi^{(2)}_{34} - \xi^{(2)}_{13} \xi^{(2)}_{24} - \xi^{(2)}_{14} \xi^{(2)}_{23}
\end{align*}
\]

These reduced (or irreducible) correlation functions express the part of the n-point correlation functions that cannot be obtained from lower-order reduced correlation functions:

In the limit where \(r_{13} \) goes to infinity, the correlation between the three points in configuration 2 is entirely due to that between points 1 and 2. The reduced correlation function subtracts the correlations due to these configurations from the total correlation function. ...
Consider once more the four point correlation function:

\[\langle \delta_1 \delta_2 \delta_3 \delta_4 \rangle = \langle \delta_1 \rangle_c \langle \delta_2 \rangle_c \langle \delta_3 \rangle_c \langle \delta_4 \rangle_c + \langle \delta_1 \rangle_c \langle \delta_2 \delta_3 \delta_4 \rangle_c \text{(4 terms)} + \langle \delta_1 \delta_2 \rangle_c \langle \delta_3 \delta_4 \rangle_c \text{(3 terms)} \\
+ \langle \delta_1 \delta_2 \rangle_c \langle \delta_3 \rangle_c \langle \delta_4 \rangle_c \text{(6 terms)} + \langle \delta_1 \delta_2 \delta_3 \delta_4 \rangle_c \]

Using similar diagrams we can understand the origin of each of these terms.

Notation:

\[\xi(x_1, x_2) = \langle \delta_1 \delta_2 \rangle_c \quad \zeta(x_1, x_2, x_3) = \langle \delta_1 \delta_2 \delta_3 \rangle_c \quad \eta(x_1, x_2, x_3, x_4) = \langle \delta_1 \delta_2 \delta_3 \delta_4 \rangle_c \]

For a Gaussian random field, all connected moments (= reduced correlation functions) of \(n > 2 \) are equal to zero (i.e., \(\zeta = \eta = 0 \)).

One can use \(\zeta \) and \(\eta \) to test whether the density field is Gaussian or not...
The Wiener-Khinchin Theorem states that the power spectrum is the Fourier transform of the two-point auto-correlation function. In what follows we provide the proof:

\[
P(k) = V \langle |\delta_k|^2 \rangle = V \langle \delta_k \delta_k^* \rangle = V \langle \delta_k \delta_{-k} \rangle
\]

\[
\delta_k = \frac{1}{V} \int \delta(\vec{x}) e^{-i\vec{k} \cdot \vec{x}} \, d^3\vec{x}
\]

\[
\delta_{-k} = \frac{1}{V} \int \delta(\vec{x}) e^{+i\vec{k} \cdot \vec{x}} \, d^3\vec{x}
\]

\vec{x}_1 \equiv \vec{x}_2 + \vec{r}

\[
P(k) = V \left\langle \int \frac{1}{V^2} \int d^3\vec{x}_1 e^{-i\vec{k} \cdot \vec{x}_1} \delta(\vec{x}_1) \right\rangle
\int d^3\vec{x}_2 e^{+i\vec{k} \cdot \vec{x}_2} \delta(\vec{x}_2)
\]

\[
= \frac{1}{V} \int d^3\vec{x}_1 e^{-i\vec{k} \cdot \vec{x}_1} \int d^3\vec{x}_2 e^{+i\vec{k} \cdot \vec{x}_2} \langle \delta(\vec{x}_1) \delta(\vec{x}_2) \rangle
\]

\[
= \frac{1}{V} \int d^3\vec{r} \xi(r) e^{-i\vec{k} \cdot \vec{r}} \int d^3\vec{x}_2 e^{-i\vec{k} \cdot \vec{x}_2} e^{+i\vec{k} \cdot \vec{x}_2}
\]

\[
= \int d^3\vec{r} \xi(r) e^{-i\vec{k} \cdot \vec{r}}
\]

QED
Thus far we focussed on the continuous overdensity field, $\delta(\vec{x})$. We have seen that $\delta(\vec{x})$ can be described by the n-point correlation function, or, equivalently by the mass moments κ_n.

We now consider a discrete distribution of points (i.e., galaxies) and use similar statistics to describe their distribution in space.

