
ASTR 501: Problem Set 4

This problem set consists of 5 problems for a total of 52 points.
Due date: Mon Apr 18

Problem 1: The Jeans Mass

a) [4 points] Give an estimate for the Jeans length (in meters) and Jeans
mass (in kg) for the air in the Astr 501 class room (room temperature). Also,
compute the ratio between the phase velocity and group velocity for sound
wave in this room with a frequency of 1 KHz.

b)[2 points] Derive the Jeans length (in parsec) and Jeans mass (in Solar
masses) for an ideal fluid with a temperature of T = 104K, and a density
equal to the critical density for closure, which is ρcrit = 1.4×1011 M⊙/Mpc3.
You may assume that the fluid is composed entirely of ionized hydrogen.

c)[3 points] Collisionless systems also obey the Jeans criterion, even though
they do not obey an equation of state. The Jeans length for a collisionless sys-
tem is the same as for a collisional fluid, but with the sound speed cs replaced
by the 1D velocity dispersion σ. Derive an expression for the Jeans length of
a spherically symmetric, isotropic galaxy in units of the characteristic radius
of the galaxy (Hint: use the Virial theorem).

Problem 2: Schwarzschild Criterion [6 points]

The specific entropy is given by s = CP/ργ, where C is some constant.
Starting from

ρ

γP

dP

dz
>

dρ

dz

show that this Schwarzschild criterion for convective stability can be written
as ds/dz > 0.
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Problem 3: Purely Radial Stellar Oscillations

Consider a spherical, barotropic star for which P = Kργ . The goal is to
derive conditions for γ under which the star is stable to radial oscillations.
Suppose the star is uniformly expanded from an initial equilibrium configu-
ration such that the position of a fluid element (or mass shell) changes from
r0 to r0(1+δ). Throughout we shall assume that δ is small, such that we can
use perturbation theory. From the Euler equation (i.e., ignoring viscosity)
we can write down the acceleration of a fluid element at a distance r from
the center of the star as

dv

dt
= −

1

ρ

dP

dr
−

GM(r)

r2

where v is the radial component of the velocity (we are considering purely
radial motions here) and M(r) is the mass enclosed within radius r.

a) [6 points] Use Taylor series expansion to show that, to linear order, the
density of the perturbed mass shell obeys ρ = ρ0(1 − 3δ).

b) [5 points] Using the same strategy, given a similar expression for P in
terms of P0, δ, and γ.

c) [6 points] Substitute the expressions for r, ρ and P in the expression for
the radial acceleration, keeping only terms up to linear order, and derive for
what values of γ the star will be stable to radial oscillations. Note: assume
that the initial configuration was one of equilibrium, so that

−
1

ρ0

dP0

dr0

−
GM(r0)

r2
0

= 0

and explain your answer!
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Problem 4: The Rayleigh-Taylor instability

Following a supernova explosion, a shell of matter with density ρs is plowing
into the ISM with a speed us = M cs,ISM, where M is the Mach number and
cs,ISM is the sound speed of the ISM. The shell has a thickness d and the
sound speed of the dense shell material is cs,shell.

a) [4 points] The shell material experiences a ram pressure P = ρISMu2
s ,

which causes it to decelerate. Show that the magnitude of the deceleration
is given by

a =
ρISM c2

s,ISM M2

ρs d

HINT: use that pressure is force per unit area.

The shell is subject to Rayleigh-Taylor (RT) instability which obeys the
following dispersion relation

ω = ±ik

√

a

k
A

where

A =
ρs − ρISM

ρs + ρISM

is called the Atwood number.

b) [6 points] Derive an expression for the growth rate of RT perturbations
(i.e., the timescale on which the perturbations will grow) with a wavenumber
k = 1/d. Expresss your answer in terms of the overdensity δ = (ρs/ρISM)− 1
and the sound crossing time of the shell τs ≡ d/cs,shell. You may assume that
at the interface there is pressure equilibrium between the shell and the ISM.
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Problem 5: The Virial Temperature

Virialized dark matter haloes are often defined as having a radius rvir, called
the virial radius, that encloses an average density of 200 times the critical
density ρcrit = 1.36 × 1011M⊙/Mpc3. The latter is the density for which
the Universe as a whole is ‘flat’ (i.e., has Euclidian geometry). The circular
velocity at the virial radius is called the virial velocity and is denoted by Vvir.
Throughout you may assume that halos are spherically symmetric.

a) [3 points] Derive expressions for rvir and Vvir as functions of the halo’s
mass M , and compute rvir (in kpc) and Vvir (in km/s) for a halo of mass
M = 1012M⊙ (roughly the mass of the Milky Way halo).

b) [5 points] When gas is accreted by a dark matter halo, it experiences
an accretion shock, which converts its infall motion into thermal motion.
Derive an expression for the temperature of this shocked gas after it falls
into a halo of mass M . Assume that the gas comes from infinity where it
has zero velocity, and it is accelerated by the gravity of the halo, until it hits
the halo’s virial shock at a radius rvir. You may approximate the potential
of the halo by a point mass, i.e., Φ(r) = −GM(r)/r. Ignore radiative losses,
and express your answer in terms of the virial velocity.

c) [2 points] Determine the virial temperature for a halo of M = 1012M⊙

in Kelvin. Assume that the gas is made of pure, fully ionized hydrogen.

(Potentially) Useful Constants

G = 6.674 × 10−8 cm3 g−1 s−2

= 4.299 × 10−9 Mpc M−1
⊙

(km/s)2

mp = 1.673 ×−24 g
kB = 1.38 × 10−16 erg K−1

M⊙ = 2 × 1033g
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