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Course Outline

This course studies the dynamics of a wide range of fluids encountered in astrophysics,
ranging from dark matter halos and galaxies, to stars and gaseous planets, and from
the intergalactic medium and molecular clouds to the Earth’s ionosphere and the
liquid oceans on Enceladus. We will see that at their core, all these fluids can be
treated as Hamiltonian many-body systems (ignoring radiative processes), but that
subtle differences in how the constituent particles interact with each others leads to
wildly different outcomes.

After a brief introduction of theoretical foundations (Part I), in which we discuss
units, length and time scales, and review classical (in particular Hamiltonian) dy-
namics, we start with a detailed account of kinetic theory (Part II). Starting from the
Liouville theorem we use the BBGKY hierarchy to derive the Boltzmann equation,
from which we derive the continuum, momentum and energy equations that describe
the dynamics of many-body systems. We then examine how different types of ‘colli-
sions’ between the constituent particles (short-range vs long-range, strong vs weak)
lead to very different dynamics. Special attention is given to how weak, long-range
interactions (characteristic of gravity) leads to diffusion in phase-space that can be
described using the Fokker-Planck equation.
Next, in Part III, we study standard hydrodynamics, which applies mainly to neutral,
collisional fluids. We discuss a variety of different flows; vorticity, incompressible
barotropic flow, viscous flow, accretion flow, and turbulent flow, before addressing
fluid instabilities and shocks.
In Part IV we briefly focus on collisionless dynamics, highlighting the subtle differ-
ences between the Jeans equations and the Navier-Stokes equations. We also give a
brief account of orbit theory, and discuss the Virial theorem.
Finally, in Part V we turn our attention to plasmas. We discuss how the relevant
equations (Vlasov and Lenard-Balescu) derive from kinetic theory, and then discuss
plasma orbit theory, magnetohydrodynamics (MHD) and several applications.

It is assumed that the student is familiar with vector calculus, with curvi-linear
coordinate systems, and with differential equations. A brief overview of these topics
(and more) is provided in the various Appendices at the end of these Lecture Notes.
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Part I: Theoretical Foundations

In this introductory part of the course, we define our unit system, we introduce
the most relevant time and length scales, and we give a broad outline of collisional
relaxation. We also review classical mechanics, with an emphasis on the Hamiltonian
formulation, canonical transformations, Poisson brackets, and the Hamilton-Jacobi
equation.

The material covered in this part is described in more detail in the following excellent
textbooks:

- Classical Mechanics by J.Taylor
- Classical Mechanics by H.Goldstein, C.Poole & J.Safko
- Modern Classical Physics by K.Thorne & R. Blandford
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CHAPTER 0

Units

Throughout these lecture notes, we adopt Gaussian cgs units. Length are measured
in centimeter (cm), masses in grams (g), and time in seconds (s). Temperature will
be expressed in Kelvin (K). When convenient, we will occasionally convert these to
astrophysical units, such as parsecs (pc), Solar masses M⊙, and/or Gigayear (Gyr),
but cgs units will be the standard. The derived units of force, energy and power are
listed in the Table below.

The unit of charge is the electrostatic unit (esu), which is equivalent to the stat-
coulomb (stC), which is chosen such that the Coulomb force between two charges q
separated by a distance r is

FCoulomb =
q2

r2

Note that with this choice the dielectric constant of the vacuum, ε0, is dimensionless
and equal to unity. Consequently, electric and magnetic fields are defined to have
the same unit. Their unit is such that the electrostatic force caused by an electric
field E on a charge q is

Felectric = q E

This implies that charge, and electric/magnetic fields have the units listed in the
Table below. Note that E2 and B2 now have the units of energy density!

Quantity cgs unit in cgs SI unit cgs to SI conversion

Force dyn g cm s−2 Newton 1dyn = 10−5N
Energy erg g cm2 s−2 Joule 1erg = 10−7 J
Power erg s−1 g cm2 s−3 Watt 1erg/s = 10−7W
Charge esu g1/2 cm3/2 s−1 Coulomb 1esu = 3.336× 10−10C
EM Field Gauss g1/2 cm−1/2 s−1 Tesla 1G = 10−4T
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CHAPTER 1

Many-Body Systems in Astrophysics

This chapter and the next are introductory chapters in which you will encounter many
terms that will be explained and discussed in more detail in the remainder of these
lecture notes. Students are advised to revisit these chapters several times during the
course to advance their understanding of the big picture.

With the exception of rocky planets and asteroids, all objects in the Universe can
be characterized as some kind of fluid consisting of large numbers of constituent
particles. Examples are stars (balls of plasma), galaxies and globular clusters (col-
lections of stars), dark matter halos (agglomerates of dark matter particles), as well
as molecular clouds, planet atmospheres, the ISM, ICM, CGM and IGM (gases or
plasmas that span a wide range in densities and temperatures). This course studies
the dynamics of all these systems.

In general, a fluid is a substance that can flow, has no fixed shape, and offers little
resistance to an external stress. It’s constituent particles can move ’freely’ past one
another, and, in the absence of self-gravity, a fluid will take on the shape of its
‘container’. Also, stress forces cause a fluid to change its shape at a steady rate.
For comparison, in a solid the particles are largely locked in place, the shape of the
solid is self-imposed, and when acted upon by a stress force its shape is deformed by
a fixed amount.

In this course we shall distinguish and discuss three different types of fluids:

• Collisional fluids in which the particle interactions are short-range, such that
two-body collisions among them are well separated in both space and time.
Examples of such fluids are liquids and (neutral) gases.

• Collisionless fluids in which the particle interactions are long-range (typi-
cally gravity). Examples of these are Cold Dark Matter halos and the stellar
components of galaxies.

• Plasmas in which (a large fraction of) the particles are ionized and subject
to long-range Coulomb interactions. As we will see, plasmas can be both
collisionless and collisional at the same time.
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In what follows, we use ‘particles’ to refer to the constituent particles of the sytem
in question, and we use the terms ‘interaction’, ‘encounter’ and ‘collision’ without
distinction, unless specifically mentioned otherwise.

Dynamical Treatments of Fluids

Our goal in this course is to develop dynamical models for each of these three types
of fluids. A dynamical model consists of two ingredients: a description of the state
of the system, and a set of equations that describe how that state evolves with time.

At the most fundamental level, one can argue that ultimately each and every fluid
is made up of elementary particles that need to be described using quantum (field)
theory. At this most basic level the state of the fluid is described in terms of the
N -particle wave function ψ(~x1, ~x2, ..., ~xN), which evolves in time according to the
Schrödinger equation. Since N is typically extremely large, this fluid-model is
obviously utterly unfeasible. Fortunately, it is also unneccesary. According to what is
known as Ehrenfest’s theorem, a system of N quantum particles can be treated as
a system of N classical particles if the characteristic separation between the particles
is large compared to the de Broglie wavelength

λdB =
h

p
≃ h√

mkBT

Here h is the Planck constant, p = mv is the particle’s momentum, and m is the
particle mass. This de Broglie wavelength indicates the ‘characteristic’ size of the
wave-packet that according to quantum mechanics describes the particle, and is
typically very small. Except for extremely dense fluids such as white dwarfs and
neutron stars, or ‘exotic’ types of dark matter (i.e., ‘fuzzy dark matter’), the de
Broglie wavelength is always much smaller than the mean particle separation, and
classical, Newtonian mechanics suffices. In this course we therefore focus exclusively
on classical fluids.

Classically, the state of a fluid is described by the 6N phase-space coordinates (po-
sition and momentum of each particle) of the particles. As we will discuss in Part I,
such a classical, Newtonian system of N particles can be described by a Hamilto-
nian, and the corresponding equations of motions. Clearly, when N is very large it
is unfeasible to solve the 6N equations of motion for all the positions and momenta
of all particles. However, in some cases we can ‘downsample’ the number of particles
(while increasing their mass such that the total mass of the fluid remains the same),
and solve the equations of motion using large computers. This is basically how as-
tronomers use N-body simulations to model collisionless fluids such as galaxies or
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dark matter halos. Plasma physicists also use N -body simulations called Particle-
in-Cell (PIC) simulations in which each N -body particle represents an actual
individual charged particle (electron or ion). As we will discuss in Part V, certain
aspects of plasmas can only be addressed using this approach.

Another way to model fluids is by using kinetic theory, which we discuss in detail
in Part II of these lectures. In kinetic theory the state of the fluid is described by the
(1-particle) distribution function (DF) f(~x, ~p, t), which describes the number density
of particles in 6-dimensional ‘phase-space’ (~x, ~p), i.e., how many particles are there
with positions in the 3D volume ~x + d~x and momenta in the 3D volume ~p + d~p.
The equations that describe how f(~x, ~p, t) evolves with time depends on the type of
fluid. The evolution of collisional fluids, like a neutral gas or liquid, is described by
the Boltzmann equation. If the fluid is collisionless (to good approximation), its
evolution is described by the Collisionless Boltzmann Equation (CBE), which
is also known as the Vlasov equation. If collisions due to long-range forces cannot
be ignored, the evolution of the DF can be described by a Fokker-Planck equation
or the Lenard-Balescu equation.

Finally, fluids can also be modelled as a continuum. This means we ignore that
fluids are made up of constituent particles, and rather describe the fluid with con-
tinuous fields. For a collisional fluid, its state is fully described by four fields: the
density ρ(~x), the (bulk) velocity ~u(~x), the pressure P (~x), and the internal, specific
energy ε(~x) or, equivalently, the temperature T (~x). The equations that describe the
time-evolution of ρ(~x), ~u(~x), and ε(~x) are called the continuity equation, the mo-
mentum equations, which for a collisional fluid are known as the Navier-Stokes
equations, and the energy equation, respectively. Collectively, we refer to these
as the hydrodynamic equations or fluid equations. For an ideal (or perfect)
fluid (i.e., no viscosity and/or conductivity), the Navier-Stokes equations reduce to
what are known as the Euler equations. Magnetohydrodynamics (MHD) is a con-
tinuum model used to describe magnetized plasmas, which basically combines the
fluid equations with Maxwell’s equations. The fluid equations are also sometimes
used to model collisionless fluids, in which case the equivalent of the Euler equation
is known as the Jeans equation.

The goal of ASTR 501 is to acquaint you with each of these different approaches,
thereby developing a deep understanding of the intricate differences between the
various types of fluids, which ultimately arise from the different forces by which the
particles interact with each other. To this end, we start with a brief primer on
Hamiltonian dynamics, which is the starting point of kinetic theory. After a detailed
derivation of the Boltzmann and Fokker-Planck equations, we then show how the
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macroscopic continuum equations ultimately derive from kinetic theory by taking
moments of the Boltzmann equation.

Collisions: The main difference between the different types of fluids listed above is
the way their constituent particles interact.

In general, we can envision an interaction between two particles, 1 and 2, as depicted
in Fig. 7. The interaction is characterized by an encounter speed v = |~v1 − ~v2| and
an impact parameter b. The outcome of the interaction is a deflection angle θ. Note
that we consider classical physics throughout (i.e., we assume that the interparticle
separation λint ≫ λdB). We also assume that all collisions are elastic (i.e., no
dissipation of energy or momentum in the collision). The latter implies that we can
describe our system using Hamiltonian dynamics, which is the only assumption
we will make in deriving our kinetic theory in Part II.

In reality, off course, collisions between electrons and atoms or ions are not always
elastic. For example, electrons can recombine with ions, a process that will release
a photon (recombination radiation). Alternatively, collisions can excite bound elec-
trons. If this is followed by spontaneous decay, a photon is emitted rendering the
collision dissipative. Although these processes are obviously important if we want to
understand the radiation we receive from astrophysical systems, typically the time
scales of radiative losses (‘cooling’) are much larger than most of the dynamical
times that are of interest to us. Hence, we do not make large errors by ignoring these
radiative losses.

Interactions that only cause a non-negligible deflection, θ, if the impact parameter b
is smaller than the typical interparticle separation are called short-range interac-
tions. An example is the vanderWaals force, which is the dominant interaction
force between molecules and atoms in a neutral gas or liquid. The short-range char-
acter of this force is reflected by the fact that for separations that are large compared
to the sizes of the particles (atoms), FvdW ∝ r−7. Hence, if the gas is sufficiently
dilute, then the mean-free path of a particle is much larger than the mean particle
separation and the collisions are well separated in both time and space. In other
words, the particles only have interactions with a single other particle at a time, and
in between these collisions the particles move (roughly) in a straight line (unless the
mean free path is large, and the particles move in an external potential).

The dominant force between particles in galaxies and cold dark matter halos is
gravity, which is a long-range force (i.e., Fgrav ∝ r−2). Hence, each particle
feels the gravitational force from all other particles; in other words, each particle
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undergoes simultaneous collisions with all other particles. If N is sufficiently large,
than the net effect of all these collisions is the same as if N where infinite, which
corresponds to the case where the matter is not made of discrete particles, but is
a continuous ‘fluid’. In such a continuous medium there are no ‘collisions’; rather,
the particles move on smooth orbits governed by the smooth potential associated
with the smooth mass distribution. In other words, in a system governed by long-
range interactions, if N is sufficiently large the system can be approximated as being
collisionless.

As we will see, it is useful to split the interactions in strong interactions, which
are typically defined as interactions for which the deflection angle θ > 90o, and weak
interactions, which have θ < 90o. Or, in terms of the impact parameter, strong
and weak interactions have b < b90 and b > b90, respectively, where b90 is defined as
the impact parameter for which θ = 90o. As we will see, the net impact of strong
interactions is always subdominant to that of the (many more) weak interactions, and
one does not make a big error by simply ignoring the former (which is occasionally
done).

It is important to realize that a ‘collisionless’ system is not truly collisionless; it is only
approximately collisionless. Under certain circumstances (i.e., N is not very large,
or one particle is much more massive than the other particles), collisional effects do
play a role, and these are always dominated by the weak (large-b) encounters. As we
will see, the net effect of many weak encounters is two-fold. On the one hand, the
collisions act to reduce the motion of the particle in question (friction). On the other
hand the many weak interactions cause the particle in question to undergo diffusion
in both configuration space and momentum space. These effects are described by
the Fokker-Planck equation which we discuss in Part II of these lecture notes.

The time scale on which two-body interactions cause the system to evolve is called the
two-body relaxation time. For ‘collisionless’ systems, like a galaxy, it is typically
much larger than any other time scale of interest. For a collisional gas, on the other
hand, it is of the order of the time scale between individual collisions.

Finally, let’s consider a plasma, which is a fluid in which the constituent particles
are electrically charged, such that the dominant interparticle force is the Coulomb
force. Similar to gravity, the Coulomb force is a long range force scaling as r−2.
However, because there are both positive and negative electric charges, the Coulomb
force due to a charged particle inside a plasma is typically screened beyond what is
known as the Debye length, λD. The total number of particles within the Debye
sphere, and thus the total number of particles that undergo simultaneous interactions,
is ND ∼ nλ3D
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If ND ≪ 1 then charged particles have interactions with a single, individual particle
at a time, and these collisions are well separated in time and space; hence the system
basically behaves as a neutral fluid. Such a system is generally not considered a
plasma despite the fact that its particles carry electric charge. In fact, as we will
see, in this limit the typical kinetic energy of a charged particle is smaller than the
potential energy due to its nearest neighbor, and there is a strong tendency for the
electrons and ions to recombine, thus converting the plasma into a neutral fluid.