Imagine space divided into many small volumes, δV_i, which are so small that none of them contain more than one galaxy...

Let N_i be the occupation number of galaxies in cell i.

Then we have that $N_i = 0, 1$ and therefore $N_i = N_i^2 = N_i^3 = \text{etc.}$
Discrete N-point statistics

We now `replace' \(P(\delta_1, \delta_2, ..., \delta_N) \, \text{d}\delta_1 \, \text{d}\delta_2 ... \, \text{d}\delta_N \) with the probability \(P(N_1, N_2, ..., N_N) \) that we have the realization \(\{N_1, N_2, ..., N_N\} \).

As before, we will characterize \(P(N_1, N_2, ..., N_N) \) by its moments \(\langle N_1^{l_1} N_2^{l_2} ... N_N^{l_N} \rangle \)

Using that \(N_i = N_i^2 = ... = N_i^n \) we have that

\[
\langle N_1^{l_1} N_2^{l_2} ... N_N^{l_N} \rangle = \langle N_1 N_2 ... N_N \rangle = \delta P_{12...N}
\]

where we have defined the probability \(\delta P_{12...N} \) that there is a galaxy in \(\delta V_1 \), and there is a galaxy in \(\delta V_2 \), . . . , and there is a galaxy in \(\delta V_N \)

Let \(\bar{n} \) be the average number density of galaxies, then \(\delta P_1 = \langle N_1 \rangle = \bar{n} \, \delta V_1 \)

If the `point process' (i.e., the random process that puts down the points) is a random Poisson process, then \(\delta P_{12} = \langle N_1 N_2 \rangle = \bar{n}^2 \, \delta V_1 \, \delta V_2 \), i.e., the probability to have a galaxy at \(\delta V_1 \) is independent of probability to have one at \(\delta V_2 \)...

In the more general case where the point process is not Poisson we define

\[
\delta P_{12} = \langle N_1 N_2 \rangle \equiv \bar{n}^2 \, \delta V_1 \, \delta V_2 \, [1 + \xi_{12}]
\]
The above relation defines the two-point correlation function \(\xi_{12} = \xi(r_{12}) \)

As is immediately evident from its definition, \(\xi_{12} \) is the excess probability, relative to Poisson, that two galaxies (points) are separated by a distance \(r_{12} \).

The two-point correlation function of galaxies is typically measured using

\[
\xi(r) = \frac{DD(r) \Delta r}{RR(r) \Delta r} - 1
\]

Here \(DD(r) \Delta r \) is the number of pairs with separations \(r \pm \Delta r/2 \) in the data, and \(RR(r) \Delta r \) is the corresponding number of pairs if the point process is random.

Other `estimators' for \(\xi(r) \) are also available in the literature, but as long as the data sample is sufficiently large, the above is more than adequate...

NOTE: when constructing the random sample, it is important that one carefully models the survey boundary (‘footprint’) of the data sample...
Clearly, this notation looks very similar to what we used in the continuous limit, suggesting a close link. To see this connection, we write \(\delta \mathcal{P}_{12} = \langle N_1 N_2 \rangle = \langle n_1 n_2 \rangle \delta V_1 \delta V_2 \)

where we have introduced the continuous number density field \(n(x) \) for which \(\langle n(x) \rangle = \bar{n} \)

Writing \(n(x) = \bar{n} [1 + \delta_g(x)] \), where we introduced the galaxy overdensity field \(\delta_g(x) \)
we can write that

\[
\delta \mathcal{P}_{12} = \bar{n}^2 \delta V_1 \delta V_2 \langle (1 + \delta_1) (1 + \delta_2) \rangle = \bar{n}^2 \delta V_1 \delta V_2 [1 + \langle \delta_1 \delta_2 \rangle]
\]

where from now on we consider it understood that \(\delta = \delta_g \) (for the sake of brevity).

