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Large Scale Structure

In this lecture we discuss how to characterize the large scale distribution of
matter and galaxies using n-point correlation functions both in the continuous and the

discrete limit. We also discuss galaxy samples and redshift surveys, and what they
teach us about the large scale distribution of galaxies.

Topics that will be co

® Ergodic Principle

© Frank van den Bosch,Yale University

ASTR 610:Theory of Galaxy Formation



Notation & Convention: Fourier modes

52 = — | 8(2) e T B3z 6] = unitless

Interpretation:
the cosmological density field is the sum over a discrete number

of modes & = Az + i B; :"*ICSE..J:A@?’ ¢§ where k = 27 (j, i, i.)

[ B
P

amplitude phase
Note: since 0(Z)is real, we have that the complex conjugate 51’: =0_gandthus A = A _;
and By = —B_ 7. This implies that one only needs Fourier modes in the upper-half

to fully specify §(x

Dirac Delta function: % etilk—k')-Z 437
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The Cosmological Density Field

How can we describe the cosmological (over)density field, o(Z, t), without
having to specify the actual value of § at each location in space-time,(Z,t)?

Since d(Z)is believed to be the outcome of some random process in the early

Universe (i.e., quantum fluctuations in inflaton), our goal is to describe the
probability distribution

Bl w0 okl eids

where §; = (), etc. For now we will focus on the cosmological density

field at some particular (random) time. It’s time evolution has been addressed
iIn Lectures 4 - 8.

This probability distribution is completely specified by the moments

(84 6%...640) = /51115%2...5%;7?(51,62,...,5N)d51 dds ...doy

Cosmological Principle: Universe is homogenous & isotropic.
— - all positions/directions are equivalent

r> all moments are invariant under spatial translation & rotation
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The Ergodic Hypothesis

(-..)denotes an ensemble average. For instance, (§(Z)) means the
average overdensity at « for many realizations of the random process...

Theory specifies ensemble average, but observationally we have
only access to one realization of the random process....

Ergodic Hypothesis: Ensemble average is equal to spatial average taken over
one realization of the random field...

(5) = /57> :—/

Essentially, the ergodic hypothesis requires spatial correlations to decay
sufficiently rapidly with increasing separation so that there exists many
statistically independent volumes in one realization....

The ergodic hypothesis is proven for Gaussian random fields, which are our
main focus in what follows....
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Gaussian Random Fields

A random field §(Z) is said to be Gaussian if the distribution of the field values
at an arbitrary set of N points is an N-variate Gaussian:

1 —1
exp(—Q) =5 Z 0; (C™")ij9;
[(2m) N det(C)]/2 m

7)(517527"'75]\7) —
Cij = (0:0;) = &(T12)

where we have defined the two-point correlation function £(7) = (6(Z) 6(X + 7))

because of invariance to spatial translation & rotation, we have that
<5253> — f(?‘lg), where r19 = ’CEZ s fj|

In particular, the one-point distribution function of the field is

1 o°

o)
where 0% = (5%) = £(0)is the variance of the density perturbation field.

/‘\ As you can see, for Gaussian random field the N-point probability function
_ . P (01,09, ..., 0 IS completely specified by the two-point correlation function.
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Gaussian Random Fields

Rather than specifying P (41, d2, ..., ) ddy dds ... dd, it is equivalent to specify

P(8g »0, s 0z ) [0z | Al | .. Al | A1 s ... dw

which gives the probability that the modes 6~
and phases in the range ¢; + d¢; /2

Bl/2

For a Gaussian random field,

P(6z .67, 0z ) d[6z | |67 | ... |65 |y des .. dqu—HP )d|og,

which makes it explicit that all modes are independent. Furthermore, for each mode
Arand By are independent, which implies that ¢ is distributed uniformly over 0 27
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Higher-Order Correlation Functions

The n-point correlation function is defined as 5(”) = (0102 ... Op)

The reduced (or irreducible) n-point correlation function is defined as

where (...). is the cumulant or connected moment.
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Higher-Order Correlation Functions