If ND ≫ 1, then the charged particles undergo many simultaneous Coulomb interac-
tions. This is known as the plasma limit. In this limit the plasma frequency, ωp,
which is the natural frequency with which the electrons in a plasma oscillate relative
to the ions, is much larger than the collision frequency, which is defined here as the
inverse of the two-body relaxation time. In other words, a plasma can undergo many
oscillations (with the plasma frequency) before it undergoes significant damping due
to two-body interactions, and the plasma can thus be considered collisionless. As we
will see in Part V, the two-body relaxation time for a plasma can be expressed in
terms of the plasma oscillation time τp = 2π/ωp as follows:

τrelax ≃
ND

lnND

τp ≃ ND

lnND

10−4 s
( ne

cm−3

)−1/2

Compared to astrophysical time scales this relaxation time is extremely short. For
example, even for a plasma with Λ ∼ nλ3D = 1010, the relaxation time for a plasma at
ISM densities (n ∼ 1 cm−3) is only about 12 hours, much shorter than any relevant
(hydro)-dynamical time. Hence, although plasmas can often be considered collision-
less fluids, on astrophysical time scales plasmas are collisionally relaxed, and thus
well described by a Maxwell-Boltzmann distribution.

Thus, we see that depending on the time-scale of the phenomena of interest, we can
treat plasmas as either collisionless (short time scales, τ ≪ τrelax) or collisional (long
time scales, τ ≫ τrelax). For example, when studying how Landau damping causes
the ‘dissipation’ of Langmuir waves (which are non-propagating plasma waves in
which perturbations in the electrical field cause oscillating separation of electrons and
ions), the plasma can be treated as collisionless. On the other hand, when considering
phenomena with long time scales, the plasma can be treated as collisional (i.e., having
relaxed). In that case we don’t need to treat electrons and ions separately. Rather,
we treat the plasma as a single fluid. Note, though, that in this one-fluid model
of plasma physics we need to account for the effect of collisions. As we will see,
their main effect is to transfer momentum between electrons and ions, which in turn
manifests as an electrical current. This is the area of magnetohydrodynamics
(MHD).
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Collective behavior: Systems in which the two-body interactions are governed by
a long-range force (i.e., gravitational N -body systems and plasmas) are subject to
collective effects. Whenever a local change/perturbation has an instant (ignoring re-
tardation effects) impact on large scales, affecting many other particles, we speak of
collective behavior. Adding a charge to a plasma immediately affects all particles
in its Debye length; hence, Debye shielding is an example of collective behavior.
Other examples are plasma oscillations (i.e., Langmuir waves), their dissipation
due to Landau damping, and violent relaxation, which causes a relaxation of
gravitational N -body systems due to large, coherent fluctuations in the overall grav-
itational potential of the system. Warps, spiral arms and bars in disk galaxies are
also manifestations of collective behavior. Note that collisional fluids governed by
short-range interactions do not show collective behavior. Here, instead, the impact
of a local change has to diffuse outwards over time due to two-body collisions. Even
acoustic waves (sound waves) that simultaneously impact many particles are not col-
lective in nature; rather they are propagated by local fluctuations in pressure, which
is ultimately related to local two-body collisions among the particles.

Particle Trajectories: In a collisional fluid, such as a neutral gas or liquid,
the collisions among the particles are short range, well-separated in space-and
time, and causing large deflections. In between the collisions, the particles travel
in straight lines. Hence, particle trajectories are random walks, and the collisions
drive the system towards a Maxwell-Boltzmann distribution on a very short time
scale.

In a gravitational N body system, the interactions are long-range, with each
particle feeling the gravitational force from all other particles. To good approxi-
mation the system is collisionless and the particles move along orbits in a smooth
potential conserving their integrals of motion (see Chapter 4). Since individual
orbits do not interact with each other, they can be considered ‘building blocks’; i.e.,
one can equally well think of a galaxy as a collection of orbits rather than a collec-
tion of particles. However, due to the discreteness of the particles, the system is not
perfectly collisionless and two-body collisions cause particle trajectories to deviate
(slighty) from smooth orbits. Since weak interactions dominate over strong interac-
tions, these deviations manifest as a diffusion in phase-space (which is described
by the Fokker-Planck equation) that ultimately results in two-body relaxation.

Finally, in a plasma, the interactions are also long-range, governed by theCoulomb
force between the charges, or rather by the Lorentz force when also accounting
for the presence of magnetic fields. Charged particles will gyrate the magnetic field
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lines (with the cyclotron frequency). Due to gradients and curvature in the mag-
netic field, the guiding center of this helical motion typically will drift and can even
experience reflection (see Chapter 26), such that particle trajectories in a plasma
can be extremely complicated. Similar to a gravitational N -body system, two-body
interactions, dominated by many weak interactions, cause a diffusion that drives the
velocity distribution towards a Maxwell-Boltzmann distribution.

Examples of Many-Body Systems (Fluids) in Astrophysics:

• Stars: stars are spheres of plasma in hydrostatic equilibrium (i.e., gravi-
tational force is balanced by pressure gradients). Densities and temperatures
in a given star cover many orders of magnitude. To good approximation, its
equation of state is that of an ideal gas.

• Giant (gaseous) planets: Gaseous planets are large spheres of gas, albeit
with a rocky core. Contrary to stars, though, the gas is neutral and typically
so dense and cold that it can no longer be described with the equation of
state of an ideal gas.

• Planet atmospheres: The atmospheres of planets are stratified, gaseous flu-
ids retained by the planet’s gravity. They are an example of non-self-gravitating
fluids. The Earth’s ionosphere, which extends from roughly 50 to 600 miles
above the Earth’s surface is a plasma, having been ionized by the incident UV
radiation from the Sun. Another plasma that makes up the Earth’s atmosphere
are the charged particles that are trapped in the Earth’s magnetosphere and
which give rise to the Van Allen radiation belts. The magnetosphere crucially
shields us from another plasma, namely the Solar wind.

• White Dwarfs & Neutron stars: These objects (stellar remnants) can be
described as fluids with a degenerate equation of state.

• Proto-planetary disks: the dense disks of gas and dust surrounding newly
formed stars out of which planetary systems form. Proto-planetary disks are
complicated, but fascinating astrophysical environments governed by gravity,
hydrodynamics and radiation. Understanding this interplay of processes is
crucial for understanding planet formation.

• Inter-Stellar Medium (ISM): The gas in between the stars in a galaxy.
The ISM is typically extremely complicated, and roughly has a three-phase
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structure: it consists of a dense, cold (∼ 10K) molecular phase, a warm
(∼ 104K) phase, and a dilute, hot (∼ 106K) phase. All these phases are in
rough pressure equilibrium with each other. Stars form out of the dense molec-
ular phase, while the hot phase is (shock) heated by supernova explosions. The
reason for this three phase medium is associated with the various cooling mech-
anisms. At high temperature when all gas is ionized, the main cooling channel
is Bremsstrahlung (acceleration of free electrons by positively charged ions).
At low temperatures (< 104K), the main cooling channel is molecular cooling
(or cooling through hyperfine transitions in metals).

• Inter-Galactic Medium (IGM): The gas in between galaxies. This gas
is typically very, very dilute (low density). It is continuously ‘exposed’ to
adiabatic cooling due to the expansion of the Universe, but also is heated by
radiation from stars (galaxies) and AGN (active galactic nuclei). The latter,
called ‘reionization’, assures that the temperature of the IGM is ∼ 104K.

• Intra-Cluster Medium (ICM): The hot gas in clusters of galaxies. This
is gas (or rather a plasma) that has been shock heated when it fell into the
cluster; typically gas passes through an accretion shock when it falls into a
massive dark matter halo, converting its infall velocity into thermal motion.
Material that enters the ICM through cold filaments can avoid this accretion
shock, though. The cold filaments penetrating the hot ICM triggers Kelvin-
Helmholtz instabilities which can stir turbulence in the ICM.

• Circum-Galactic Medium (CGM): The hot halo gas in halos less mas-
sive than a cluster. The CGM is the interplay between infalling gas that was
recently accreted and outflowing gas being expelled from the central galaxy
due to feedback processes. The CGM is often characterized as the reservoir
for future star formation. It is extremely difficult to observe in emission, and
most of what we know from it derives from absorption line spectroscopy using
background sources.

• Accretion disks: Accretion disks are gaseous, viscous disks in which the
viscosity (enhanced due to turbulence and/or magnetic fields) causes a net
rate of radial inflow towards the center of the disk, while angular momentum
is being transported outwards.

• Galaxies (stellar component): the stellar component of galaxies is charac-
terized as a collisionless fluid; to very, very good approximation, two stars in a
galaxy will never directly collide with other. The term collisionless is somewhat
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of a misnomer; formally speaking the system is extremely collisional; each star
has simultaneous ‘collisions’ (i.e., interactions) with all other stars. Yet, the
outcome is such that the system behaves as if it is entirely collisionless. The
impact of (two-body) collisions only manifest on very long timescale.

• Globular Clusters: Similar to galaxies, these are large collections of stars.
Unlike galaxies, though, GCs do not reside in their own dark matter halo. In
addition, due to the smaller number of stars, they are more collisional than
galaxies, which results in a rich dynamics.

• Dark matter halos: Depending on the nature of dark matter, it can be a
collisionless fluid, as in standard cold dark matter (CDM), it can be a collisional
fluid, as in self-interaction dark matter (SIDM), or it can behave as a quantum-
mechanical Bose-Einstein condensate, as in fuzzy dark matter (FDM).
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CHAPTER 2

Characteristic Time & Length Scales

Before examining the types of interactions one encounters in the various fluids de-
scribed in the previous chapter, we first introduce a number of important length-
and time-scales.

• Hubble radius: λH ≃ c/H0 ≃ 3000h−1 Mpc. This is a rough estimate of the
present-day size of the Universe (within the horizon).

• System size: R. The characteristic size of an astrophysical many-body sys-
tem.

• Jeans length: λJ = cs
√
π/Gρ, where cs is the sound speed. Objects larger

than the Jeans length are unstable to gravitational collapse.

• Debye length: λD ∼
√
kBTe/4πnee2 (Plasma only). Here kB is the Boltz-

mann constant, and Te, ne and e are the temperature, number density and
electrical charge of the electrons. The Debye length is a measure of how far
the electrostatic charge of a particle carries before it is shielded by the roughly
equal numbers of positive and negative charges.

• Mean-free path: λmfp = (nσ)−1, where n and σ are the number density
and (effective) collisional cross section, respectively. The mean-free path is the
typical distance a particle travels in between two collisions.

• Interparticle separation: λint = n−1/3 ∼ R/N1/3. The mean distance be-
tween two particles.

• de Broglie wavelength: λdB = h/(mv), where h is Planck’s constant and v
is the (non-relativistic) velocity of the particle. The de Broglie wavelength is
the quantum-mechanical size of the wave-packet corresponding to the particle
in question.

• Larmor radius: λL = mv⊥ c/|q|B, is the radius of the circular motion of a
charged particle in the presence of a uniform magnetic field. Here v⊥ is the
velocity of the charged particle projected perpendicular to the magnetic field,
whose amplitude is B, m and q are the mass and electric charge of the particle,
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and c is the speed of light. The Larmor radius is sometimes referred to as the
gyro-radius.

A few general comments regarding these length scales: As long as λint ≫ λdB we
can ignore quantum mechanical effects (interference) and treat the particles as well-
separated, classical particles. Throughout these lecture notes, this will be the regime
we are considering. Examples of astrophysical fluids that do NOT meet this criterion
are white dwarfs and neutron stars, which are held up against gravity by degen-
eracy pressure from electrons and neutrons, respectively, and Fuzzy Dark Matter
(also known as Scalar Field Dark Matter or Wave Dark Matter), which consists of
ultra-light (typically ∼ 10−22 eV) axions for which λdB is astrophysically large.

A system that has undergone gravitational collapse and has virialized, has R ∼
λJ. To see this, we can write the equivalent of the Jeans length for a collisionless
gravitational system as λJ = σv

√
π/Gρ, i.e., by replacing the sound speed, cs,

with a characteristic velocity dispersion, σv. Using that a virialized system obeys
2K +W = 0, which implies that Mσ2

v ∼ GM2/R (see Part IV for details), and that
ρ ∼M/R3, it is easy to see that indeed λJ ∼ R.

If λmfp ≫ λint then the particles experience collisions that are well separated in
both time and space. This is the situation we typically encounter in (dilute) gases,
and will be the working hypothesis when describing liquids and neutral gases (i.e.,
hydrodynamics).

For a collisionless system the mean-free path is ill-defined. However, it is useful
to approximate the collisional cross section in a gravitational N -body system as
σ = πb290, with b90 the impact parameter for which the collision causes a deflection
by a 90-degree angle (see Chapter 1). With this definition, and using the Virial
Theorem (see Chapter 22), one obtains that λmfp ≃ NR, i.e., much, much larger
than the size of the system, as expected.

If we use 〈v〉 to denote the typical velocity of a constituent particle, then we can
associate a characteristic time scale, τ = λ/〈v〉, with each of the characteristic length
scales, λ, mentioned above. Here we highlight a few of the more important ones:

• Hubble time: τH = λH/c = H−1
0 ∼ 9.78h−1 Gyr. A rough estimate for the

age of the Universe.

• Crossing time: τc = R/〈v〉. This is the typical time needed to cross a system
in the absence of collisions.
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• Sound crossing time: τs = R/cs. This is the typical time on which a sound
wave crosses the system. It is the fastest time scale on which a hydro-dynamical
system can respond to changes.

• Collision time: τcoll = λmfp/〈v〉 = (nσ 〈v〉)−1. This is the time scale in
between collisions. For a collisionless fluid, using that σ = πb290, we obtain that
τcoll ∼ Nτc which is roughly equal to the two-body relaxation time (see below).

• Plasma oscillation time: τp =
√
πme/nee2 ∼ λD/〈v〉. This is the character-

istic time scale on which a charged plasma reacts to a charge imbalance.

• Gyration period: τgyro = 2πλL/v⊥. The period with with a charge gyrates a
magnetic field line. Note that τgyro is independent of the velocity of the charged
particle. Hence, protons have a gyration period that is 1, 836 = mp/me times
longer than that of electrons. In addition positive and negative charges gyrate
in opposite directions.

Using that a virialized system (i.e., a galaxy or dark matter halo) obeys 〈v〉 ∼√
GM/R, we have that τc = R/〈v〉 ∝ (Gρ)−1/2. All dynamical times of a virial-

ized, gravitational system have this same (Gρ)−1/2-scaling. This includes the ‘free-fall
time’, τff , which is the characteristic time scale on which a pressure-less system col-
lapes under its own weight, and the ‘orbital time’, τorb, which is the orbital period of
a particle, typically on a closed circular orbit. All these time scales are approximately
the same (they only differ by O(1) pre-factors).

Note that
R

λJ
=
τs
τff

Hence, if R < λJ then τs < τff and the system can respond hydrodynamically to
changes in the gravity, i.e., pressure can adjust to balance gravity and the system
is stable against gravitational collapse. On the other hand, if R > λJ then gravity
wins. This is the famous Jeans stability criterion, which we will discuss in more
detail in Part III.