Comparing the above to how we defined the (discrete) two-point correlation function:

\[
\delta \mathcal{P}_{12} = \langle N_1 N_2 \rangle = \bar{n}^2 \delta V_1 \delta V_2 [1 + \xi_{12}]
\]

Thus we see that the two-point correlation function that we defined in the discrete case is the same as that defined in the continuous case.
Finally, we derive the power spectrum for our discrete distribution of points:

\[n(\vec{x}) = \bar{n} [1 + \delta_g(\vec{x})] = \sum_i \delta^D(\vec{x} - \vec{x}_i) \]

\[\delta_g(\vec{x}) = \frac{1}{\bar{n}} \sum_i \delta^D(\vec{x} - \vec{x}_i) - 1 \]

Hence, we have that

\[\delta_k = \frac{1}{V} \int \delta_g(\vec{x}) e^{-i\vec{k} \cdot \vec{x}} d^3\vec{x} \]

\[= \frac{1}{\bar{n}V} \sum_i e^{-i\vec{k} \cdot \vec{x}_i} - \frac{1}{V} \int e^{-i\vec{k} \cdot \vec{x}} d^3\vec{x} \]

\[= \frac{1}{\bar{n}V} \sum_j N_j e^{-i\vec{k} \cdot \vec{x}_j} - \delta_k \]

Substitution of the above in the expression for the power spectrum yields

\[P(k) \equiv V \langle |\delta_k|^2 \rangle = P_{gg}(k) + \frac{1}{\bar{n}} \]

Students: try to derive this at home

where \(P_{gg}(k) \equiv \int \xi_{gg}(r) e^{-i\vec{k} \cdot \vec{r}} d^3\vec{r} \). The extra \(1/\bar{n} \) -term is due to shot-noise. If the galaxy distribution is Poisson, then \(P_{gg}(k) = 0 \). However, the Fourier modes have non-zero variance \(\langle |\delta_k|^2 \rangle = (\bar{n}V)^{-1} \) due to discreteness. Note that this shot noise manifests itself as a white-noise \((P(k) \propto k^0) \) contribution.
Suppose galaxy formation is very simple, such that the probability that a cell \(\delta V_i \) contains a galaxy follows a Poisson distribution with a mean proportional to the mean density \(\rho_i = \frac{1}{\delta V_i} \int_{\delta V_i} \rho(\vec{x}) \, d^3\vec{x} \).

We say that the galaxies sample the density field \(\rho(\vec{x}) = \bar{\rho}[1 + \delta(\vec{x})] \) via a Poisson process.

The probability \(p^{(1)}(\vec{x}) \) that a cell at \(\vec{x} \) contains one galaxy is

\[
p^{(1)}(\vec{x}) = [1 + \delta(\vec{x})] \bar{n} \delta V
\]

We can also write that \(p^{(1)}(\vec{x}) = \langle N(\vec{x}) \rangle_P \), where \(\langle \ldots \rangle_P \) indicates an average over the Poisson probability distribution...

The galaxy distribution, in this case, is the outcome of a double stochastic process, with one level of randomness coming from the random density field and the second from the Poisson sampling...
We can now immediately write down the \textit{n-point} statistics for the \textit{galaxy} distribution.

Consider the \textbf{two-point} statistic (what follows holds for all \textit{n-point} statistics though...)

\begin{align*}
\langle N_1 N_2 \rangle &= \langle p^{(1)}(\vec{x}_1)p^{(1)}(\vec{x}_2) \rangle = (\bar{n}\delta V)^2 \langle (1 + \delta(\vec{x}_1))(1 + \delta(\vec{x}_2)) \rangle = (\bar{n}\delta V)^2[1 + \xi(r_{12})]
\end{align*}

- The first step simply expresses that the Poisson samplings at different locations are independent of each other...

- The two-point correlation function $\xi(r_{12})$ is that of the continuous matter field.

We also had that for a point (galaxy) distribution

\begin{align*}
\langle N_1 N_2 \rangle &\equiv \delta P_{12} = (\bar{n}\delta V)^2[1 + \xi_{12}]
\end{align*}

\textbf{If galaxy formation is a Poisson sampling of the density field, then all \textit{n-point} correlation functions of the galaxy distribution are identical to those of the matter distribution}
How realistic is it that galaxies are a Poisson sampling with \(p^{(1)}(\vec{x}) \propto \rho(\vec{x}) \)?

- Galaxies are believed to form and reside in dark matter haloes.
- As we have seen before, dark matter haloes are biased tracers of matter distribution. Hence, it seems only logical that the galaxy distribution is also biased.