Hence, we have that < (51> _ < 51
—

These reduced (or irreducible) correlation functions express the part of the n-point
correlation functions that cannot be obtained from lower-order reduced correlation
functions:

r4 2

9- o---.
h ...' L T T
-
] o : ------ 2

] ','
I'O

~configuratio configuration :;

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch,Yale University



Higher-Order Correlation Functions

Consider once more the four point correlation function:

<515253(54> = <51>c <52>c <53>c <54>c‘|’<51>c <525354>c (4 terms)—|—<515g>c <5354>c (3 terms)
_"[<5152>c <53>c <54>c ('Gterms) -+ <51525354>c'

Using similar diagrams we can understandithe origin of€ach of these terms

\ / ‘ T S
2 / 2 2 2 / 2
1 2:: - 3 . K]

~
~
LD SR

Here -— means: “this point moving to infinity”
Notation:

f(flva) — <5152>C <(517£E)27f3) — <515253>C 77(51752753754) — <51525354>C

For a Gaussian random field, all connected moments (=reduced correlation functions)
of n > 2are equal to zero (i.e.,( =n =20).
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The Wiener-Khinchin Theorem

The Wiener-Khinchin Theorem states that the power spectrum is the Fourier transform of
the two-point auto-correlation function. In what follows we provide the proof:

V {|0z]°) = V{(6z0%) = V{6z0_z)
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Discrete N-point statistics

Thus far we focussed on the continuous overdensity field, J(Z). We have seen that §(Z) can
be described by the n-point correlation function, or, equivalently by the mass moments &,

We now consider a discrete distribution of points (i.e., galaxies) and use similar statistics to
describe their distribution in space.

A
o
° ° “- Imagine space divided into many small volumes,
o T ] 5V, which are so small that none of them contain
T Bl T 111 ] more than one galaxy...
e ]
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Discrete N-point statistics

We now ‘replace’ P (01, 02, ..., 0 ) dd1 dds ... dd y with the probability
P (N1, Na, ..., Ny) that we have the realization { N7, N5, ..., Ny &

As before, we will characterize P(N7, N, ..., Ny ) by its moments (N} M52 ... NAY¥)

Using that \V; = NV = ... = N/* we have that

NN N = (M N2 o Ny) = P12 N

where we have defined the probability P15 n that there is a galaxy in § V7,
and there is a galaxy in V5, . . ., and there is a galaxy in §Vy;

Let 7 be the average number density of galaxies, then dP; = (Ny) = ndV;

If the "point process’ (i.e., the random process that puts down the points) is a
random Poisson process, then §P1; = (N1 No) = 72 §V; 6Vs, i.e., the probability
to have a galaxy at 01/ is independent of probability to have one at 6 15...

In the more general case where the point process is not Poisson we define

57)12 — <N1 N2> — 7_12 (5‘/1 5‘/2 [1 -+ 612]
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Discrete N-point statistics

57)12 — <N1 N2> — 7_12 (5‘/1 5‘/2 [1 -+ 612]

The above relation defines the two-point correlation function 1o = 5(7“12)

/‘\ As is immediate evident from its definition, &1 is the excess probability,
. relative to Poisson, that two galaxies (points) are separated by a distance 19

The two-point correlation function of galaxies is typically measured using

B DD(r) Ar
<) = RR(r) Ar

Here D D(r) Aris the number of pairs with separations » = Ar /2 in the data,
and RR(r) Aris the corresponding number of pairs if point process is random.

1

Other ‘estimators’ for £(r) are also available in the literature,
but as long as the data sample is sufficiently large, the above
IS more than adequate...

NOTE: when constructing the random sample, it
is important that one carefully models the survey
boundary (footprint’) of the data sample...

