ASTR 501

Dynamics of Astrophysical Many-Body Systems

Course Description

This course presents an in-depth treatment of the dynamics of astrophysical systems, including gases, plasmas, and stellar systems. The course starts with a detailed formulation of the theoretical foundations, using kinetic theory and statistical physics to describe the dynamics of many-body systems. Special emphasis will be given to collisional processes in various astrophysical systems. Next, after deriving the relevant moment equations, we focus on specific topics related to (i) stellar dynamics, (ii) hydrodynamics, and (iii) plasma physics. Related to stellar dynamics we cover potential theory, orbit theory, Jeans modeling, gravitational encounters and secular evolution (bars and spiral structure). In the field of (non-radiative) hydro-dynamics we study, among others, the Navier-Stokes equation, vorticity, transport coefficients, accretion flow, turbulence, fluid instabilities, and shocks. We end with a cursory overview of plasma physics, including the Vlasov equation and the two-fluid model, Langmuir waves, Alfvén waves, Landau damping, ideal vs. resistive magneto-hydrodynamics (MHD), and dynamos. Throughout the course we shall focus on specific astrophysical applications.

Instructor : Prof. Frank van den Bosch (KT, Office: 649) e-mail: <u>frank.vandenbosch@yale.edu</u>
Course Website: https://campuspress.yale.edu/astro501/
Lecture Hours : TTh 9.00-10.15am Location TBD
Office Hours : TBD Location KT#649
Grading: 35% Final Exam + 35% Problem Sets + 30% MidTerm Exam
Course Format : Blackboard presentations & in-class discussion

Course Outline

PART I: Theoretical Foundations

[Lectures 1-5]

Time and length scales of astro-physical many-body systems

Review of Classical Dynamics

Lagrangian & Hamiltonian formalism, Poisson brackets, canonical transformations

Kinetic Theory:

Liouville theorem, BBGKY hierarchy, Boltzmann and Vlasov equations

Collisional Dynamics:

Langevin equation, fluctuation-dissipation theorem, relaxation time, Lenard-Balescu equation, diffusion coefficients, Fokker-Planck equation, Maxwell-Boltzmann distribution

PART II: Stellar Dynamics

[Lectures 6-12]

Potential Theory

Poisson equation, spherical systems, ellipsoidal systems, multipole expansion, disk potentials

Orbit Theory

integrals of motion, action-angle variables, KAM theorem, surfaces of section, resonances

Jeans Theorem & Jeans Modeling

Jeans equations of spherical, axisymmetric & triaxial systems, mass-anisotropy degeneracy kinematics, Schwarzschild modeling

Gravitational Encounters & Relaxation

impulse approximation, dynamical friction, orbital decay, phase mixing, violent relaxation

Secular Evolution

bars and spirals, swing amplification, radial migration, Toomre criterion, gravothermal catastrophe

PART III: Hydro Dynamics

Equations of HydroDynamics

continuity, momentum and energy equations, closure relations (equations of state)

Vorticity & Circulation

vortex tubes, vorticity equation, baroclinicity, Helmholtz theorems, turbulence

Transport Coefficients

Chapman-Enskog expansion, diffusion, viscosity & thermal conductivity, stress tensor

- Navier-Stokes viscous flow, accretion flow,
- Fluid Instabilities Klevin-Helmholtz, Rayleigh Taylor, thermal instability, Jeans criterion

Sound waves & Shocks

linear perturbation theory, sound speed, Rankine-Hugoniot jump conditions

PART IV: Plasma Physics

[Lectures 21-24]

Introduction to Plasmas

length scales, Debye length, plasma frequency, plasma parameter, collision frequency

Collisionless Plasmas

Vlasov equation, Langmuir waves, Landau damping, two-fluid model

MagnetoHydroDynamics (MHD)

resistive vs. ideal MHD, Ohms' law, induction equation, dynamos

Recommended Textbooks

Second edition Author: James Binney & Scott Tremaine

(ISBN-978-0-691-15902-7)

- The physics of fluids and plasmas: an introduction for astrophysicists Author: Arnab Rai Choudhuri (ISBN-0-521-55543)
- Introduction to Plasma Theory Author: Dwight R. Nicholson

(ISBN-978-0-894-6467705)