To get some insight into the implications of galaxies being biased tracers of the mass distribution, assume that the sampling is still a Poisson process but with

\[
p^{(1)}(\vec{x}) = [1 + b \delta(\vec{x})] \bar{n} \delta V
\]

where \(b \) is some constant `bias' parameter. We then have that

\[
\langle N_1 N_2 \rangle = \langle p^{(1)}(\vec{x}_1) p^{(1)}(\vec{x}_2) \rangle = (\bar{n} \delta V)^2 \langle (1 + b \delta(\vec{x}_1))(1 + b \delta(\vec{x}_2)) \rangle = (\bar{n} \delta V)^2 [1 + b^2 \xi(r_{12})]
\]

- As we will see later, galaxy bias is much more complicated than what is assumed here.
- In general, one cannot infer the matter distribution from the galaxy distribution without detailed knowledge of its bias.
In the early days, mapping the large scale structure was done by counting galaxies on photographic plates, by Fritz Zwicky, Donald Shane, and Carl Wirtanen in the 1930s. A milestone was the Lick catalogue of Shane & Wirtanen (1967), which contained over 1 million galaxies identified by eye on the Lick plates, down to a limiting photographic magn. of ~18.3.
During the 1990s, plate scanning machines replaced humans in identifying galaxies on photographic plates. One example is the APM Galaxy Survey, with ~2 million galaxies (Maddox et al. 1990).
All sky view of the “local” Universe as mapped out by the Two-Micron All Sky Survey (2MASS). In this map galaxies have been color coded by their photometric redshift.

(source: Jarrett 2004)
Angular Correlation Functions

Consider a sample of galaxies with \(\vec{\Theta}_i = (\alpha_i, \delta_i) \) and complete down to some limiting apparent magnitude \(m_{\text{lim}} \):

The angular correlation function, \(w(\theta) \), is defined by

\[
\delta P_{12} = \bar{\nu}^2 \delta \Omega_1 \delta \Omega_2 \left[1 + w(\theta) \right]
\]

where \(\delta P_{12} \) is the probability to find two galaxies in the infinitesimal solid angles \(\delta \Omega_1 \) and \(\delta \Omega_2 \), and \(\bar{\nu} \) is the mean surface number density.

The angular correlation function is obtained using the estimator:

\[
w(\theta) = \frac{DD(\theta) \, d\theta}{RR(\theta) \, d\theta} - 1
\]

The first measurements of angular correlation function were obtained by Hauser & Peebles (1973) using the Zwicky et al. (1961-1968) and Lick (Shane & Wirtanen 1967) catalogs...

The angular correlation function of galaxies with apparent photographic magnitudes in the range \(17 < b_J < 20 \) obtained from the APM Galaxy Survey. Note the power-law behavior on small scales, and the dip below zero on large scales....
The **angular correlation function** is related to the real space correlation function via a line-of-sight projection integration known as the Limber equation:

$$w(\theta) = \int_0^\infty dy' y'^4 S^2(y') \int_{-\infty}^\infty dx \xi(\sqrt{x^2 + y'^2 \theta^2})$$

Limber equation

Here $S(y)$ is the survey selection function, normalized such that $\int x^2 S(x) \, dx = 1$, and defined as probability that `random’ galaxy located at y is included in the sample.

For example, for an apparent magnitude limited sample with $m < m_{\text{lim}}$ we have that

$$S(z) = \frac{\int_{L_{\text{lim}}(z)}^\infty \Phi(L) \, dL}{\int_0^\infty \Phi(L) \, dL}$$

where $L_{\text{lim}}(z)$ is the luminosity of a galaxy that at z has an apparent magnitude m_{lim}.

If $\xi(r) \propto r^{-\gamma}$ then $w(\theta) \propto \theta^{1-\gamma}$

HOWEVER: in the case of a magnitude limited sample, as is generally the case, this is only true if clustering is independent of luminosity, which is not the case (as we will see). Because of this angular correlation functions have gone out of vogue.
In order to properly characterize the distribution of galaxies, we need information in 3D; this is provided by galaxy redshift surveys.