Southern Galactic Cap

R SDSS
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Discrete N-point statistics

Clearly, this notation looks very similar to what we used in the continuous limit, suggesting
a close link. To see this connection, we write §P15 = (N7 N) = (nq no) 6V 6V5

where we have introduced the continuous number density field n () for which (n(7)) = n

Writing n(Z) = n [1 + d,(Z)], where we introduced the galaxy overdensity field 4 (%)
we can write that

0P12 = n2oVioVa((1 +61) (1 + 62)) = n26V10Va [l + (6102)]

where from now on we consider it understood that 0 = ¢, (for the sake of brevity).

Comparing the above to how we defined the (discrete) two-point correlation function:

P12 = (N1 Na) =1 6V1 6Va [1 + &2 f> £12 = (0102)

Thus we see that the two-point correlation function that we defined in 6 p\

the discrete case is the same as that defined in the continuous case. \/
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Discrete N-point statistics

Finally, we derive the power spectrum for our discrete distribution of points:

n(@) = nll+ 6@ = Y@ -5) Wy bo(%) = = 3 8P (F — 7;) — 1

Hence, we have that 0 = % /5g(f) e~ % 337

D e A SN A RSN SN ST NN e B Lot T
e S D P LS S S A ral s e T
R AR e Vtks-‘;,,h% ek sl é.z
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Poisson Sampling & Galaxy Bias

Suppose galaxy formation is very simple, such that the probability that a cell
0V, contains a galaxy follows a Poisson distribution with a mean proportional to
the mean density p; = %Vi Jsv. (&) d3z

We say that the galaxies sample the density field p(Z) = p|1 + J(¥)|via a Poisson process

* The probability p{!) (&) that a cell at Z contains one galaxy is

p (&) = [1 + 6(2)] AV

—

We can also write that p'") (&) = (M (Z))p, where (...)pindicates an average
over the Poisson probability distribution...

ﬁ% The galaxy distribution, in this case, is the outcome of a double stochastic
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Poisson Sampling & Galaxy Bias

We can now immediately write down the n-point statistics for the galaxy distribution.

Consider the two-point statistic (what follows holds for all n-point statistics though...)

(MN) = (p (@)p') (Z5)) = (10V)? (1 + 8(21))(1 + 6(F2))) = (2dV)?[L + £(712)]

® The first step simply expresses that the Poisson samplings at different locations are
independent of each other...

© The two-point correlation function £(r12) is that of the continuous matter field.

We also had that for a point (galaxy) distribution  |[(AV7N5) = 6P1o = (RIV)?[1 + £15]

f> §12 = &(r12)

2-point correlation 2-point correlation
function of galaxies function of matter

~If galaxy formation is a Poisson sampling of the density field, then all n-point correlation
/ ‘\ functions of the galaxy distribution are identical to those of the matter distribution
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Poisson Sampling & Galaxy Bias

How realistic is it that galaxies are a Poisson sampling with p'! (Z) o p(Z)?2?
@ Galaxies are believed to form and reside in dark matter haloes.

© As we have seen before, dark matter haloes are biased tracers of matter
distribution. Hence, it seems only logical that the galaxy distribution is also
biased.

To get some insight into the implications of galaxies being biased tracers of the
mass distribution, assume that the sampling is still a Poisson process but with

pW(&) = [1 + b6(2)] R0V

where b is some constant bias’ parameter. We then have that

(NN2) = (p(Z1)p'M (Z2)) = (R6V)? (1 + b6 (1)) (1 + bS(Z2)))
= (A0V )71 + b°€(r12)] e 12 = b2E(r12)

© As we will see later, galaxy bias is much more complicated than what is assumed here.

O In general, one cannot infer the matter distribution from the galaxy distribution without
detailed knowledge of its bias.