The plasma oscillation time and gyration period are more commonly presented in
terms of their corresponding frequencies; the plasma frequency ωp = 2π/τp, which
is the natural frequency with which a plasma oscillated in response to a charge
separation, and the gyration frequency ωc = 2π/τgyro = |q|B/mc, also known as
the cyclotron frequency, which is the frequency with which electric charges gyrate
magnetic field lines. As we will see in Part V, plasmas are opaque to radiation (=EM
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oscillations) with a frequencies ω < ωp, which is why the Earth’s ionosphere is opaque
to radio emission with frequencies below ∼ 10MHz. In addition, since in most cases
we have that ωc < ωp, unless the magnetic field strength is enormous, the cyclotron
radiation produced by the electrons as they gyrate the magnetic field lines typically
remains trapped inside the plasma (see Part V for details).

Relaxation time: An additional time scale that is of great importance is the re-
laxation time, which is roughly defined as the time scale on which a system that is
perturbed returns to an equilibrium. As discussed in Chapter 1, there are different
ways in which a many-body system can achieve this, and which of these mechanisms
dominates mainly depends on the type of fluid. For example, galaxies can undergo
violent relaxation, which is an example of a collective effect. Violent relaxation
is fast and operates on of order the crossing time. Another example of collective
effects that cause relaxation is Landau damping, which causes the damping of
Langmuir waves in a plasma (and which is very similar in nature to violent relax-
ation). Another relaxation mechanism that we will encounter in this course is phase
mixing, which destroys the phase coherence of the response to a perturbations.

Probably the most well-known relaxation mechanism, though, is two-body relax-
ation, which is relaxation due to two-body collisions among the constituent parti-
cles. Two-body relaxation always drives the system towards thermal equilibrium
in which the velocity distribution becomes a Maxwell-Boltzmann (MB) distribu-
tion. Two-body relaxation is the main mechanism by which collisional fluids such
as neutral gases and liquids relax. The time scale on which such a fluid relaxes is of
the order of the collision time, τcoll, which is typically extremely fast. Hence, we can
assume that the (local) velocities of the particles in a collisional fluid follows a MB
distribution. This in turn gives rise to the concept of an equation of state which
we can use to compute the pressure in the fluid, and which, as we will see, causes
closure in the set of hydrodynamical equations.

In the case of a collisionless fluid, the two-body relaxation time is much longer.
Formally, if a system is truly collisionless, then the two-body relaxation time should
be infinite. However, as already mentioned in the previous chapter, collisionless
systems are only approximately collisionless. On sufficiently long time-scales collisions
will still drive the system towards a MB distribution. In a galaxy or dark matter
halo, the two-body relaxation time is typically much longer than the Hubble time
and such systems are, for all practical purposes, truly collisionless. Globular clusters,
on other hand, can have two-body relaxation times of order a Gyr, and we may thus
expect that they have been sculpted by two-body collisions. Finally, as discussed
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in Chapter 1, plasmas have two-body relaxation times that are only a few hours.
Hence, on astrophysical times scales they will have relaxed and established a MB
distribution.

It is important to distinguish the local relaxation time, which is the time on which the
local velocity distribution becomes MB, versus the (significantly longer) global relax-
ation time. The latter requires the entire system to adopt a single MB distribution,
and thus to be characterized by a single (effective) temperature. In others words,
a system that is globally relaxed has to be isothermal. Although local relaxation is
common, global relaxation is rare. For example, stars are locally relaxed (because
τrelax ∼ τcoll), but have strong temperature gradients. This is mainly a consequence
of the continuous supply of (nuclear) energy from within, which ‘percolates’ through
the system, until it reaches the photosphere from where it is released into space.
The time scale on which a collisional system tries to establish global equilibrium
is governed by what are known as the transport coefficients. Examples are the
diffusion coefficient (transport of number density), the viscosity (transport of mo-
mentum), the conduction coefficient (transport of energy or heat), and the electric
conductivity (transport of electic charge). Effectively these are all diffusive, due to
the random walks of particles undergoing many collisions.

Galaxies and dark matter halos have relaxation times that exceed the Hubble time.
Hence, their local velocity distributions are NOT expected to be MB. Yet, they can
appear ‘relaxed’ and thus to be in an equilibrium configuration (they reached that
state through collective effects such as violent relaxtion). As we will see, though, this
is only a quasi-equilibrium: given enough time, any many-body system will evolve
toward thermal equilibrium! An interesting case are globular clusters, which have
relaxation times that can be substantially shorter than the Hubble time. Hence, one
may thus expect their local velocity distributions to be MB distributions. There is
one caveat though; stars in the tail of MB distribution exceed the escape velocity and
escape the system, a process called evaporation. Typically the velocity dispersion (a
measure for the effective temperature) of a globular cluster is higher in the center than
in its outskirts. Two-body collisions among the stars will cause a conductive heat flux
that tries to establish thermal equilibrium across the globular (the same happens in
the central regions of a halo of self-interacting dark matter). However, as we will see,
gravitational systems have a negative heat capacity, which means that if heat escapes
the core, the core gets hotter!! Consequently, the conductive flux increases, and the
system enters what is called the gravothermal catastrophe, which leads to core
collapse. As the central region gets hotter and hotter, evaporation becomes more
pronounced, and ultimately the system will evaporate entirely. Hence, gravitational
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many-body systems can never achieve global relaxation. The only way for them to be
in thermal equilibrium, is to be in thermal equilibrium with the rest of the Universe,
which is called the heat death of the Universe.

As you may already know, perhaps from taking a course in Galactic Dynamics, the
two-body relaxation time for a gravitational N -body system is often given as

τrelax =
N

8 lnN
τc

Since N and the crossing time τc describe global properties of the entire system, you
might be inclined to consider this the global relaxation time of the system. However,
that would be incorrect; after all, a gravitational N -body system never achieves
global relaxation. Rather, the above expression should be considered a very crude
approximation for the time-scale on which the system relaxes locally (yes, this is
weird, as there are no local quantities appearing in the expression). As we will see
in Chapter 9, a more accurate estimate for the local two-body relaxation time can
be obtained from the Fokker-Planck equation, and is given by

τrelax(~r) = 0.34
σ3
v(~r)

G2mρ(~r) ln Λ

Here σv(~r) and ρ(~r) are the local velocity dispersion and density, m is the mass of the
constituent particles, and lnΛ is called the Coulomb logarithm. It is straightforward
to show that if the system has a uniform density, and is virialized, then the two
expressions for τrelax are virtually identicial.
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CHAPTER 3

Classical Dynamics: a primer

Mechanics of a single particle:

Let ~r be the radius vector of a particle of mass m from some given origin and ~v its
velocity vector (i.e., ~v = d~r/dt).

Newton’s second law of motion: there exist frames of reference (called inertial
frames) in which the motion of the particle is described by

~F = m~a = m
d2~r

dt2
=

d~p

dt
≡ ~̇p

where ~a is the acceleration and ~p = m~v is the linear momentum. Note that,
in general, ~F = ~F (~r, ~v); an example of a force that depends on velocity is friction.
Throughout these lectures we limit ourselves to systems in whichm is constant. Note,
though, that if m = m(t) then ~F = m~a is no longer valid. Rather, ~F = ~̇p = ṁ~v+m~a.

The above equation of motions (one for each degree of freedom) are second-order
differential equations. General theorems governing differential calculus guarantee
that if two boundary conditions per degree of freedom are specified, i.e., ~r and ~v at
some initial time t0, then the equations of motion can be integrated to determine
~r(t) for all t. This is the main goal of classical dynamics.

The angular momentum of the particle about a point O, is given by

~L = ~r × ~p

where ~r is now the radius vector from O. The torque about O is defined by

~T = ~r × ~F = ~r × ~̇p

Using that
d

dt
[~r × ~p] = ~v × ~p+ ~r × ~̇p = ~r × ~̇p

where we have used that the cross-product between ~v and ~p vanishes, we see that

~T =
d

dt
[~r × ~p] =

d~L

dt
≡ ~̇L
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From this equation, and the equation of motion, we infer two conservation laws:

If the force acting on a particle is zero, its linear momentum is conserved

If the torque acting on a particle is zero, its angular momentum is conserved

The work done by an external force ~F on a particle going from point ~x1 to point ~x2
is given by

W12 =

∫ ~x2

~x1

~F · d~s

Using that ~F = m d~v/dt and that the path length d~s = ~v dt, it is easy to see that
W12 = T2−T1 where Ti =

1
2
mv2i is the kinetic energy of the particle at position ~xi.

Throughout these lecture we will mainly focus on a very special kind of force, known
as a conservative force. A conservative force depends only on position, not on
velocity, and is such that the work done in going from ~x1 to ~x2 is independent of the
path taken, i.e., ∮

~F · d~s = 0

Note that if friction or other dissipative forces are present, the system cannot be
conservative (after all, for friction ~F · d~s is always positive).

For a force that is conservative, the force is curl-free, i.e., ∇× ~F = 0, and can always
be written as a gradient of a scalar function of position, i.e.,

~F = −∇V (~r)

where V is called the potential, or potential energy. Substituting this expression
in that forW12 we see thatW12 = V1−V2. Combined with the fact thatW12 = T2−T1
we see that T1 + V1 = T2 + V2.

Hence, using that the total energy E = T + V , we have a third conservation law:

If the force acting on a particle is conservative, its total energy is conserved

If the potential depends explicitely on time, i.e., V = V (t), then energy is no longer
conserved. Instead we have that

dE

dt
=
∂E

∂~v
· d~v
dt

+
∂E

∂V

dV

dt
=
∂V

∂t

(see Chapter 24 for details). As we will see later in these lecture notes, this is the
principle that underlies violent relaxation.
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Mechanics of many-particle systems:

Consider a system of N particles of mass mi, and with position vectors ~ri and mo-
menta ~pi = mi ~vi. The force acting on particle i can be split in an external force
due to sources from outside the system, and internal forces due to the other N − 1
particles of the system, i.e.,

mi ~̈ri = ~̇pi = ~Fext,i +
∑

j

~Fji

where ~Fji is the force of particle j acting on particle i.

Throughout we assume that the internal forces obey Newton’s third law of motion
(action=reaction) such that ~Fji = −~Fij , and that all internal forces are central,

which means that the direction of ~Fji is in the direction of ~rji = ~rj − ~ri. Since all

central forces are conservative, we can write ~Fji as the gradient of a scalar function,
i.e.,

~Fji = −∇U(~rj − ~ri)

where U(~r) is the potential corresponding to the internal force. If the external forces
are also conservative than

~Fext,i = −∇V (~ri)

where V is the potential corresponding to the external force.

For a many-body system in which all forces are conservative we define

Total Mass M =
∑

i

mi

Center of Mass ~R =
1

M

∑

i

mi~ri

Total (linear) Momentum ~P =
∑

i

mivi =M
d~R

dt

Total Angular Momentum ~L =
∑

i

ri × ~pi

Total Kinetic Energy K =
∑

i

1

2
mi v

2
i

Total Potential Energy W =
∑

i

Vext,i +
1

2

∑

i 6=j

Uij
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Note that the potential energy has separate terms related to the external and internal
forces. The latter involves a summation over all particle pairs (the factor 1/2 is to
avoid double-counting). As long as the internal forces are central, then

d~L

dt
= Text =

∑

i

~ri × ~Fext,i

The total energy of a many-body system is simply E = K +W . Note that some
textbooks use different notations (i.e., T and V for total kinetic and potential energy).

The three conservation laws mentioned above for a single particle translate to many-
body systems as follows:

If the total external force is zero, total linear momentum is conserved

If the applied (=external) torque is zero, total angular momentum is conserved

If all forces (internal & external) are conservative, total energy is conserved

Generalized Coordinates:

In a many body system consisting of N particles, we have 3N coordinates that
specify the positions of the particles. If there are no constraints, such that all 3N
coordinates are independent, then we say that the system has n = 3N degrees of
freedom. If, on the other hand, the system has k holonomic constraints, which
are constraints of the form

f(~r1, ~r2, ..., ~rN , t) = 0

then the k expressions can be used to eliminate k of the 3N coordinates and the
system only has n = 3N − k degrees of freedom. An example of a many-body
system with (many) holonomic constraints is a rigid body, where each pair of particles
satisfies (~ri − ~rj)

2 − cij = 0, where cij is a constant.

A system with n degrees of freedom can be characterized by a set of n generalized
coordinates qi (i = 1, ..., 3N − k), which are related to the ‘old’ coordinates by
equations of the form ~rj = ~rj(q1, q2, ..., qn, t) with j = 1, ..., N , which implicitely
contain the k = 3N − n constraints.

Unlike Cartesian coordinates, or other orthogonal coordinate systems (i.e., cylindri-
cal or spherical), the generalized coordinates, qi, in general can NOT be divided into
conventional groups of three (spatial vectors). In fact, all sorts of quantities can be
invoked to serve as generalized coordinates, even quantities with dimensions other
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than length! If there are zero constraints, such that n = 3N , as is often the case
for the many-body systems encountered in these lecture notes, then it is often con-
venient (but not necessary) to use an appropriate coordinate system as generalized
coordinates. For instance, in the case of an external central force field, V = V (r), it
is convenient for qi to reflect the spherical coordinates of the N particles.

The Least-Action Principle:

In general, solving the Newtonian equations of motion involves having to solve a set
of 3N second-order differential equations plus k holonomic equations that specify the
constraints. This can be extremely challenging, even for small N , especially when
using a non-Cartesian coordinate system, or when having to deal with non-inertial
frames. Fortunately, two far more convenient formalisms have been developed, the
Lagrangian and Hamiltonian frameworks. These yield equations of motion that are
valid for any set of generalized coordinates; an invariance to the choice of coordinates
is automatically baked in, which implies no issue with fictitious forces or with compli-
cated vector arithmetic that comes with having to deal with curvi-linear coordinate
systems. In addition, the Lagrangian and Hamiltonian formalisms connect directly
to other branches of physics, including electromagnetism, quantum theory and par-
ticle physics. Most importantly, both the Lagrangian and Hamiltonian formalisms
are based on one of the most important principles in all of physics: the least-action
principle.

Let ~q = (q1, q2, ..., qn) be a n-dimensional vector, where n = 3N − k is the number
of degrees of freedom. Hence ~q uniquely specifies the position of all N particles in
the system. The vector ~q lives in a n-dimensional space known as configuration
space, C. Each point in C specifies a configuration of the system, the evolution of
which gives rise to a curve (or ‘path’) in C.

Consider two configurations, an initial one ~q1 = ~q(t1) and a final one ~q2 = ~q(t2).
There are infinitely many paths in C that connect ~q1 and ~q2. According to the least
action principle the actual path taken by the system is an extremum of the action

S =

∫ t2

t1

L(~q, ~̇q, t) dt

Here L = K −W is the difference of the kinetic energy and potential energy of the
system and is called the Lagrangian.