First galaxy redshift surveys were constructed by Gerard de Vaucouleurs and collaborators in 1950-1970s.

The first redshift survey appropriate for measuring clustering of galaxies was the CfA survey of Huchra & Geller; This data set was used by Davis & Peebles (1983) to measure the galaxy auto-correlation function:

$$
\xi_{gg}(r) = \left(\frac{r}{r_0} \right)^{-1.8} \quad \text{with} \quad r_0 \approx 5.4h^{-1}\text{Mpc}
$$

Representative Redshift Surveys

<table>
<thead>
<tr>
<th>Year</th>
<th>Survey</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>CfA</td>
<td>~2,500</td>
</tr>
<tr>
<td>1992</td>
<td>IRAS</td>
<td>~9,000</td>
</tr>
<tr>
<td>1995</td>
<td>CfA2</td>
<td>~20,000</td>
</tr>
<tr>
<td>1996</td>
<td>LCRS</td>
<td>~23,000</td>
</tr>
<tr>
<td>2003</td>
<td>2dFGRS</td>
<td>~250,000</td>
</tr>
<tr>
<td>2009</td>
<td>SDSS</td>
<td>~930,000</td>
</tr>
</tbody>
</table>

The last 30 years have seen a dramatic increase in data, culminating with the completion of the Sloan Digital Sky Survey. Currently, we have accurate measured redshifts for well over one million galaxies.
Using the APM Galaxy Survey as input source catalogue, Colless et al. (2001) constructed the **Two-Degree Field Galaxy Redshift Survey** (2dFGRS), containing redshifts for ~220,000 galaxies, covering ~1500 sq. deg. on the Southern Sky.
At present, the largest galaxy redshift survey is the Sloan Digital Sky Survey (SDSS).

Using the dedicated 2.5m telescope at Apache Point Observatory, it imaged more than 8000 sq. deg. of sky in five passbands (ugriz), and obtained spectra for 930,000 galaxies and 120,000 quasars.

For more info: www.sdss.org
A galaxy redshift survey consists of a large number of 3D `positions’ \((\alpha_i, \delta_i, z_i)\)

Define:

\[
\vec{s}_i = \left(\frac{cz_i}{H_0} \right) \hat{r}_i = \left(\frac{v_i}{H_0} \right) \hat{r}_i
\]

\(v_i = \text{radial velocity}\)

with \(\hat{r}_i\) the unit direction vector in the direction \((\alpha_i, \delta_i)\)

We call \(s_i \equiv |\vec{s}_i| = v_i/H_0\) the redshift distance of galaxy \(i\)

Recall:

\[
v = v_{\text{exp}} + v_{\text{pec}} = H_0 l(z) + v_{\text{pec}}
\]

with \(l(z)\) the proper distance to the galaxy

Due to peculiar velocities, the redshift distances available from a galaxy redshift survey deviate from the true, proper distances. This results in redshift space distortions in the clustering measurements.

Although these redshift space distortions complicate the interpretation of the clustering, they also contain useful information. After all, the peculiar velocities are induced by the cosmic matter distribution.
Since peculiar velocities only cause distortions along the line-of-sight, they introduce anisotropies in the observed correlation function:

- On large scales, peculiar velocities reflect the (linear) infall motions towards overdensities, causing a circle in real space to appear ‘squashed’ in redshift space. This is often called the Kaiser effect.

- On small, peculiar velocities reflect the (non-linear) virialized motion of galaxies inside their host haloes, causing a circle in real space to appear ‘stretched’ in redshift space. This is often called the Finger-of-God effect.
One expresses the distance between two galaxies in their components perpendicular, r_p, and parallel, r_π, to the line-of-sight, which are defined as

$$r_\pi \equiv \frac{s' \cdot \vec{l}}{||\vec{l}||} \quad \text{and} \quad r_p \equiv \sqrt{s^2 - r_\pi^2}$$

Here $\vec{s} \equiv \vec{s}_1 - \vec{s}_2$ and $\vec{l} \equiv \frac{1}{2}(\vec{s}_1 + \vec{s}_2)$ (see diagram)

These are used to measure the two-dimensional two-point correlation function $\xi(r_p, r_\pi)$, which is anisotropic.