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch,Yale University



Mapping the Galaxy Distribution

In the early days, mapping the large scale structure was done by
counting galaxies on photographic plates, by 4£3I»

Constructing galaxy catalogues was pioneered by Shapley and Zwicky
in 1930s. A milestone was the Lick catalogue ofShane & Wirtanen
(1967), which contained over 1 million galaxies identified by eye on the
Lick plates, down to a limiting photographic magn. of ~18.3

Shane-Wirtanen galaxy

Zwicky et al., galaxy
counts, density map

overdensities map

‘ arI Wirtanen
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Mapping the Galaxy Distribution

During 1990s, plate scanning machines replaced humans in identifying galaxies on photographic
plates. One example is the APM Galaxy Survey, with ~2 million galaxies  (Maddox et al. 1990)

The APM Galaxy Survey
Maddox et al
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The Local Universe

All sky view of the “local” Universe as mapped out by the Two-Micron All Sky Survey

(2MASS). In this map galaxies have been color coded by their photometric redshift.
(source: Jarrett 2004)

Corona Borealis Bootes

Supercluster (0.072) Su?erduster
0.061) Coma Cluster (0.023)

Virgo Cluster (16 Mpc)
Leo Superciuster (0.032)
Shapley Concentration (0.048+)

e R Centaurus Cluster (0.02)

Hercules
Supercluster (0.037)
Ursa Major Sugercluster
(0.058)

Ophiuchus
Cluster (0.028)
IRAS dipole

Abell 634
Cluster (0.025) B
pole
B
Abell 569 —/ - “\~ Hydra Clu
luster (0.019)/ " % S\ 0(0.01)
' '?ii.i
g e
Jo
AL
254 [ orion Mole:
> Cloud
(28
=5y
Thuruwotljecular > ColEa
v Cluster (0.034)
Perseus-Pisces 7 Norma &
Supercluster (0.017+) M1 Grea(to%t}rg)ctor
LMC 2

(1 Mpc)
Pisces-Cetus Fornax Cluster (20 Mpc)

q . Horologium
Supercluster (0.063) iy way / Pavo-Indus $upel§uster (0.067)
Center Supercluster (0.015)
Sculptor Supercluster (0.054)

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch,Yale University



Angular Correlation Functions

Consider a sample of galaxies with ©, — (e, 6;)and complete down to some
limiting apparent magnitude mjim :

The angular correlation function, w(6), is defined by |dP15 = 74601 6Qs [1 + w(6)]

where 0P15 is the probability to find two galaxies in the infinitesimal solid
angles 0€2; and 0{),, and v is the mean surface number density.

The angular correlation function is obtained using the estimator:

17<b,<20 RR(0)dd

The first measurements of angular correlation
function were obtained by Hauser & Peebles
(1973) using the Zwicky et al. (1961-1968) and
Lick (Shane & Wirtanen 1967) catalogs...

The angular correlation function of galaxies with apparent
photographic magnitudes in the range 17 < by < 20 obtained
from the APM Galaxy Survey. Note the power-law behavior on
small scales, and the dip below zero on large scales.....

Source: Maddox et al. 1990, MNRAS, 242, 43
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Angular Correlation Functions

The angular correlation function is related to the real space correlation function
via a line-of-sight projection integration known as the Limber equation:

w(f) = / dy y* SQ(y)/ dz £(y/22 4+ y262) | Limber equation
0

— OO

Here S(y) is the survey selection function, normalized such that [ 2% S(z) dx = 1
and defined as probability that random’ galaxy located at y is included in the sample

For example, for an apparent magnitude limited sample with m < m;m we have that

i @)L
S(z) = [ (L) dL

(L) = luminosity function

where Ly, (2) is the luminosity of a galaxy that at z has an aparent magnitude ;...

iy i One can infer real-space correlation function
9 L
If $(r) o v then w(f) o< 6 F> from angular correlation function...

HOWEVER; in the case of a magnitude limited sample, as is generally the case, this
/ *\ is only true if clustering is independent of luminosity, which is not the case (as we will
~® see). Because of this angular correlation functions have gone out of vogue.
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Galaxy Redshift Surveys
In order to properly characterize the distribution of galaxies, we need
information in 3D; this is provided by galaxy redshift surveys.