Note that the action is a functional, i.e., it is a function of the path which is itself a
function. The principle of least action, also known as Hamilton’s principle, states
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that the dynamics are such that the variation of the line integral S for fixed t1 and t2
is zero, i.e., δS = 0. Hence, the name ‘least’ action is somewhat of a misnomer; the
path doesn’t necessarily minimize S, as it can also be a maximum or a saddle point.
A more appropriate name would therefore be the ‘principle of stationary action’.

Lagrangian Dynamics:

Using the calculus of variations (see any textbook on advanced mechanics), the
condition δS = 0 translates to

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0 , (i = 1, 2, ..., n)

These equations are known as the Euler-Lagrange equations (or Lagrange equa-
tions, for short). These n second-order differential equations serve as the equations
of motion within the Lagrangian formalism of classical dynamics.

To see the connection to Newtonian mechanics, consider a system of N particles of
mass m, with no constraints on their coordinates, such that n = 3N . Assume that
the particles are subject to an external, conservative force field characterized by a
potential, V , and let qi be the 3N Cartesian coordinates of the N particles. Then
Newton’s equations of motion read

ṗi = −∂V
∂qi

where pi = m q̇i is the momentum, and V is the potential. The total kinetic and
potential energy of the system are K = 1

2

∑
imq̇

2
i and W =

∑
i V (qi). Hence,

∂L/∂q̇i = m q̇i = pi and ∂L/∂qi = −∂V/∂qi. We thus see that the Euler-Lagrange
equations reduce to Newton’s equations of motion.

However, there are two very important reasons for working with Lagrange’s equations
rather than Newton’s. The first is that Lagrange’s equations hold in any coordinate
system, while Newton’s are restricted to an inertial frame. The second is the ease
with which we can deal with constraints in the Lagrangian system.

In the above example, in which all qi are Cartesian coordinates, we have that
∂L/∂q̇i = mq̇i = pi, where pi is the linear momentum. This notion suggests an
obvious extension to the concept of momentum: the generalized momentum, also
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known as the conjugate momentum, associated with the generalized coordinate
qi is defined as

pi ≡
∂L
∂q̇i

Note that if qi is not a Cartesian coordinate then pi does not necessarily have the
dimensions of a linear momentum!! Unfortunately, we will use the same symbol p to
refer to a generalized momentum and a linear momentum. It (hopefully) should be
clear from the context which meaning is intended.

Note that if the Lagrangian of a system does not contain a given coordinate qj
(although it may contain the corresponding velocity q̇j), then the coordinate is said
to be cyclic or ignorable. The Euler-Lagrange equation for a cyclic coordinate
reduces to

d

dt

(
∂L
∂q̇j

)
=

dpj
dt

= 0

Hence, we see that

The generalized momentum conjugate to a cyclic coordinate
is conserved (i.e., is a constant of motion)
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Noether’s Theorem:

Conservation laws in Lagrangian dynamics are intimately related to Noether’s the-
orem which states that

With each continuous symmetry of the Lagrangian corresponds a conserved quanity

Let’s first examine what we mean by a continuous symmetry. Consider a one-
parameter family of maps

qi(t) → Qi(λ, t) , λ ∈ R

such that Qi(0, t) = qi(t). Hence, λ is a continuous variable that characterizes a
coordinate transformation qi → Qi. This transformation is said to be a continuous
symmetry of the Lagrangian if

∂

∂λ
L
(
Qi(λ, t), Q̇(λ, t), t

)
λ=0

= 0

To prove Noether’s theorem, we use that

∂L
∂λ

=
∂L
∂Qi

∂Qi

∂λ
+

∂L
∂Q̇i

∂Q̇i

∂λ

where we have used Einstein’s summation convention1, to write

(
∂L
∂λ

)

λ=0

=
∂L
∂qi

∂Qi

∂λ
+
∂L
∂q̇i

∂Q̇i

∂λ

Using the Euler-Lagrange equations we can rewrite this as

(
∂L
∂λ

)

λ=0

=
d

dt

(
∂L
∂q̇i

)
∂Qi

∂λ
+
∂L
∂q̇i

∂Q̇i

∂λ
=

d

dt

(
∂L
∂q̇i

∂Qi

∂λ

)

We thus see that if (∂L/∂λ)λ=0 = 0, which implies that λ corresponds to a continuous
symmetry of the Lagrangian, then the quantity

∂L
∂q̇i

∂Qi

∂λ
=
∑

i

∂L
∂q̇i

∂Qi

∂λ

is conserved.

1a repeated index is summed over, i.e., ai bi =
∑

i ai bi
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Example: Consider a closed system of N particles with Lagrangian

L =
1

2

∑

i

mi~̇r
2
i −

∑

i 6=j

V (|~ri − ~rj|)

This Lagrangian is symmetric under the continuous transformation ~ri(t) → ~ri(t)+λ~n
for any λ ∈ R and any vector ~n. This is simply a statement that space is homogeneous
and that a translation of the system by λ~n does not modify the equations of motion.

From Noether’s theorem we infer that

∑

i

∂L
∂~̇ri

· ~n =
∑

i

~pi · ~n

is conserved. Note that ~pi · ~n is simply the component of the linear momentum of
particle i in the direction of ~n. Hence, Noether’s theorem states that the total linear
momentum of the system in the direction of ~n is conserved. And since this is valid
for any ~n, we have that the homogeneity of space implies a translational invariance
of the Lagrangian which in turn, via Noether’s theorem, implies a conservation of
total linear momentum!

Similarly, the isotropy of space implies a rotational invariance of L, which relates to
the conservation of total angular momentum, while the homogeneity of time implies
that L is invariant under translations t→ t+λ, which in turn implies the conservation
of total energy.

Implications of Noether’s theorem:

Invariance of L under time translation ⇔ conservation of energy

Invariance of L under spatial translation ⇔ conservation of linear momentum

Invariance of L under rotational translation⇔ conservation of angular momentum
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Hamiltonian Dynamics:

In the Lagrangian formalism, the central role is played by the Lagrangian L(qi, q̇i, t),
where qi (i = 1, 2, ..., n) are generalized coordinates for the n degrees of freedom. The
equations of motion are given by the n Euler-Lagrange equations, which are second-
order differential equations that require 2n initial conditions to solve (typically the
qi and q̇i at some initial time t0).

In 1830 Hamilton introduced a new formalism, motivated by an attempt to put qi and
q̇i on a more symmetric footing. This is done by replacing the q̇i by the generalized
momenta pi = ∂L/∂q̇i. Note that pi = pi(qi, q̇i, t). In terms of these generalized
momenta the Euler-Lagrange equations take on the form

ṗi =
∂L
∂qi

, (i = 1, 2, ..., n)

The Hamiltonian framework, outlined below, does not really add anything new, nor
is solving the equations of motion in the Hamiltonian framework superior to that
in the Lagrangian framework. Rather, the Hamiltonian framework merely gives us
an alternative (and more powerful) view of dynamics that provides valuable insights
into many areas of physics. Within classical mechanics it forms the basis for further
developments such as Hamilton-Jacobi theory (covered in the next chapter) and chaos
(not covered in these lecture notes). Outside of classical mechanics the Hamiltonian
framework provides much of the language used to construct statistical mechanics
(see Chapters 6 and 7) and quantum mechanics.

In the Lagrangian framework ~q = (q1, q2, ...., qn) defines a point in n-dimensional
configuration space, C. Although ~q completely specifies the configuration of the
system, completely describing its state requires both ~q and ~p = (p1, p2, ..., pn). In
classical dynamics, once the state is completely described at some time t0, we have
all the information needed to completely and uniquely describe the state at any time
in the future or the past. The state of a system (~q, ~p) lives in 2n-dimensional phase-
space Γ. The state-variables (~q, ~p) are known as the canonical coordinates of
the system. Note that, in principle, one could also define a state-space using (~q, ~̇q).
However, since this set of variables is not canonical (see next chapter for a definition),
working in phase-space turns out to be far more powerful.

As the system evolves, it describes a path in phase-space. But unlike the paths
in configuration space, paths in phase-space can never cross (self-intersect), as this
would violate the deterministic nature of classical dynamics (see also Chapter 6).

Hamilton’s goal was to formulate mechanics in terms of 2n first-order differential
equations for the 2n state-variables, rather than in terms of n second-order differential
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equations for the n generalized coordinates, as in the Lagrangian framework. This
implies that we need to replace our Lagrangian, L(qi, q̇i, t), with a new function,
H(qi, pi, t), called the Hamiltonian, which contains the same information as the
Lagrangian. The procedure for switching variables in this manner is provided by the
Legendre transformation (see Appendix E).

In particular, the Hamiltonian H(qi, pi, t) is generated by the Legendre transform

H(qi, pi, t) = q̇ipi − L(qi, q̇i, t)

which should be regarded as the equation that defines the Hamiltonian. Note that
the first term uses the Einstein summation convention and should thus be read as
a sum over n terms. Alternatively, we can also write the above expression in vector
form as

H(~q, ~p, t) = ~̇q · ~p− L(~q, ~̇q, t)

The total derivative of the Hamiltonian is

dH =
∂H
∂qi

dqi +
∂H
∂pi

dpi +
∂H
∂t

dt

An alternative expression for dH can be obtained from the Legendre transformation:

dH = q̇i dpi + pi dq̇i − dL

= q̇i dpi + pi dq̇i −
(
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i +
∂L
∂t

dt

)

= q̇i dpi −
∂L
∂qi

dqi −
∂L
∂t

dt

= q̇i dpi − ṗi dqi −
∂L
∂t

dt

Here we have used the definition of the generalized momentum in the third step, and
the Euler-Lagrange equation in the fourth step.

Since the two expressions for dH have to be identical, we obtain the following 2n+1
equation

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

,
∂L
∂t

= −∂H
∂t

These are Hamilton’s equations. Note that the first 2n, which in vector form read
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~̇q =
∂H
∂~p

, ~̇p = −∂H
∂~q

are the 2n first-order differential equations that replace the n second-order Euler-
Lagrange equations as the equations of motion . The latter equation implies that

dH
dt

=
∂H
∂qi

q̇i +
∂H
∂pi

ṗi +
∂H
∂t

=
∂H
∂t

= −∂L
∂t

where the second step follows from Hamilton’s equations of motion. Hence, if the
Lagrangian does not explicitly depend on time, then the Hamiltonian is a constant
of motion (i.e., as the system evolves in phase-space, its value remains fixed)2

It can be proven that3 if the equations of transformation that define the generalized
coordinates, ~rm = ~rm(q1, q2, ..., qn, t), do not depend explicitly on time, and the
potential V is independent of velocity (∂V/∂~̇rm = 0, i.e., no friction), then the
Hamiltonian is equal to the total energy, i.e.,

H = K +W = E

Note, though, that this is not to be considered the definition of the Hamiltonian,
which instead is given by the Legendre transformation. Nevertheless, since we are
mainly concerned with conservative forces, for which ∂V/∂~̇rm = 0, and with systems
without any holonomic constraints (such that n = 3N), in almost all cases considered
in these lecture notes the Hamiltonian will indeed be equal to the total energy

If the potential is also time-independent, then time does not explicitly appear in the
Lagrangian and we thus have that

dE

dt
=

dH
dt

=
∂H
∂t

= −∂L
∂t

= 0

i.e., the total energy of the system is conserved.

2For a more detailed discussion regarding the physical interpretation of the total and partial
derivatives, see Part III.

3See for example the book ”Classical Mechanics” by John R. Taylor
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CHAPTER 4

Hamilton-Jacobi Theory

As we have seen in the previous chapter, in Hamiltonian dynamics we describe a
system’s state using the phase-space coordinates qi and pi, which are the generalized
coordinates and the generalized momenta, respectively. The latter are conjugate to
the generalized velocities q̇i, and are therefore also known as the conjugate momenta.
The set (~q, ~p) are called canonical variables of the system. They play a special role
in dynamics, and it is because of this that the Hamiltonian formalism of dynamics
is so powerful.

We start this chapter on Hamilton-Jacobi theory by introducing a few key concepts
in dynamics, namely Poisson brackets and canonical transformations.

Poisson brackets:

Given two functions A(qi, pi) and B(qi, pi) of the canonical phase-space coordinates
qi and pi, the Poisson bracket of A and B is defined as

{A,B} =
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

where the Einstein summation convention has been implied. In vector form, we have

{A,B} =
∂A

∂~q
· ∂B
∂~p

− ∂A

∂~p
· ∂B
∂~q

Note that some textbooks use square-brackets to indicate Poisson brackets, i.e.,
[A,B]. Throughout these lecture notes we adopt the curly-bracket notation.

It is straightforward to verify the following properties of Poisson brackets:

{A,B} = −{B,A}
{αA+ βB,C} = α{A,C}+ β{B,C} ∀α, β ∈ R

{AB,C} = A {B,C}+B {A,C}
{{A,B}, C}+ {{B,C}, A}+ {{C,A}, B} = 0

The first of these rules implies that {A,A} = 0. The second expresses the linearity
of the Poisson bracket, and the fourth rule is known as the Jacobi identity.
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Suppose we choose functions A and B to be the canonical variables ~q and ~p them-
selves. Then, one infers that they obey

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij

These relations are known as the canonical commutation relations. Any set
( ~Q, ~P ) of canonical variables has to obey these commutation relations, otherwise
they are not a canonical set.

Poisson brackets are an extremely powerful construct in classical mechanics and be-
yond. First of all, they played an important role in carrying out the original transition
from classical to quantum mechanics in that there is a simple correspondence princi-
ple according to which the classical Poisson brackets is to be replaced by a suitably
defined commutator of the corresponding quantum operators. Furthermore, we
have that, for any function f(~q, ~p, t),

df

dt
=

∂f

∂qi
q̇i +

∂f

∂pi
ṗi +

∂f

∂t

=
∂f

∂qi

∂H
∂pi

− ∂f

∂pi

∂H
∂qi

+
∂f

∂t

= {f,H}+ ∂f

∂t

This is sometimes called Poisson’s equation of motion. It shows that the time-
evolution of any dynamical variable is governed by the Hamiltonian through the
Poisson bracket of the variable with the Hamiltonian. It contains Hamilton’s equa-
tions of motion as a special case; if we substitute for f one of the canonical variables
then we obtain

q̇i = {qi,H} , ṗi = {pi,H}

By introducing the 2n-dimensional vector ~w = (~q, ~p), the Hamiltonian equations

of motion can be written as

~̇w = {~w,H}
This elegant, super-compact form for the Hamiltonian equations of motion make it

clear that the generalized coordinates and generalized momenta can be treated on
equal footing.

Another example is to consider as f the Hamiltonian itself. Using that the Poisson
bracket of a function with itself vanishes (we say that any function Poisson commutes
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with itself), we obtain that
dH
dt

=
∂H
∂t

Hence, as we have already seen in Chapter 3, the Hamilonian will be conserved unless
it has an explicit time dependence.

More generally, if we can find a function f(~q, ~p) without any explicit time dependence
for which the Poisson bracket with the Hamiltonian vanishes, i.e..

{f,H} = 0 ,

then f is a constant of motion (i.e., df/dt = 0). We say that f Poisson com-
mutes with the Hamiltonian. If f does have an explicit time dependence, i.e.,
f = f(~q, ~p, t), then the condition for f to be a constant of motion becomes

{H, f} =
∂f

∂t

If f and g are constants of motion, then from the Jacobi identity we see that

{{f, g},H} = {f, {g,H}}+ {{f,H}, g} = 0

which means that {f, g} is also a constant of motion (Poisson theorem). We say
that the constants of motion form a closed algebra under the Poisson bracket.