The two-point correlation function $\xi(r_p, r_\pi)$ obtained from the 2dFGRS by Hawkins et al. (2003). Note the anisotropies due to Finger-of-God and Kaiser effect.
From the two-dimensional, two-point correlation function $\xi(r_p, r_\pi)$ one can construct several one-dimensional two-point correlation function:

1) The redshift space correlation function $\xi(s)$

Here $s = \sqrt{r_p^2 + r_\pi^2}$ is simply the redshift space distance between two galaxies.

2) The projected correlation function $w_p(r_p)$

$$w_p(r_p) = \int_{-\infty}^{\infty} \xi(r_p, r_\pi) \, dr_\pi$$

Since redshift space distortions only affect r_π, the projected correlation function is unaffected by redshift space distortions. Hence, it is identical to a simple projection of the real-space correlation function, which is given by an Abel transform:

$$w_p(r_p) = 2 \int_{r_p}^{\infty} \xi(r) \frac{r \, dr}{(r^2 - r_p^2)^{1/2}}$$

NOTE: $w_p(r_p)$ has the units of length → one typically plots $w_p(r_p)/r_p$
The Abel integral can be inverted to give

\[\xi(r) = -\frac{1}{\pi} \int_r^\infty \frac{dw_p}{dr_p} \frac{dr_p}{(r_p^2 - r^2)^{1/2}} \]

One can infer the real-space correlation function from the projected correlation function.

In particular, if the projected correlation function is a power-law, \(w_p(r_p) = A r_p^{1-\gamma} \), then the real-space correlation function is also a power law, \(\xi(r) = (r/r_0)^{-\gamma} \), with

\[r_0^\gamma = \frac{A \Gamma(\gamma/2)}{\Gamma(1/2) \Gamma([\gamma - 1]/2)} \]

\(\Gamma(x) \) = Gamma function

This figure shows both the projected and the redshift-space correlation functions obtained from the 2dFGRS. Note how the redshift space correlation function overestimates the correlation power on large scales due to Kaiser effect, and underestimates the power on small scales due to Finger-of-God effect.
Let \(n(\vec{r}) \) denote the number density of galaxies in real space and \(n^{(s)}(\vec{s}) \) denote the number density of galaxies in redshift space.

Conservation of particle number implies that \(n^{(s)}(\vec{s}) \ d^3\vec{s} = n(\vec{r}) \ d^3\vec{r} \) and thus

\[
1 + \delta^{(s)}(\vec{s}) = \left[1 + \delta(\vec{r}) \right] \frac{d\vec{s}}{d\vec{r}}^{-1}
\]

Using that \(\vec{s} = \vec{r} + v_r \hat{r} \) one can show that \(\delta^{(s)} = \left(1 + \beta \mu^2_k \right) \delta_k \) (see MBW §6.3.1 for derivation).

Here we have defined the parameter

\[
\beta = \frac{1}{b} \frac{d \ln D}{d \ln a}
\]

with \(D(a) \) the linear growth rate, \(b \) the bias of the galaxies in consideration, and \(\mu_k \) the cosine of the angle between \(\vec{k} \) and the line-of-sight.

Since the linear growth rate is a function of the matter density, this is often written as

\[
\beta = \frac{f(\Omega_m)}{b} \simeq \frac{\Omega_m^{0.6}}{b}
\]
We have that the power spectrum in redshift space is related to that in real-space according to

\[P^{(s)}(\mathbf{k}) = \left(1 + \beta \frac{\mu^2}{k^2} \right)^2 P(k) \]

Note that \(P^{(s)}(\mathbf{k}) \) is anisotropic, while \(P(\mathbf{k}) = P(k) \) is not.