First galaxy redshift surveys were constructed by Gerard de Vaucouleurs
and collaborators in 1950-1970s.

de Vaucouleurs

The first redshift survey appropriate for measuring clustering of galaxies was the
CfA survey of Huchra & Geller; This data set was used by Davis & Peebles
(1983) to measure the galaxy auto-correlation function:

—1.8
e (1) = <L> with ro ~ 5.4h " Mpc

To
Representative Redshift Surveys “correlation length”

| 1985 | CfA ~2,500

1992 IRAS ~9,000 i :
- =1 The last 30 years have seen a dramatic increase Iin
11995 | CtA2 ~20,000 data, culminating with the completion of the Sloan
| 1996 | LCRS ~23,000 Digital Sky Survey. Currently, we have accurate

2003 2dFGRS ~250 000 measured redshifts for well over one million galaxies.
| 2009 | SDSS ~930,000
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1732 galoxies
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The 2dFGRS

Using the APM Galaxy Survey as input source catalogue, Colless et al. (2001)
constructed the Two-Degree Field Galaxy Redshift Survey (2dFGRS), containing
redshifts for ~220.000 galaxies, covering ~1500 sqg. deg. on the Southern Sky
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The Sloan Digital Sky Survey

4o
ASTR 610:Theory of Galaxy Formation

At present, the largest galaxy
redshift survey is the Sloan
Digital Sky Survey (SDSS).

Using the dedicated 2.5m
telescope at Apache Point
Observatory, it imaged more
than 8000 sqg. deg. of sky in
five passbands (ugriz), and
obtained spectra for 930,000
galaxies and 120,000 quasars.

For more info; www.sdss.orq
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http://www.sdss.org

Redshift Space Distortions

A galaxy redshift survey consists of a large number of 3D “positions’ («;, d;, 2;)

Define: | s (sz) ; (Uz> & dial velocit
- | S = s — | =— | T3 U; = radial velocCity
Hy Hy

with 7; the unit direction vector in the direction («;, 6; )

We call s; = |5;| = v;/ Hp the redshift distance of galaxy i

Recall: |V = Uexp + Upec = Hy Z(Z) + Upec

with [(z) the proper distance to the galaxy

Due to peculiar velocities, the redshift distances available from a
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Redshift Space Distortions

Since peculiar velocities only cause distortions along the line-of-sight, they introduce
anisotropies in the observed correlation function:

infall motion collapsel/virialized

real space
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Redshift Space Distortions

One expresses the distance between two galaxies in _
their components perpendicular, ,, and parallel, 7, to < N
the line-of-sight, which are defined as SoEon
e g' l d L 2 2 :" 5 “‘\

TW:W an 'rp:\/S —7“7T ',' “‘E

Hete 3:—i2 5, and 7= (51 + 52) (see diagram)

These are used to measure the two-dimensional two-
point correlation function &(r,, 7 ), which is anisotropic.

The two-point correlation function £(r,, 7 ) obtained
from the 2dFGRS by Hawkins et al. (2003). Note the
anisotropies due to Finger-of-God and Kaiser effect

—20 0 20
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The Projected Correlation Function

From the two-dimensional, two-point correlation function £(rp, 7 ) one can
construct several one-dimensional two-point correlation function:

1) The redshift space correlation function &(s)

here s = %rf) + r2 is simply the redshift
space distance between two galaxies

2) The projected correlation function wy, (1)

wp(rp) — /_ g(rparﬁ) drﬂ'

Since redshift space distortions only affect r,

he projec

1erntl
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The Projected Correlation Function

d/" (/ri /"32)1/2

One can infer the real-space correlation function
from the projected correlation function / '\

In particular, if the projected correlation function is a power-law, wy,(r,) = Ar ™7

then the real-space correlation function is also a power law, £(r) = (r/rg) 7, with

o AT(v/2)
¢ Luonds L)

['(x) = Gamma function

This figure show both the projected and the redshift-space

& correlation functions obtained from the 2dFGRS. Note how the

g redshift space correlation function overestimates the correlation

-1 -05 0 0.5 1 1. power on large scales due to Kaiser effect, and underestimates
lOg(S.I’p) [h-'Mpc] the power on small scales due to Finger-of-God effect.