Finally, a constant of motion that does not have an explicit time dependence, and
which thus Poisson commutes with the Hamiltonian, is called an integral of motion.
Two integrals of motions that Poisson commute with each other are said to be in
involution. As we will see later, such integrals of motion are extremely important
for understanding the orbital structure of galaxies.

Canonical Transformations:

Canonical transformations are transformations of the form (~q, ~p) → ( ~Q, ~P ) between
two canonical coordinate systems that leaves the equations of motion invariant.

In order to reveal the form of these transformations, we first demonstrate the non-
uniqueness of the Lagrangian.

Consider a transformation

L → L′ = L+
dF

dt
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where F = F (~q, t). Under this transformation the action integral becomes

S ′ =

t2∫

t1

L′ dt =

t2∫

t1

Ldt+
t2∫

t1

dF

dt
dt = S + F (t2)− F (t1)

The equations of motion derive from δS = 0 (i.e., the least action principle).
Here the variations δS are such that the path between q1 = q(t1) and q2(t2) is
varied, while the beginning and end points are kept fixed (i.e., δF (t2) = δF (t1) = 0).
Hence, we have that δS ′ = δS, which also implies that the equations of motion are
kept invariant.

Now consider our transformation (~q, ~p) → ( ~Q, ~P ) with corresponding Lagrangians

L(~q, ~̇q, t) and L′( ~Q, ~̇Q, t). We start by writing the Lagrangians in terms of the corre-
sponding Hamiltonians (see Chapter 3):

L(~q, ~p, t) = ~p · ~̇q −H(~q, ~p, t)

L′( ~Q, ~P , t) = ~P · ~̇Q−H′( ~Q, ~P , t)

In order for the equations of motion to be invariant, we have the requirement that

L(~q, ~p, t) = L′( ~Q, ~P , t) +
dF

dt

⇔ dF

dt
= ~p · ~̇q −H(~q, ~p, t)−

[
~P · ~̇Q−H′( ~Q, ~P , t)

]

⇔ dF = pidqi − PidQi + (H′ −H)dt

If we take F = F (~q, ~Q, t) then we also have that

dF =
∂F

∂qi
dqi +

∂F

∂Qi
dQi +

∂F

∂t
dt

Equating the two expressions for the differential dF yields the transformation rules:

pi =
∂F

∂qi
, Pi = − ∂F

∂Qi
, H′ = H +

∂F

∂t

The function F (~q, ~Q, t) is called the generating function of the canonical trans-

formation (~q, ~p) → ( ~Q, ~P ). For simplicity, in what follows we only consider gener-
ating functions that do not explicitly depend on time, such that H′ = H.

In order to transform (~q, ~p) → ( ~Q, ~P ) one proceeds as follows:
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• Find a function F (~q, ~Q) so that pi = ∂F/∂qi. Inversion of this equation yields
Qi(qj , pj).

• Substitute Qi(qj , pj) in the equation Pi = ∂F/∂Qi to obtain Pi(qj, pj).

Example: consider the generating function F (~q, ~Q) = qiQi. According to the trans-
formation rules we have that

pi =
∂F

∂qi
= Qi , Pi = − ∂F

∂Qi
= −qi

We thus have that Qi = pi and Pi = −qi: the canonical transformation has changed
the roles of the generalized coordinates and the generalized momenta, eventhough
the equations of motion have remained invariant! This demonstrates that Hamil-
ton’s original goal, to devise a dynamics in which all state variables are on a more
symmetric footing, has indeed been achieved: there is no special status to either
generalized coordinates or their conjugate momenta!

The example discussed above considers a generating function of the form F =
F (~q, ~Q), i.e., one that depends on both the old and new generalized coordinates.
But this is not the only choice for a generating function for a canonical transforma-
tion. Any function of mixed (old and new) variables, whether generalized coordinates
or generalized momenta will work, although each has its own transformation rules,
as summarized below:

F1(~q, ~Q): pi = +∂F1/∂qi Pi = −∂F1/∂Qi

F2(~q, ~P ): pi = +∂F2/∂qi Qi = +∂F2/∂Pi

F3(~p, ~Q): qi = −∂F3/∂pi Pi = −∂F3/∂Qi

F4(~p, ~P ): qi = −∂F4/∂pi Qi = +∂F4/∂Pi

Properties of the four basic canonical transformations

An important property of canonical transformations is that they leave Poisson
brackets invariant. In other words,

{A,B}~q,~p = {A,B} ~Q, ~P
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where the index indicates the canonical coordinate system used. And since Hamil-
ton’s equations of motion can be expressed in terms of Poisson brackets, we thus see
that

Hamilton’s equations of motion are invariant
under canonical transformations

Summary: In Newtonian mechanics, the 3N equations of motion (which are second-
order differential equations) plus k holonomic equations depend on which coordinate
system one adopts. In Lagrangian dynamics, the n = 3N − k Euler-Lagrange equa-
tions (which are also second-order differential equations) are invariant to changes in

the generalized coordinate system (i.e., are invariant to transformations ~q → ~Q). In
Hamiltonian dynamics, the 2n equations of motion (which are first-order differential

equations) are invariant to canonical transformations (~q, ~p) → ( ~Q, ~P ).

The Hamilton-Jacobi equation:

We have all experienced the difficulty of solving problems in physics using the ‘wrong’
(as in ‘not-optimal’) coordinate system. For example, working in Cartesian coordi-
nates if the problem really requires, say, sphericall coordinates. Although it is always
possible to find the correct answer, with enough will-power, you end up making your
life unnecessarily difficult. The ability to change coordinate systems can drastically
simplify a problem. An obvious question that comes to mind is whether there is
a particular canonical transformation (~q, ~p) → ( ~Q, ~P ) for which the solution to the
equations of motion become extremely simple. As we will see, under the right con-
ditions the answer is a solid ‘Yes’.

Suppose we can find a canonical transformation (~q, ~p) → ( ~Q, ~P ) for which the new

Hamiltonian H′( ~Q, ~P ) = H′(~P ). In other words, for which all the new generalized
coordinates are cyclic (or ignorable). The equations of motion now become

Ṗi = −∂H
′

∂Qi

= 0 , Q̇i =
∂H′

∂Pi

= constant

Hence, the new generalized momenta Pi are integrals of motion, and since ∂H′/∂Pi

only depends on ~P , it has no time dependence either. Hence, the solution for the
dynamics is trivially given by

Qi(t) = ωi t +Qi(0) , Pi(t) = Pi(0)

While the generalized momenta are conserved, the generalized coordinates increase
linearly with time at a rate ωi ≡ ∂H′/∂Pi. Clearly a beautifully simple and elegant
solution (the topology of which we will discuss a bit later).
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The key question now becomes how to find the generator of the canonical trans-
formation (~q, ~p) → ( ~Q, ~P ) which leads to only cyclic Qi. In what follows we focus
exclusively on conservative systems for which ∂H/∂t = 0 (i.e., no explicit time de-
pendence for the Hamiltonian), and we assume that H = E. We will consider a

generator of the second kind F2(~q, ~P , t) for which the transformation rules are

pi =
∂F2

∂qi
, Qi =

∂F2

∂Pi
, H′ = H +

∂F2

∂t

Let’s consider a generator that does not explicitely depend on time, i.e., ∂F2/∂t = 0.

Then H(~q, ~p) = H′(~P ) = E. If we now substitute ∂F2/∂qi for pi in the original
Hamiltian we obtain

H
(
qi,
∂F2

∂qi

)
= E

This is the (restricted) Hamilton-Jacobi equation. It is a partial differential
equation (PDE) of n variables, qi. The solution for the generating function is called
Hamilton’s characteristic function and is typically indicated by the symbol
W (~q, ~P ), rather than F2(~q, ~P ).

Hence, all we got to do is solve the Hamilton-Jacobi equation for Hamilton’s char-
acteristic function, use that to derive the new canonical coordinates ~Q and ~P , and
our dynamical system is solved trivially. Sounds easy... However, solving a PDE is
extremely difficult, and the Hamilton-Jacobi equation is no exception. But the real
strength of the Hamilton-Jacobi equation is not in providing yet another method of
solving the equations of motion; rather, its main utility lies in the structure it reveals
about classical dynamics. Before we adress this, though, it is important to point out
one condition under which solving the Hamilton-Jacobi equation is drastically sim-
plified, namely if the generator, Hamilton’s characteristic function, is separable,
i.e.,

W (~q, ~P ) =
n∑

i=1

Wi(qi, ~P )

Under this condition the n-dimensional PDE reduces to a set of n first-order ODEs,
which are easily solved by quadrature.

If the Hamilton-Jacobi equation is separable,
we say that the Hamiltonian is integrable
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Note than an integrable Hamiltonian with n degrees of freedom thus has n in-
dependent integrals of motion (i.e., in our example these are the n generalized
momenta Pi). Integrals of motion are independent if they are in involution, i.e.,

{Pi, Pj} = 0. Note that this condition is automatically satisfied because ~P is canon-
ical and therefore satisfies the canonical commutation relations. This indicates
an important aspect of integrable systems:

Liouville’ Theorem of Integrable Systems: If a system of n de-
grees of freedom has n mutually Poisson commuting integrals of motion
I1, I2, ..., In (i.e., n integrals of motion in involution), then the system is
integrable.

The requirement that the integrals of motion Poisson commmute, i.e., {Ii, Ij} = 0, is
simply another way of saying that we can view Ii as canonical momentum variables.

As you might expect, integrable Hamiltonians are rare (and precious). Most systems,
especially those encountered in astrophysics, are not-integrable (chaotic systems no-
tably among them). In a non-integrable system, there are no n integrals of motion in
involution, and their is no solution for the Hamilton-Jacobi equation. Note, though,
that this refers to a global solution. In almost all cases in which the Hamiltonian is
not integrable there are large parts of phase-space in which you can locally find a
transformation for which the equations of motion take on the simple form depicted
above.

Recommended exercise: Students are strongly encouraged, at this point, to study
Worksheet 2, which examines the integrability of 10 Hamiltonian systems.

Integrability of galaxies:

We end this chapter by discussing the integrability of galaxies, which are N -body
systems in which all forces (gravity) are central. As discussed in Worksheet 2, an
N -body system in which all forces are central (i.e., gravity) is not integrable for
N > 2. This begs the question: does that mean that every galaxy is not integrable?

At first sight, the answer would have to be a strong yes, since integrability requires
that the galaxy must have 3N integrals of motion in involution. However, in general
an N -body system only has 10 integrals of motion (the so-called Galilean invariants;
see Worksheet 2), and those are not even in involution. However, if N is large the
system becomes collisionless. This means that the potential V (~q1, ~q2, ..., ~qN) can be
written as

V (~q1, ~q2, ..., ~qN) =
∑

i

Vext(~qi)
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i.e., we consider the force on particle i due to the other N − 1 particles as if it arises
from a (time-independent), smooth, external potential. Hence, the Hamiltonian is

H(~q1, ~q2, ..., ~qN , ~p1, ~p2, ..., ~pN) =

N∑

i=1

[
~p2i
2m

+ Vext(~qi)

]
=

N∑

i=1

Hi(~qi, ~pi)

If the system as a whole has spherical symmetry, such that Vext(~q) = Vext(r), then
this Hamiltonian is simply the sum of n independent central force problems, each of
which is integrable (see example 7 in Worksheet 2).

Hence, a gravitational, spherical N -body system is integrable as long as N is suffi-
ciently large such that the system is, to good approximation, collisionless. So what
are the 3N integrals of motion in involution for such a system? Well, each star
conserves energy, and angular momentum and thus the 3N integrals of motion in
involution are Ei, Lz,i and ~L

2
i for i = 1, ..., N .

If Vext(~q) = Vext(R, z), such that we have axisymmetry, rather than spherical symme-
try, the situation changes. Since θ is a cyclic variable, we have a conserved quantity
(in addition to energy), which is Lz. So each star has two integrals of motion in
involution; E and Lz. This is not sufficient to guarantee integrability, and in general
an axisymmetric galaxy is indeed not integrable. However, under certain conditions
there can be a third integral of motion I3, which is in involution with E and Lz,
and the system can thus be integrable. More general, though, only certain parts of
phase-space admit a third integral, and the system consists of both regular orbits
(those that admit three integrals of motion in involution) and chaotic, or irregular
orbits (those that only have E and Lz as integrals of motion).
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CHAPTER 5

Action-Angle Variables

Consider an integrable Hamiltonian with n degrees of freedom and with (I1, I2, ..., In)
a set of n integrals of motion in involution. Now define Ia = 1

2
(I1 + I2) and Ib =

1
2
(I1 − I2). By construction, Ia and Ib are also integrals of motion, and it is easy to

see that {Ia, Ib} = 0. Hence, the set (Ia, Ib, I3, ..., In) is also a set of n integrals of
motion in involution. In other words, there is no unique set of canonical variables
that solve the Hamilton-Jacobi equations. This begs the question, which one is the
most optimal set? The answer to that question is the set of action-angle variables.

Before we go and discuss this special, powerful set of canonical variables, let’s take
a closer look at the trivial solution of an integrable Hamiltonian system:

Qi(t) = ωit +Qi(0) , Pi(t) = Pi(0)

Hence, while the generalized momentum is an integral of motion, the generalized co-
ordinates grow linearly in time with a rate given by ωi = ∂H′/∂Pi. At first sight this
seems weird, as it seems to imply that the system must somehow expand indefinitely,
while yet conserving the total energy. The solution is that, in almost all integrable
Hamiltonians of interest, the motions Qi(t) are all periodic (i.e., ‘cyclic’), and that
ωi indicates the corresponding frequency (which is why we picked this symbol). We
distinguish two different kinds of ‘periodic motion’, which is best illustrated using a
simple pendulum (see Fig. 1).

• Libration: at low energy, the pendulum swings back and forth between states
in which the generalized momentum p corresponding to the generalized coordi-
nate q (i.e., the angle θ) vanishes. The corresponding trajectory in (q, p)-phase-
space is closed (i.e., in the case of the pendulum in question, it is an ellipse),
such that both q and p evolve periodically and with the same frequency, i.e.,
the state returns to the same position in phase-space at the end of each period.
In the case depicted in Fig. 1, q is an angle that is restricted to a range smaller
than [0, 2π].

• Rotation: at high enough energy, the pendulum continuously rotates, and the
momentum never vanishes. The momentum now is some periodic function of
q, which itself evolves without bounds. Although the trajectory in phase-space
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Figure 1: Left-hand panel (a) shows a pendulum; an integrable Hamiltonian system of one
degree of freedom, the angle q. The middle planel (b) shows possible trajectories in (q, p)
phase-space. For sufficiently low energy the solutions are librations, indicated by elliptical
trajectories. After energy increases, and one crosses the separatrix, indicated by the
black dotted ellipse, one enters the part of phase-space in which the pendulum undergoes
rotations (note how these trajectoriess never cross the p = 0 line). Finally, the right-
hand panel shows trajectories in the phase-space (Q,P ), which are the canonical variables
obtained from (q, p) using a transformation with Hamilton’s characteristic function. Note
how in this new coordinate system the generalized momenta P are all integrals of motion.
Both q and Q range from 0 to 2π, and one should think of phase-space as a cylinder that
is cut open along its axis and rolled out.

is not closed, each period the evolution of the system is the same, leading to a
trajectory that repeats itself with a translation. In the case depicted in Fig. 1,
q is an angle that continues to grow, but modulo 2π.