Expanding \(P^{(s)}(\mathbf{k}) \) in harmonics of \(\mu \frac{\mathbf{s}}{k} \), we can write that

\[\xi_{\text{lin}}(r_p, r_\pi) = \xi_0(s) P_0(\mu) + \xi_2(s) P_2(\mu) + \xi_4(s) P_4(\mu) \]

- **Monopole**
 \[\xi_0(s) = \left(1 + \frac{2}{3} \beta + \frac{1}{5} \beta^2 \right) \xi(s) \]

- **Quadrupole**
 \[\xi_2(s) = \left(\frac{4}{3} \beta + \frac{4}{7} \beta^2 \right) \left[\xi(s) - \frac{3}{8} J_3(s) \right] \]

- **Hexadecapole**
 \[\xi_4(s) = \frac{8}{35} \beta^2 \left[\xi(s) + \frac{15}{283} J_3(s) - \frac{35}{285} J_5(s) \right] \]

Here \(\mu = r_\pi/s \) is the cosine of the angle between \(\mathbf{s} \) and the line-of-sight, \(s = \left(r_p^2 + r_\pi^2 \right)^{1/2} \), and \(P_l(x) \) is the \(l \)th order Legendre polynomial.

We have made it explicit that this equation is only valid in the linear regime...
Given a value for β and the real-space correlation function, $\xi(r)$, which can be obtained from $\xi(r_p, r_{\pi})$ via the projected correlation function, $w_p(r_p)$, the above equation yields a model for $\xi(r_p, r_{\pi})$ on linear scales that takes proper account of the coupling between the density and velocity fields.

Note that this model only accounts for linear motions, i.e., the Kaiser effect.

To model the non-linear virialized motions of galaxies one can convolve $\xi_{\text{lin}}(r_p, r_{\pi})$ with the distribution function of pairwise peculiar velocities, $f(v_{12}|r)$:

$$1 + \xi(r_p, r_{\pi}) = \int_{-\infty}^{\infty} \left[1 + \xi_{\text{lin}}(r_p, r_{\pi}) \right] f(v_{12}|r) \, dv_{12}$$

Unfortunately, the form of $f(v_{12}|r)$ is not known a priori...

Based on theoretical considerations one often adopts an exponential form

$$f(v_{12}|r) = \frac{1}{\sqrt{2} \sigma_{12}(r)} \exp \left[-\frac{\sqrt{2} |v_{12}|}{\sigma_{12}(r)} \right]$$

By fitting the above model for $\xi(r_p, r_{\pi})$ to the data, one can constrain both β as well as the peculiar pairwise velocity dispersion, $\sigma_{12}(r)$.
The best way to measure \(\beta = f(\Omega_m)/b \) is via the quadrupole-to-monopole ratio

\[
q(s) \equiv \frac{\xi_2(s)}{(3/s^3) \int_0^s \xi_0(s') s'^2 \, ds' - \xi_0(s)}
\]

where \(\xi_l(s) = \frac{2l + 1}{2} \int_{-1}^{+1} \xi(r_p, r_\pi) P_l(\mu) \, d\mu \)

In the linear regime, one has that

\[
q(s) = \frac{-(4/3)\beta - (4/7)\beta^2}{1 + (2/3)\beta + (1/5)\beta^2}
\]

\(\beta\) follows directly from asymptotic value of \(q(s)\)

Figures show quadrupole-to-monopole ratio and pairwise velocity dispersions obtained from 2dFGRS by Hawkins et al. (2003). The former indicates that \(\beta = 0.49 \pm 0.09\) while the latter shows that galaxies separated by \(~1\) Mpc/h (10 Mpc/h) have a 1D pairwise speed of \(~600\) (500) km/s
In 2004, Yang et al. (2004) used a Conditional Luminosity Function (CLF) to populate dark matter haloes in a \(\Lambda \)CDM simulation for the WMAP1 cosmology. These were used to construct mock versions of the 2dFGRS, from which clustering was measured.

A comparison with clustering data from the true 2dFGRS from Hawkins et al. (2003) revealed problems with clustering on small scales and with the pairwise velocity dispersions...
Yang et al. (2004) argued that this implied either (i) that clusters have a mass-to-light ratio (in the b_J-band) of $\sim 1000 \, M_\odot/L_\odot$ ($\sim 3x$ higher than what several methods suggested), or (ii) that $\sigma_8 \approx 0.75$, rather than the then favored 0.9.

One year later the 3rd year data release from the WMAP mission largely confirmed that $\sigma_8 \approx 0.75$.
Using volume limited samples selected from the SDSS, Zehavi et al. (2011) measured the projected correlation functions for different luminosity bins. More massive galaxies are more strongly clustered.
Redder galaxies are more strongly clustered...