log(¢(s).w,(r,)/r,)
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Modeling Redshift Space Distortions

Let n(7)denote the number density of galaxies in real space
and n'*) () denote the number density of galaxies in redshift space

Conservation of particle number implies that n(s)( )d35 = n(7) d*7and thus

ds
dr

14 66)(5) = [1 +6(F)

(see MBW §6.3.1
for derivation)

Using that s = 7+ v,.¥ one can show that 5( T (1 - Buk)

Here we have defined the parameter | 5 —
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Modeling Redshift Space Distortions

We have that the power spectrum in redshift space is related to that in real-space
according to

PO (k) = [1 + 8 u%] : P(k)

Note that P(*) (%) is anisotropic, while P(k) = P(k)is not.

see MBW §6.3.1

: (S) FRSEA - - :
Expanding P'*/ (k) in harmonics of n we can write that p

&1in(Tp, 7)) = §0(8) Po(p) + &2(s) P2(u) + Ea(s) Palp)

monopole
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Modeling Redshift Space Distortions

Given a value for 5 and the real-space correlation function, 5(7"), which can be obtained
from &(rp,, 7, ) via the projected correlation function, wy, (7}, ), the above equation yields a
model for &(rp,, 7 )on linear scales that takes proper account of the coupling between
the density and velocity fields.

Note that this model only accounts for linear motions, i.e., the Kaiser effect.

To model the non-linear virialized motions of galaxies one can convolve &jiy (7, 7'7)
with the distribution function of pairwise peculiar velocities, f(v12|7):

L+ E(rp 1) = / 1+ Eun(rps )] f(v1]r) dors

— OO

Unfortunately, the form of f(v12|r) is not known a priori...

Based on theoretical considerations one often adopts an exponential form

1 exp __\/5\?)12\_
\/5012(7“) 012(T)

fviz|r) =

By fitting the above model for £(7,,, 7~ ) to the data, one can constrain both 3 as
well as the peculiar pairwise velocity dispersion, o12(7)
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Modeling Redshift Space Distortions

The best way to measure 8 = f({,)/bis via the
quadrupole-to-monopole ratio

o §2(s)
el S Tel R i
)
whete &(s) = =5~ [ E(rp,7a) Pi(1) d

In the linear regime, one has that

L6 (2/3)00 5 (1/5) 00

E> (3 follows directly from asymptotic value of g(s)

Figures show quadrupole-to-monopole ratio and pairwise

velocity dispersions obtained from 2dFGRS by Hawkins et al.

(2003). The former indicates that 5 = 0.49 4 0.09 while the latter

-1 -05 0 0.5 1 shows that galaxies separated by ~1 Mpc/h (10 Mpc/h) have a
log(r,) [h~'Mpc] 1D pairwise speed of ~600 (500) km/s
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Modeling Redshift Space Distortions

T LI IIIITI 1 LI | IIIIYI T LI | lllTll] LI | ITTITII LI

In 2004, Yang et al. (2004) used
a Conditional Luminosity
Function (CLF) to populate dark
matter haloes in a ACDM
 usSB 1 simulation for the WMAP1
— — . MB . cosmology. These were used to
© 2dFGRS construct mock versions of the
R S 2dFGRS, from which clustering

1 10 . 1 10
r, (h-"Mpc) s (h-'Mpc) was measured.
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A comparison with clustering
data from the true 2dFGRS from
Hawkins et al. (2003) revealed
problems with clustering on
small scales and with the
pairwise velocity dispersions....
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Modeling Redshift Space Distortions
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Yang et al. (2004) argued that
this implied either (i) that
clusters have a mass-to-light
ratio (in the by-band) of ~1000
Mo/Lo (~3x higher than what
several methods suggested),
or (ii) that og ~ 0.75, rather
than the then favored (.9 .