The areas in phase-space where the phase-space trajectories correspond to librations
and rotations are separated by a separatrix (dotted ellipse in the middle panel of
Fig. 1). The trajectory that traces out the separatrix corresponds to the case where
the pendulum has just the right amount of energy to make it to the top, where it
ends up with zero momentum.

We can treat integrable Hamiltonian systems with the action-angle formalism if
each pair (qi, pi) has either a librating or a rotating motion. The actions Ii take the
role of the generalized momenta and are defined by

Ii =

∮
pi dqi

NOTE: no Einstein summation convention here; pidqi is not a sum over all i, but
rather the product for i only.
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The ‘angles’ θi are the corresponding generalized coordinates, and are proper angles.
We’ll now demonstrate what is so special about (~θ, ~I) as a set of canonical variables.

If the Hamiltonian is integrable then Hamilton’s characteristic function, which is
a generating function for a type-2 canonical transformation, meaning that W is of
type F2(~q, ~P ), is separable, such that

W (~q, ~P ) =
∑

i

Wi(qi, P1, P2, ..., Pn) =
∑

i

Wi(qi, ~P )

According to the transformation rules for a type-2 canonical transformation we have
that

pi =
∂W

∂qi
=
∂Wi

∂qi
= pi(qi, ~P )

Hence, the action

Ii =

∮
pi dqi =

∮
pi(qi, ~P ) dqi = Ii(~P )

where the latter follows from the fact that we are integrating over the periodic motion
in qi. Thus, we see that the actions are functions of the generalized momenta, Pi,
only, for which the corresponding generalized coordinates are cyclic. Inversly, we
have that Pi = Pi(~I). And since Pi are integrals of motion, so are the Ii; after all

dI

dt
=
∑

i

∂I

∂Pi
Ṗi = 0

since Ṗi = 0. And since H = H(~P ), we thus have that H = H(~I), which indicates
that the angles, θi (the generalized coordinates corresponding to the actions) are all
cyclic!

Using the transformation rules for type-2 canonical transformations we have that

θi =
∂W

∂Ii
=
∑

i

∂Wi

∂Ii
= θi(q1, ..., qn, I1, ..., In)

Similarly, from Hamilton’s equations of motion we infer that

ωi ≡ θ̇i =
∂H
∂Ii

= ωi(I1, ..., In)

And since the actions are integral of motion, we thus see that the ωi are constants as
well (independent of time)! Hence, we have the standard solution for an integrable
Hamiltonian;

θi(t) = ωit + θi(0) , Ii(t) = Ii(0)
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Figure 2: Comparison of phase-space trajectories on 2-tori. The trajectory traced out on
the 2-torus in (a) corresponds to a resonance, with ω1/ω2 = 3, causing the trajectory to
close itself after three cycles in θ1 (corresponding to one cycle in θ2). The trajectory on the
2-torus in (b) is non-resonant (ω1 and ω2 are incommensurable) and will eventually cover
the entire surface of the 2-torus. [from Masoliver & Ros, arXiv: 1012.4384]

So far, nothing special really, because the same holds for ( ~Q, ~P ). To see what makes
the action-angle variables so special, we now compute by how much the angle θi
changes during one period of its periodic motion:

∆θi =

∮
∂θi
∂qi

dqi =

∮
∂2W

∂Ii ∂qi
dqi =

∂

∂Ii

∮
∂W

∂qi
dqi =

∂

∂Ii

∮
pi dqi =

∂Ii
∂Ii

= 1

Here we have used that θi = ∂W/∂Ii and that Ii is a constant and can thus be taken
out of the integral. Since θi(t) = ωit + θi(0) we also have that ∆θi = ωi T , where T
is the period of the periodic motion in θi. Combining the two expressions for ∆θ we
see that

ωi = θ̇i =
1

T

Hence, the time-derivative of the angle-variable is the actual frequency of the motion
in the ‘direction’ associated with the ith degree of freedom. This characteristic is
unique to the action-angle variables, and is what makes them so powerful: The
action-angle formalism allows one to determine the frequencies of periodic motion
without having to calculate the exact trajectories for the motion. The ‘recipe’ for
doing so is as follows:

• Calculate Ii =
∮
pidqi

• Express the original Hamiltonian as a function of the actions; H = H(I1, ..., In)

• Compute the frequencies using ωi = ∂H/∂Ii
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Figure 3: The nesting of 2-tori for several values of the actions (J1, J2). This is only an
illustration of how 2-tori foliate phase-space; in reality the foliation is in 4-dimensional
phase-space. [from Masoliver & Ros, arXiv: 1012.4384]

The action-angle variables also give a powerful insight into the structure of integrable
Hamiltonians. If a Hamiltonian is integrable, and all its motion is periodic, then there
exists a set of action-angle variables. Holding the actions ~I = (I1, ..., In) fixed, the
corresponding angles trace out a n-torus in phase-space. To develop a feeling for
what an n-torus is, start by considering a system with n = 1 degree of freedom (i.e.,
the pendulum of Fig. 1). It’s motion, in action-angle coordinates (not the angle q
depicted in the left-hand panel of Fig. 1) is such that θ varies periodically from 0 to
2π (see right-hand panel of Fig. 1). Hence, in action-angle phase-space it traces out
a circle, i.e., the particle traces out a 1D topology in 2D phase-space.

If n = 2, then there are two angles that periodically trace out the range from 0 to 2π.
The topology that this corresponds to is a 2-torus, which is equivalent to a donut
(see Fig. 2). The actions I1 and I2, in this case, quantify the surface of this donut,
and the system moves over the surface of this donut; one motion is the periodic
motion with which it circulates the donut-hole (motion along angle θ2 in Fig. 2), the
other is the periodic motion with which it circulates the hull of the donut (motion
along angle θ1 in Fig. 2). If the two corresponding frequencies are incommensurable,
then over time the phase-space trajectory of the particle will densely cover the entire
surface of the donut. Hence, the particle is restricted to move on a 2D surface in 4D
phase-space. If the frequencies are commensurable (i.e., ω1/ω2 is rational), then the
trajectory is closed, and the phase-space trajectory is a 1D manifold (a line) traced
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Figure 4: Trajectory of a particle is
restricted to intersection of surfaces
of constant H and constant I. These
planes represent 5D-manifolds in 6D
phase-space, with the intersection be-
ing a 4D-manifold. With 3 integrals
of motion (in involution), the parti-
cle trajectory is restricted to a 3D-
manifold in 6D phase-space.

out on the surface of the 2-torus.

In general, if there are n degrees of freedom, then there are n angles that trace out
the range from 0 to 2π, and the topology is that of an n-torus. The surface of the n-
dimensional torus is characterized by the n corresponding actions. Unless 2 or more
of the frequencies ωi are commensurable, the system evolves along an n-dimensional
surface in 2n-dimensional phase-space.

The phase-space trajectories in an integrable Hamiltonian system of
n-degrees of freedom are restricted to an n-dimensional manifold (an
n-torus) in 2n dimensional phase-space. All of accessible phase-space is
covered, we say foliated, with a nesting of n-tori (see Fig. 3).

Fig. 4 shows a simple, but instructive, geometric interpretation of this result. Let
I = I(~q, ~p) be an integral of motion. Then, the vector (~̇q, ~̇p) = (∂H/∂~p,−∂H/∂~q) is
tangent to the surface I(~q, ~p) =constant. This is easy to see from the fact that

∇I · (~̇q, ~̇p) =

(
∂I

∂~q
,
∂I

∂~p

)
· (~̇q, ~̇p)

=
∂I

∂qi

∂H
∂pi

− ∂I

∂pi

∂H
∂qi

= {I,H} = 0

We also have that (~̇q, ~̇p) is tangent to the surface H(~q, ~p) =constant, because

∇H · (~̇q, ~̇p) =
(
∂H
∂~q

,
∂H
∂~p

)
· (~̇q, ~̇p) = −~̇p · ~̇q + ~̇q · ~̇p = 0

54



Hence, the particle’s trajectory has to move on the intersection of the two surfaces,
as depicted in Fig. 4:

For each integral of motion (in involution), the dimensionality of the
manifold traced out by the particle is reduced by one.
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Part II: Kinetic Theory

Kinetic theory is the body of theory which explains the physical properties of matter
in terms of the motions of its constituent particles. The various ‘fluids’ encountered in
this course only differ in how their constituent particles interact, and these differences
give rise to a rich variety of physics. Hence, understanding kinetic theory is essential
for developing an understanding of how a galaxy differs from the air that you breathe,
or from the plasma that makes up the Sun. The following chapters develop the kinetic
theory used to describe all these various fluids from the ground up, starting from
Hamiltonian dynamics.

The material covered in this part is described in more detail in the following excellent
textbooks:

- The Physics of Fluids and Plasmas by A. Choudhuri
- Introduction to Plasma Theory by D.R. Nicholson
- Statistical Mechanics by K. Huang
- Modern Classical Physics by K.Thorne & R. Blandford
- Galactic Dynamics by J. Binney & S. Tremaine
- Dynamics and Evolution of Galactic Nuclei by D. Merritt
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CHAPTER 6

From Liouville to Boltzmann

We start this chapter by reminding ourselves of a few fundamental concepts in dy-
namics.

Degrees of freedom: The minimum number of independent coordinates needed to
specify the position and configuration of a system in configuration space. In what
follows we use ndof to indicate the number of degrees of freedom. Throughout we
will consider 3D systems of N particles without any holonomic constraints such
that ndof = 3N .

State of a system: the information needed to uniquely quantify the system at a
moment in time. For an N -body system this is typically the positions and velocities
(or momenta) of all the particles, in which case the state-vector has dimensionality
2ndof = 6N . Throughout we shall assume that all particles are identical without any
internal properies other than mass. Such particles are sometimes calledmonoatoms,
and can be treated as point particles.

Phase-Space: The phase-space of a dynamical system is a space in which all possible
states of a system are represented, with each possible state corresponding to one
unique point in that phase-space. For our monoatoms, the dimensionality of phase-
space is 2ndof = 6N .

Caution: I will use ‘phase-space’ to refer to both this 2ndof -dimensional space,
in which each state is associated with a point in that space, as well as to the 6-
dimensional space (~x,~v) in which each individual particle is associated with a point
in that space. In order to avoid confusion, in this chapter I will refer to the former
as Γ-space, and the latter as µ-space.

Canonical Coordinates: in classical mechanics, canonical coordinates are coordi-
nates qi and pi in phase-space that are used in the Hamiltonian formalism and that
satisfy the canonical commutation relations:

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij
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Let N be the number of constituent particles in our fluid. Typically, N will be a
large number. How do you (classically) describe such a system? The microstate of
a system composed of N monoatoms is completely described by

~Γ = (~q1, ~q2, ..., ~qN , ~p1, ~p2, ..., ~pN)

which corresponds to a single point in our 6N -dimensional phase-space (Γ-space). As
already discussed in Part I, the dynamics of our fluid of N monoatoms is described
by its Hamiltonian

H(~qi, ~pi, t) ≡ H(~q1, ~q2, ..., ~qN , ~p1, ~p2, ..., ~pN , t)

and the corresponding equations of motion are:

~̇qi =
∂H
∂~pi

; ~̇pi = −∂H
∂~qi

In what follows we will often adopt a shorthand notation, which also is more ‘sym-
metric’. We introduce the 6D vector ~w ≡ (~q, ~p), i.e., the 6D array one obtains
when combining the 3 components of ~q with the 3 components of ~p. Using Poisson
brackets, we can then write the Hamiltonian equations of motion as

~̇wi = {~wi,H}

Thus, given ~wi for all i = 1, 2, ..., N , at any given time t0, one can compute the
Hamiltonian and solve for the equations of motion to obtain ~wi(t). This specifies

a unique trajectory ~Γ(t) in this phase-space (see panel [a] of Fig. 5). Note that

no two trajectories ~Γ1(t) and ~Γ2(t) are allowed to cross each other. If that were
the case, it would mean that the same initial state can evolve differently, which
would be a violation of the deterministic character of classical physics. The
Hamiltonian formalism described above basically is a complete treatment of fluid
dynamics. In practice, though, it is utterly useless, simply because N is HUGE,
making it impossible to specify the complete set of initial conditions. We neither
have (nor want) the detailed information that is required to specify a microstate.
We are only interested in the average behavior of the macroscopic properties of the
system, such as density, temperature, pressure, etc. With each such macrostate
corresponds a huge number of microstates, called a statistical ensemble.

The ensemble is described statistically by the N-body distribution function
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Figure 5: Illustration of evolution in Γ-space. The x- and y-axes represent the 3N -
dimensional position-vector and momentum-vector, respectively. Panel (a) shows the evo-
lution of a state (indicated by the red dot). As time goes on, the potitions and momentum of
all the particles change (according to the Hamiltonian equations of motion), and the state
moves around in Γ-space. Panel (b) shows the evolution of an ensemble of microstates
(called a macrostate). As neighboring states evolve slightly differently, the volume in Γ-
space occupied by the original microstates (the red, oval region) is stretched and sheared into
a ‘spagetti-like’ feature. According to Liouville’s theorem, the volume of this spagetti-like
feature is identical to that of the original macrostate (i.e., the flow in Γ-space is incom-
pressible). Note also, that two trajectories in Γ-space can NEVER cross each other.

f (N)(~wi) ≡ f (N)(~w1, ~w2, ..., ~wN) = f (N)(~q1, ~q2, ..., ~qN , ~p1, ~p2, ..., ~pN)

which expresses the ensemble’s probability distribution, i.e., f (N)(~wi) dV is the prob-

ability that the actual microstate is given by ~Γ(~qi, ~pi), where dV =
∏N

i=1 d
6 ~wi =∏N

i=1 d
3~qi d

3~pi. This implies the following normalization condition

∫
dV f (N)(~wi) = 1

In our statistical approach, we seek to describe the evolution of the N -body distribu-
tion function, f (N)(~wi, t), rather than that of a particular microstate, which instead

is given by ~Γ(~wi, t). Since probability is locally conserved, it must obey a continuity
equation; any change of probability in one part of phase-space must be compensated
by a flow of probability into or out of neighboring regions. The continuity equation
of a (continuum) density field, ρ(~x), is given by
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∂ρ

∂t
+∇ · (ρ~v) = 0

which expresses that the local change in the mass enclosed in some volume is balanced
by the divergence of the flow out of that volume. In the case of our probability
distribution f (N) we have that ∇ is in 6N -dimensional phase-space, and includes
∂/∂~qi and ∂/∂~pi, i.e.,

∇ =
∂

∂ ~wi
=

(
∂

∂~xi
,
∂

∂~pi

)
=

(
∂

∂~x1
,
∂

∂~x2,
...,

∂

∂~xN
,
∂

∂~p1
,
∂

∂~p2,
...,

∂

∂~pN

)

Similarly, the ‘velocity vector’ in our 6N -dimensional Γ-space is given by

~̇w ≡ (~̇qi, ~̇pi) = (~̇q1, ~̇q2, ..., ~̇qN , ~̇p1, ~̇p2, ..., ~̇pN)

Hence, the continuity equation for f (N), which is known as the Liouville equation,
can be written as

∂f (N)

∂t
+∇ · (f (N) ~̇w) = 0

Using the fact that the gradient of the product of a vector and a scalar can be written
as the sum of the scalar times the divergence of the vector, plus the dot-product of
the vector and the gradient of the scalar (see Appendix A), we have that

∇ · (f (N) ~̇w) = f (N) ∇ · ~̇w + ~̇w · ∇f (N)

If we write out the divergence of ~̇w as

∇ · ~̇w =
N∑

i=1

[
∂~̇qi
∂~qi

+
∂~̇pi
∂~pi

]

and use the Hamiltonian equations of motion to write ~̇qi and ~̇pi as gradients of the
Hamiltonian, we find that

∇ · ~̇w =
N∑

i=1

[
∂

∂~qi

(
∂H
∂~pi

)
− ∂

∂~pi

(
∂H
∂~qi

)]
=

N∑

i=1

[
∂2H
∂~qi ∂~pi

− ∂2H
∂~pi ∂~qi

]
= 0

Thus, we obtain the important result that

In a Hamiltonian system the flow in Γ-space is incompressible
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This is generally known as the Liouville Theorem. It implies that the volume in
Γ-space occupied by a macrostate does NOT change under Hamiltonian evolution.
Although the microstates that make up the macrostate can disperse, the volume
they occupy stays connected and constant; it typically will change shape, but its
total volume remains fixed (see panel [b] of Fig. 5).