Zehavi et al. (2011) also split the different luminosity bins in red and blue subsamples, and computed their projected correlation functions..
Zehavi et al. (2011) also split the different luminosity bins in red and blue subsamples, and computed their projected correlation functions. Redder galaxies also show more pronounced fingers of God.
The Galaxy Power Spectrum

The power spectrum $P(k)$ is a measure of the distribution of power in different spatial frequencies k. It shows how the power in the distribution is distributed across different scales.

- **Long waves** correspond to smaller spatial frequencies k and exhibit a power-law behavior $P(k) \propto k$.
- **Short waves** correspond to larger spatial frequencies k and exhibit a power-law behavior $P(k) \propto 1/k^2$.

The peak of the power spectrum is around $\lambda \approx 200$ Mly (megaparsecs). The wiggles in the power spectrum are due to the periodic nature of the distribution on these scales.
The Matter Power Spectrum

- Cosmic Microwave Background
- SDSS galaxies
- Cluster abundance
- Weak lensing
- Lyman Alpha Forest

Tegmark et al. 2002
RECALL: once structure formation has gone non-linear, the power spectrum no longer suffices to completely describe the cosmological density field.

In particular, the power spectrum alone does not capture the **phase information:** the coherence of cosmic structures such as pancakes, filaments, voids etc.

This is illustrated in the figure to the right, which shows two density distributions that have identical power spectra, but very different phases for the corresponding modes....As is evident the eye is very sensitive to phase information....
Lecture 12

SUMMARY
The reduced (or irreducible) correlation functions express the part of the n-point correlation functions that cannot be obtained from lower-order correlation functions.

For a Gaussian random field, all connected moments (=reduced correlation functions) of $n > 2$ are equal to zero (i.e., $\zeta = \eta = 0$).

One can use ζ and η to test whether the density field is Gaussian or not...

If galaxy formation is a Poisson sampling of the density field, then all n-point correlation functions of the galaxy distribution are identical to those of the matter distribution. This is not the case though; galaxies are biased tracers of the mass distribution.

On large (linear) scales, redshift space distortions (RSDs) depend on linear growth rate. On small (non-linear) scales, RSDs reveal FoG indicative of virial motion within halos.

Redder and more massive/luminous galaxies are more strongly clustered.
Summary: key equations & expressions

n-point correlation function
\[\xi^{(n)}(\delta_1 \delta_2 \ldots \delta_n) \]

n-point irreducible correlation function
\[\xi^{(n)}_{\text{red}}(\delta_1 \delta_2 \ldots \delta_n) \]

2-pt function (discrete)
\[\xi(r) = \frac{DD(r) \Delta r}{RR(r) \Delta r} - 1 \]

Angular 2-pt (discrete)
\[w(\theta) = \frac{DD(\theta) d\theta}{RR(\theta) d\theta} - 1 \]

Power spectrum (discrete)
\[P(k) \equiv V \langle |\delta_k|^2 \rangle = P_{gg}(k) + \frac{1}{n} \]

Projected correlation function
\[w_p(r_p) = \int_0^\infty \xi(r_p, r_\pi) dr_\pi = 2 \int_0^\infty \xi(r) \frac{r dr}{(r^2 - r_p^2)^{1/2}} \]
\[\xi(r) = -\frac{1}{\pi} \int_r^\infty \frac{d w_p}{dr_p} \frac{dr_p}{(r_p^2 - r^2)^{1/2}} \]

Limber equation
\[w(\theta) = \int_0^\infty dy y^4 S^2(y) \int_{-\infty}^\infty dx \xi(\sqrt{x^2 + y^2 \theta^2}) \]

Redshift space distortions
\[P^{(s)}(k) = \left[1 + \beta \mu_k^2 \right]^2 P(k) \]
\[\beta = \frac{1}{b} \frac{d \ln D}{d \ln a} = \frac{f(\Omega_m)}{b} \simeq \frac{\Omega_m^{0.6}}{b} \]
\[1 + \xi(r_p, r_\pi) = \int_{-\infty}^\infty \left[1 + \xi_{\text{lin}}(r_p, r_\pi) \right] f(v_{12} | r) dv_{12} \]