—— MSB }
— — = 044,=0.800,, "X
(M/L),=1000
-—-— 04=0.75
o 2dFGRS
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1 10 . 1 10
r, (h-'Mpc) s (h~'Mpc)

One year later the 3rd year
data release from the WMAP
mission largely confirmed that
(i (5
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Luminosity Dependence of Clustering

Using volume limited samples selected from the SDSS, Zehavi et al. (2011)
measured the projected correlation functions for different luminosity bins.
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Source: Zehavi et al. 2011, ApJ, 736, 59

/ '\ More massive galaxies are more strongly clustered.
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Color Dependence of Clustering

Zehavi et al. (2011) also split the different luminosity bins in and
subsamples, and computed their projected correlation functions..
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Source: Zehavi et al. 2011, ApJ, 736, 59
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/ '\ Redder galaxies are more strongly clustered...
[
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Color Dependence of Clustering

Zehavi et al. (2011) also split the different luminosity bins in and
subsamples, and computed their projected correlation functions..

Red Galaxies |

SR

Source: Zehavi et al. 2011, ApJ, 736, 59

/ '\ Redder galaxies also show more pronounced fingers of God..
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The Galaxy Power Spectrum

wiggles 5 %

<
N’
Q
w2
7}
<
c
=
oD
=
o
a2

P(k) o k Peak P(k) o 1/k?
A =200 Mly

1 llL‘lJLl 1LL1L1 L LJLLlLl

Long waves

Spatial Frequency: & Short waves

ASTR 610:Theory of Galaxy Formation © Frank van den Bosch,Yale University




The Matter Power Spectrum

Wavelength A [h~! Mpc]
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Phase Information

Voronoi foam, R=1.6, smoothed original
2 U ' .

RECALL: once structure formation has gone non- 2/ ‘ Non-Gaussian |
linear, the power spectrum no longer ¥ o=/ g
suffices to completely describe the !

cosmological density field.

In particular, the power spectrum alone does not
capture the phase information: the coherence of
cosmic structures such as pancakes, filaments,
voids etc.

This is illustrated in the figure to the right, which V% %
shows two density distributions that have identical '
power spectra, but very different phases for the
corresponding modes....As is evident the eye is very
sensitive to phase information....

These two images have identical
power spectra, by construction!
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Summary: key words & important facts

Key words
reduced/irreducible corr fnc projected correlation function
Poisson sampling Redshift space distortions
Wiener-Khinchin theorem Kaiser effect
Limber equation Finger-of-God effect

® The reduced (or irreducible) correlation functions express the part of the n-point
correlation functions that cannot be obtained from lower-order correlation functions

® For a Gaussian random field, all connected moments (=reduced correlation functions)
of n > 2 are equal to zero (i.e., ( = n = 0).

E> One can use ¢ and 7 to test whether the density field is Gaussian or not...

® If galaxy formation is a Poisson sampling of the density field, then all n-point correlation
functions of the galaxy distribution are identical to those of the matter distribution

This is not the case though; galaxies are biased tracers of the mass distribution

® On large (linear) scales, redshift space distortions (RSDs) depend on linear growth rate.
On small (non-linear) scales, RSDs reveal FoG indicative of virial motion within halos

® and more massive/luminous galaxies are more strongly clustered
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Summary: key equations & expressions

n-point correlation function f(?“) _ DD(?“) Ar 1 2-pt function (discrete)

£ = (6165 ...0,) RR(r) Ar

n-point irreducible correlation function w(@) _ DD(Q) d¢ 1 angular 2-pt (discrete)
n RR(0)do

gﬁe(i p— <51 52 5n>c ( )

1 power spectrum

P(k) = V (|05]%) = Peg(k) + =

= (discrete)
projected correlation function Limber equation
Td?“ w(H):/ dyy452(y)/ dz £(\/22 + 3262)
p(7Tp) f Tp, ) Are = 2 5 BNV 0 o
p
B dwy, drp
olr) = 7T/T drp (r2 —r2)1/2
redshift space distortions
- 2 1 dlnD f( m) QU6

P(S)k:[l %}Pk ~ 2m

(k) +Buz| P(k) f=———== -

11 4 &Gin(1p, )] f(v12|r) dvio
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