Using this result, we can write the Liouville equation in any of the following forms:

∂f (N)

∂t
+ ~̇w · ∇f (N) = 0

∂f (N)

∂t
+

N∑

i=1

(
~̇qi ·

∂f (N)

∂~qi
+ ~̇pi ·

∂f (N)

∂~pi

)
= 0

df (N)

dt
= 0

∂f (N)

∂t
+ {fN ,H} = 0

The second expression follows from the first by simply writing out the terms of the
divergence. The third expression follows from the second one upon realizing that
f (N) = f (N)(t, ~q1, ~q2, ..., ~q3, ~p1, ~p2, ..., ~pN) and using the fact that for a function f(x, y)
the infinitessimal df = (∂f/∂x) dx + (∂f/∂y) dy. Finally, the fourth expression
follows from the second upon using the Hamiltonian equations of motion and the
expression for the Poisson brackets, and will be used abundantly below.

Rather than describing the evolution of a single microstate, ~Γ(t), the Liouville equa-
tion describes the evolution of an ensemble of microstates (a macrostate). If anything,
this makes computations even harder; for starters, the N -point distribution function
f (N) is a function of 6N variables, which is utterly unmanageable. However, the
Liouville equation is an important, powerful starting point for the development of a
macroscopic description of the dynamics.

In particular, we seek to describe the evolution of the phase-space distribution func-
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tion (DF)

f(~q, ~p) =
d6N

d3~q d3~p

which describes the density of particles in 6D phase-space (~q, ~p). In what follows,
we shall refer to this 6-dimensional phase-space as µ-space, to distinguish it from
the 6N-dimensional Γ-space. And we shall refer to the above DF as the 1-point
DF, f (1), in order to distinguish it from the N -point DF, f (N), which appears in the
Liouville equation. Whereas the latter describes the ensemble density of micro-states
in Γ-space, the former describes the density of particles in µ-space.

Kinetic Theory: One can derive an equation for the time-evolution of the 1-point
DF, starting from the Liouville equation. First we make the assumption that all par-
ticles are (statistically) identical. This implies that f (N) is a symmetric function
of ~wi, such that

f (N)(..., ~wi, ..., ~wj, ...) = f (N)(..., ~wj , ..., ~wi, ...) ∀(i, j)
In words; if you flip the indices of any two particles, nothing changes. This allows
us to derive an equation describing the evolution of the 1-point distribution function
f (1)(~w), as follows.

We first define the reduced or k-particle DF, which is obtained by integrating the
N -body DF, f (N), over N − k six-vectors ~wi. Since f

(N) is symmetric in ~wi, without
loss of generality we may choose the integration variables to be ~wk+1, ~wk+2, ..., ~wN :

f (k)(~w1, ~w2, ..., ~wk, t) ≡
N !

(N − k)!

∫ N∏

i=k+1

d6 ~wi f
(N)(~w1, ~w2, ..., ~wN , t)

where the choice of the prefactor will become clear in what follows.

In particular, the 1-particle distribution function is

f (1)(~w1, t) ≡ N

∫ N∏

i=2

d6 ~wi f
(N)(~w1, ~w2, ..., ~wN , t)

Because of the prefactor, we now have that
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∫
d6 ~w1 f

(1)(~w1, t) = N

∫ N∏

i=1

d6 ~wi f
(N)(~w1, ~w2, ..., ~wN , t) = N

where we have used the normalization condition of f (N). Hence, f (1)(~q, ~p, t) =
dN/d3~q d3~p is the number of particles in the phase-space volume d3~q d3~p centered
on (~q, ~p).

That f (1)(~w, t) is an important, relevant DF is evident from the following. Consider
an observable Q(~w) that involves only quantities that depend additively on the
phase-space coordinates of single, individual particles [i.e., Qensemble = Q(~w1) +
Q(~w2) + ... + Q(~wN)]. Examples are velocity, kinetic energy, or any other velocity
moment vk. The expectation value, 〈Q〉, can be written as

〈Q〉 =
∫

d6 ~w1...d
6 ~wNf

(N)(~w1, ~w2, ..., ~wN)

N∑

i=1

Qi

Since all particles are statistically identical, we can rewrite this as

〈Q〉 =
∫

d6 ~w1Q(~w1) f
(1)(~w1)

Hence, computing the expectation value for any observable Q(~w) only requires knowl-
edge of the 1-particle DF. And since all our macroscopic continuum properties of the
fluid (i.e., density, bulk velocity, and internal energy) depend additively on the phase-
space coordinates, the 1-particle DF suffices for a macroscopic description of the
fluid. Hence, our goal is to derive an evolution equation for f (1)(~q, ~p, t). We do so as
follows.

For the time evolution of each reduced DF we can write

∂f (k)

∂t
=

N !

(N − k)!

∫ N∏

i=k+1

d6 ~wi
∂f (N)

∂t
(~w1, ~w2, ..., ~wN)

=
N !

(N − k)!

∫ N∏

i=k+1

d6 ~wi {H, f (N)}
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where the first step simply follows from operating the time derivative on the defini-
tion of the reduced k-particle DF, and the second step follows from the Liouville
equation.

Next we substitute the Hamiltonian, which in general can be written as

H(~qi, ~pi) =
N∑

i=1

~p 2
i

2m
+

N∑

i=1

V (~qi) +
1

2

N∑

i=1

N∑

j=1
j 6=i

U(|~qi − ~qj |)

Note that the Hamiltonian contains three terms; a kinetic energy term, a term
describing the potential energy due to an external force ~Fi = −∇V (~qi) that only
depends on the position of particle i (i.e., an example would be the gravitational
field of Earth when describing it’s atmosphere), and the potential energy U(|~qi−~qj |)
related to two-body interactions between particles i and j. The force on particle
i due to the latter depends on the positions of all the other N − 1 particles. Note
that the factor of 1/2 is to avoid double-counting of the particle pairs. Examples of
the two-body interactions can be the VanderWaals force in the case of a liquid, the
Coulomb force in the case of a plasma, or the gravitational force in the case of dark
matter halo.

Substituting this expression for the Hamiltonian in the equation for the time-evolution
of the reduced DF yields, after some tedious algebra (see Appendix H), an expression
for the evolution of the k-particle DF

∂f (k)

∂t
= {H(k), f (k)}+

k∑

i=1

∫
d3~qk+1 d

3~pk+1
∂U(|~qi − ~qk+1|)

∂~qi
· ∂f

(k+1)

∂~pi

Here H(k) is the Hamiltonian for the k-particles, which is simply given by

H(k)(~w1, ~q2, ..., ~qk) =
k∑

i=1

~p 2
i

2m
+

k∑

i=1

V (~qi) +
1

2

k∑

i=1

k∑

j=1
j 6=i

U(|~qi − ~qj |)

Note that the above expression for the evolution of the k-particle DF is not a closed
function; it depends on f (k+1). Hence, if you want to solve for f (k) you first need
to solve for f (k+1), which requires that you solve for f (k+2), etc. Thus, we have a
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hierarcical set of N coupled differential equations, which is called the BBGKY hi-
erarchy (after Bogoliubov, Born, Green, Kirkwood and Yvon, who independently
developed this approach between 1935 and 1946).

Of particular interest to us is the expression for the 1-particle DF:

∂f (1)

∂t
= {H(1), f (1)}+

∫
d3~q2 d

3~p2
∂U(|~q1 − ~q2|)

∂~q1
· ∂f

(2)

∂~p1

Note that H(1) is the 1-particle Hamiltonian which is simply

H(1) = H(1)(~q, ~p) =
p2

2m
+ V (~q)

where we emphasize once more that V (~x) is the external potential. The first term
in the evolution equation for the 1-particle DF (the Poisson brackets) is called the
streaming term; it describes how particles move in the absence of collisions. The
second term is called the collision integral, and describes how the distribution of
particles in phase-space is impacted by two-body collisions. Note that it depends on
the 2-particle DF f (2)(~q1, ~q2, ~p1, ~p2), which shouldn’t come as a surprise given that
accounting for two-body collisions requires knowledge of the phase-space coordinates
of the two particles in question.

Thus, we started with the Liouville equation, governing a complicated function
of N variable, and it looks like all we have achieved is to replace it with a set of
N coupled equations. However, the BBKGY hierarchy is useful since it allows
us to make some simplifying assumptions (which will be sufficiently accurate under
certain conditions), that truncates the series. Also, it is important to point out that
the BBGKY hierarchy is completely general; the only real assumption we have made
thus far is that the system obeys Hamiltonian dynamics!

From here on out, though, we can target specific fluids (i.e., collisionless fluids, neu-
tral fluids, plasmas) by specifying details about the two-body interaction potential
U(|~qi−~qj |) and/or the external potential V (~q). Let us start by considering the easiest
example, namely the collisionless fluid. Here we have two methods of proceeding.
First of all, we can simply set U(|~qi − ~qj |) = 0 (i.e., ignore two-body interactions)
and realize that we can compute V (~q) from the density distribution
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ρ(~q, t) = m

∫
d3~p f (1)(~q, ~p, t)

where m is the particle mass, using the Poisson equation

∇2Φ = 4πGρ

where we have used Φ(~q, t) = V (~q, t)/m to coincide with the standard notation for
the gravitational potential used throughout these lecture notes. This implies that the
collision integral vanishes, and we are left with a closed equation for the 1-particle
DF, given by

df (1)

dt
=
∂f (1)

∂t
+ {f (1),H(1)} =

∂f (1)

∂t
+ ~v · ∂f

(1)

∂~x
−∇Φ · ∂f

(1)

∂~v
= 0

Here we have used the more common (~x,~v) coordinates in place of the canonical
(~q, ~p), and the fact that ~̇p = −m∇Φ. This equation is the Collisionless Boltzmann
Equation (CBE) which is the fundamental equation describing a collisionless system
(i.e., a galaxy or dark matter halo). It expresses that the flow of particles in µ-space
is incompressible, and that the local phase-space density around any particle is fixed.
The evolution of a collisionless system of particles under this CBE is depicted in the
left-hand panel of Fig. 6. Although the CBE is a simple looking equation, recall that
f (1) is still a 6D function. Solving the CBE is tedious and not something that is
typically done. As we will see in the next Chapter, instead what we do is to (try to)
solve moment equations of the CBE.

For completeness, let us now derive the CBE using a somewhat different approach.
This time we treat the gravity among the individual particles, and we do NOT assume
upfront that we can account for gravity in terms of a ‘smooth’ potential V (~q). Hence,
we set V = 0, and

U(|~q1 − ~q2|) = − Gm2

|~q1 − ~q2|
is now the gravitational potential energy due to particles 1 and 2. Starting from our
BBGKY expression for the 1-particle DF, we need to come up with a description for
the 2-particle DF. In general, we can always write

f (2)(~q1, ~q2, ~p1, ~p2) = f (1)(~q1, ~p1) f
(1)(~q2, ~p2) + g(~q1, ~q2, ~p1, ~p2)

66



This the first step in what is called the Mayer cluster expansion. We can write
this in (a self-explanatory) shorthand notation as

f (2)(1, 2) = f (1)(1) f (1)(2) + g(1, 2)

The next step in the expansion involves the 3-particle DF:

f (3)(1, 2, 3) = f(1) f(2) f(3) + f(1) g(2, 3) + f(2) g(1, 3) + f(3) g(1, 2) + h(1, 2, 3)

and so onward for k-particle DFs with k > 3. The function g(1, 2) is called the
two-point correlation function. It describes how the phase-space coordinates of
two particles are correlated. Note that if they are NOT correlated then g(1, 2) = 0.
This is reminiscent of probability statistics: if x and y are two independent random
variables then P (x, y) = P (x)P (y). Similarly, h(1, 2, 3) describes the three-point
correlation function; the correlation among particles 1, 2 and 3 that is not already
captured by their mutual two-point correlations described by g(1, 2), g(2, 3) and
g(1, 3).

Now, let’s assume that the phase-space coordinates of two particles are uncorrelated;
i.e., we set g(1, 2) = 0. This implies that the 2-particles DF is simply the products
of two 1-particle DFs, and thus that the evolution equation for f (1) is closed! In fact,
using that ∂H(1)/∂~q = 0 and ∂H(1)/∂~p = ~p/m = ~v we obtain that

∂f (1)

∂t
+ ~v · ∂f

(1)

∂~x
=

∫
d3~q2 d

3~p2 f
(1)(~q2, ~p2)

∂U(|~q1 − ~q2|)
∂~q1

· ∂f
(1)

∂~p1

Taking the operator outside of the collision integral (note that f (1) in the operator
has ~q1 and ~p1 as arguments), and performing the integral over ~p2 yields

∂f (1)

∂t
+ ~v · ∂f

(1)

∂~x
− ∂f (1)

∂~p1
· ∂

∂~q1

[
1

m

∫
d3~q2 ρ(~q2)U(|~q1 − ~q2|)

]
= 0

Using that

Φ(~x) = −G
∫

d3~x′
ρ(~x′)

|~x− ~x′|
this finally can be written as

∂f (1)

∂t
+ ~v · ∂f

(1)

∂~x
−∇Φ · ∂f

(1)

∂~v
= 0
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which we recognize as the CBE! Thus, we infer that in a collisionless system the
phase-space coordinates of the particles are uncorrelated! This is an important point.
It implies that collisions among particles introduce correlations, and thus that the
collisional aspect of a fluid is ultimately captured by the correlation functions g(1, 2),
h(1, 2, 3), etc.

Figure 6: Illustration of evolution in µ-space. The x- and y-axes represent the 3-
dimensional position-vector and momentum-vector, respectively. Panel (a) shows the evo-
lution of a collection of particles (indicated by the red dots) in a collisionless system gov-
erned by the CBE. As time goes on, the potitions and momentum of all the particles change
(according to the Hamiltonian equations of motion), and the particles move around in µ-
space smoothly (no abrubt changes). Note that, unlike in Γ-space, trajectories of individual
particles are allowed to cross each other. Panel (b) shows the evolution of particles in a col-
lisional system. The collisions are highly localized and cause abrupt changes in momentum.
The dynamics of this system is described by the Boltzmann equation.

If we want to describe say a collisional, neutral fluid, we need to decide on how
to treat these correlation functions. If we do this for a neutral fluid, which means a
fluid in which the interaction potentials are only effective over very small distances
(i.e., U(r) = 0 for r larger than some small, characteristic collision scale, rcoll), then
one derives what is called the Boltzmann equation, which is given by

∂f (1)

∂t
+ ~v · ∂f

(1)

∂~x
−∇Φ · ∂f

(1)

∂~v
= I[f (1)]
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Here I[f (1)] is the collision integral which now is only a function of the 1-particle DF,
making the Boltzmann equation a closed equation. It describes how, due to collisions,
particles are ‘kicked’ in and out of certain parts of phase-space. The right-hand panel
of Fig. ?? shows an illustration of evolution under the Boltzmann equation.
Rigorously deriving an expression for I[f (1)] from the BBGKY hierarchy is fiddly and
outside the scope of this course (see for example the textbook ”Statistical Mechan-
ics” by Kerson Huang). Instead, in the next Chapter we will use a more heuristic
approach, which relies on making the assumptions

• dilute gas; density is sufficiently low so that only binary collisions need to be
considered

• collisions can be thought of as instantaneous and perfectly localized.

• Molecular chaos: velocities of colliding particles are uncorrelated

The first two assumptions are reasonable, but the molecular chaos assumption (in-
troduced by Boltzmann, who referred to it as the Stosszahlansatz, which translates
to ‘assumption regarding number of collisions’) has a long and interesting history.
Mathematically, the assumption implies that

f (2)(~q, ~q, ~p1, ~p2) = f (1)(~q, ~p1) f
(1)(~q, ~p2)

which thus assumes that g(~q, ~q, ~p1, ~p2) = 0. Note that this is different from the
assumption we made above when describing collisionless fluids, as here it is only
assumed that at a given location the momenta are uncorrelated. This is a weaker
assumption than setting g(~q1, ~q2, ~p1, ~p2) = 0. At first sight this seems a reasonable as-
sumption; after all, in a dilute gas particles move (relatively) long distances between
collisions (i.e., λmfp ≫ rcoll). Although collisions introduce correlations among the
particles, each particle is expected to have many collisions with other particles before
colliding with a particular particle again. It seems reasonable to postulate that these
intermittent collisions erase correlations again. However, this apparently unremark-
able assumption effectively introduces an arrow of time, as briefly discussed in the
colored text-box at the end of this chapter.

Finally, we point out that if treating a collisional plasma in which the interactions
are due to long-range Coulomb forces, then the standard approach is to assume that
h(1, 2, 3) = 0 (i.e., assume that the three-body correlation function is zero). Making
several other assumptions (i.e., plasma is spatially homogeneous and the 2-particle
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correlation function g(1, 2) relaxes much faster than the 1-particle DF f (1)) this allows
one to derive an expression for g(1, 2) from the evolution equation of the 2-particle
DF, which can then be substituted in the evolution equation for the 1-particles DF.
The result is called the Lenard-Balescu equation. It is an example of a Fokker-
Planck equation, which is a generic equation used to describe the time evolution of
the probability density function of the velocity of a particle under the influence of
stochastic forces (here the Coulomb collisions) that mainly cause small deflections.
The Fokker-Planck equation is also used to describe gravitational N -body systems
in which the impact of collisions is not negligble (i.e., describing two-body relaxation
in a globular cluster), and will be discusssed in detail in Chapter 9.

As a final remark for this Chapter, we have thus far only considered the case of
a single species of mono-atoms. If we consider different types of particles, then we
have to introduce a separate distribution function for each type. If the different types
of particles can interact with each other, this then has to be accounted for in the
collision terms.
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Molecular Chaos and the Arrow of Time

The assumption of ”molecular chaos” (also known as ”Stosszahlansatz”)
which allows one to write down a closed equation for the time-evolution
of the 1-point DF, was used by L. Boltzmann to proof his famous H-
Theorem, which basically states that entropy should always increase
(i.e., it is supposed to be a proof of the second law of thermody-
namics). This in turn implies time-asymmetry, giving rise to the
thermodynamic arrow of time. However, as first brought to bear by
J. Loschmidt, it should not be possible to deduce an irreversible process
from time-symmetric dynamics and a time-symmetric formalism (i.e.,
the dynamics that result from the Liouville equation, which has no un-
derlying assumptions, is perfectly time-reversible!). The origin of this
”Loschmidt paradox”, as it is known, is the questionable assumption
of ”molecular chaos”. After all, once the particles are allowed to col-
lide, their velocity directions and positions in fact do become correlated.
Molecular chaos basically assumes that the subsequent collisions with
all the other particles somehow erases this correlation again. To what
extent this is true, and whether the H-theorem really proofs the second
law of thermodynamics is a topic of ongoing debate, especially among
philosophers of science.

The material in this text-box is not part of the curriculum for this course

71



CHAPTER 7

From Boltzmann to Navier-Stokes

In the previous chapter we derived the BBGKY hierarchy of equations:

∂f (1)

∂t
= {H(1), f (1)}+

∫
d3~q2 d

3~p2
∂U(|~q1 − ~q2|)

∂~q1
· ∂f

(2)

∂~p1
·
·
·

∂f (k)

∂t
= {H(k), f (k)}+

k∑

i=1

∫
d3~qk+1 d

3~pk+1
∂U(|~qi − ~qk+1|)

∂~qi
· ∂f

(k+1)

∂~pi

Here k = 1, 2, ..., N , f (k) is the k-particle DF, which relates to the N -particle DF
(N > k) according to

f (k)(~w1, ~w2, ..., ~wk, t) ≡
N !

(N − k)!

∫ N∏

i=k+1

d6 ~wi f
(N)(~w1, ~w2, ..., ~wN , t) ,

and H(k) is the k-particle Hamiltonian given by

H(k) =
k∑

i=1

~p 2
i

2m
+

k∑

i=1

V (~qi) +
1

2

k∑

i=1

k∑

j=1
j 6=i

U(|~qi − ~qj |)

with V (~q) the potential associated with an external force, and U(r) the two-body
interaction potential between two (assumed equal) particles separated by a distance
r = |~qi − ~qj |.

In order to close this set of N equations, one needs to make certain assumptions that
truncate the series. One such assumption is that all particles are uncorrrelated (both
spatially and in terms of their momenta), such that

f (2)(~q1, ~q2, ~p1, ~p2) = f (1)(~q1, ~p1) f
(1)(~q2, ~p2)
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which is equivalent to setting the correlation function g(1, 2) = 0. As we have
shown in the previous Chapter, the first equation in the BBGKY hierarchy is now
closed, and yields the Collisionless Boltzmann Equation (CBE), which can be
written as

df

dt
=
∂f

∂t
+ ~̇x · ∂f

∂~x
+ ~̇v · ∂f

∂~v
= 0

which is the fundamental evolution equation for collisionless systems. If the forces
between particles are gravitational in nature, then ~̇v = ∇Φ, with Φ(~x) the gravita-
tional potential which related to the density distribution via the Poisson equa-
tion. Note that in this case the gravitational potential experienced by each particle
is treated as due to the external potential V (~q), and not as a two-body interaction
U(r). As we have seen in the previous chapter, one can also obtain the CBE by
setting V (~q) = 0, and incorporating gravity as a two-body interaction potential, as
long as one then assumes that the interacting particles are uncorrelated.

NOTE: we have used the shorthand notation f for the 1-particle DF f (1). In what
follows we will adopt that notation throughout, and only use the superscript-notation
whenever confusion might arise.

If, on the other hand, we want to describe a dilute, neutral fluid in which the particles
only have short-range interactions (such that U(r) ≃ 0 outside of some small distance
rcoll), then we can make the assumption of molecular chaos which also allows us
to close the BBGKY hierarchy, yielding the Boltzmann Equation:

df

dt
=
∂f

∂t
+ ~̇x · ∂f

∂~x
+ ~̇v · ∂f

∂~v
= I[f ]

where I[f ] is the collision integral, which describes how the phase-space density
around a particle (or fluid element) changes with time due to collisions. Note that
the third term, including the particle acceleration ~̇v, describes the accelerations due
to an external potential (e.g., a gravitational field in which the fluid is located).
It does NOT represent the acceleration due to the two-body interactions, which is
instead captured by the collision integral.

Let us now take a closer look at this collision integral I[f ]. It basically expresses the
Eulerian time-derivative of the DF due to collisions, i.e.,I[f ] = (∂f/∂t)coll. Recall
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Figure 7: Illustration of ‘collision’ between two particles with momenta p1 and p2 due to
interaction potential U(r). The impact parameter of the collision is b.

that we have made the assumption of a dilute gas, so that we only need to consider
two-body interactions. In what follows, we make the additional assumption that all
collisions are elastic [actually, this is sort of implied by the fact that we assume that
the dynamics are Hamiltonian]. An example is shown in Fig. 7, where ~p1 + ~p2 →
~p1

′ + ~p2
′. Since we assumed a short-range, instantaneous and localized interaction,

so that the external potential doesn’t significantly vary over the interaction volume
(the dashed circle in Fig. 7), we have

momentum conservation: ~p1 + ~p2 = ~p1
′ + ~p2

′

energy conservation: |~p1|2 + |~p2|2 = |~p1 ′|2 + |~p2 ′|2

where as throughout we have assumed equal mass particles.

We can write the rate at which particles of momentum ~p1 at location ~x experience
collisions ~p1 + ~p2 → ~p1

′ + ~p2
′ as

R = ω(~p1, ~p2|~p1 ′, ~p2
′) f (2)(~x, ~x, ~p1, ~p2) d

3~p2 d
3~p1

′ d3~p2
′

Here f (2)(~x, ~x, ~p1, ~p2) is the 2-particle DF, expressing the probability that at location
~x, you encounter two particles with momenta ~p1 and ~p2, respectively. The function
ω(~p1, ~p2|~p1 ′, ~p2 ′) depends on the interaction potential U(~r) and can be calculated
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(using kinetic theory) via differential cross sections. Note that momentum and energy

conservation is encoded in the fact that ω(~p1, ~p2|~p1 ′, ~p2 ′) ∝ δ3(~P− ~P ′) δ(E−E ′) with
δ(x) the Dirac delta function, ~P = ~p1 + ~p2 and ~P ′ = ~p1

′ + ~p2
′.

In addition, we have time-reversibility, so that it is equally likely that the inverse
process (−~p1 ′ +−~p2 ′ → −~p1 +−~p2) happens. This implies that

ω(~p1, ~p2|~p1 ′, ~p2
′) = ω(~p1

′ ~p2
′|~p1, ~p2)

Using our assumption of molecular chaos, which states that the momenta of the
interacting particles are independent, we have that

f (2)(~x, ~x, ~p1, ~p2) = f (1)(~x, ~p1) f
(1)(~x, ~p2)

so that the collision integral can be written as

I[f ] =

∫
d3~p2 d

3~p1
′ d3~p2

′ ω(~p1
′, ~p2

′|~p1, ~p2) [f(~p1 ′) f(~p2
′)− f(~p1) f(~p2)]

where we have suppressed the x arguments of f in order to avoid unnecessary clutter.
The first term within the square brackets describes the replenishing collisions, in
which particles at (~x, ~p1

′) are scattered into (~x, ~p1). The second term with the square
brackets describes the depleting collisions, in which particles at (~x, ~p1) are kicked
out of their phase-space volume into (~x, ~p1

′).

We can use the above expression to derive that the equilibrium solution for the
velocity distribution in a homogeneous fluid is given by the Maxwell-Boltzmann
distribution. The expression for an equilibrium distribution function, feq is that
∂feq/∂t = 0 (i.e., the DF at any given location doesn’t evolve with time). If we ignore
a potential external potential (i.e., V = 0), and we take into consideration that an
equilibrium solution must indeed be spatially homogeneous, such that ∂feq/∂~q = 0,
then we have that the streaming term {H, feq} = 0. Hence, having an equilibrium
requires that the collision integral vanishes as well. As is apparent from the above
expression, this will be the case if

f(~x, ~p1
′) f(~x, ~p2

′)− f(~x, ~p1) f(~x, ~p2) = 0

This condition is known as detailed balance, and can be written as
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log[f(~p1)] + log[f(~p2)] = log[f(~p1
′)] + log[f(~p2

′)]

This has the form of a conservation law, and implies that log[feq] must be equal to
a sum of conserved quantities, A(~p), that obey

A(~p1) + A(~p2) = A(~p1
′) + A(~p2

′)

Quantities A(~p) for which this is the case are called collisional invariants. There
are three such quantities of interest to us

A = 1 particle number conservations
A = ~p momentum conservation
A = ~p 2/(2m) energy conservation

and we thus expect that

log[feq(~p)] ∝ a1 + a2 ~p+ a3 |~p|2

with a1, a2 and a3 some constants. This notion can be used to demonstrate that the
equilibrium distribution must be of the form of a Maxwell-Boltzmann distribu-
tion

feq(p) =
n

(2πmkBT )3/2
exp

[
− p2

2mkBT

]

(see ”Statistical Mechanics” by Kerson Huang for a detailed derivation), and also
Chapter 9.

As a small aside, we mention that for a system in thermal equilibrium we have that
I[feq] = 0 (i.e., the collisions no longer cause a net change of the distribution function.
Hence, for a system that is not too far from equilibrium, a reasonable approximation
of the collision integral is given by

I[f ] ≃ −(f − feq)

τcoll

where τcoll = λmfp/〈v〉 is the collision time (see Chapter 2).

We have seen that if the logarithm of the DF is a sum of collisional invariants (which
it is if the system is in equilibrium), then the collision integral vanishes. In addition,
as we will now demonstrate, for a collisional invariant A(~p) we also have that
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∫
d3~pA(~p)

(
∂f

∂t

)

coll

= 0

which will be useful for what follows. To see that this equality holds, we first intro-
duce

I1 =

∫
d3~p1 d

3~p2 d
3~p1

′ d3~p2
′ ω(~p1

′, ~p2
′|~p1, ~p2)A(~p1) [f(~p1 ′) f(~p2

′)− f(~p1) f(~p2)]

which is the collision integral multiplied by A(~p1) and integrated over ~p1. Note
that now all momenta are integrated over, such that they are basically nothing but
dummy variables. Re-labelling 1 ↔ 2, and reordering yields

I2 =

∫
d3~p1 d

3~p2 d
3~p1

′ d3~p2
′ ω(~p1

′, ~p2
′|~p1, ~p2)A(~p2) [f(~p1 ′) f(~p2

′)− f(~p1) f(~p2)]

i.e., everything is unchanged except for the argument of our collisional invariant.
And since the momenta are dummy variables, we have that I2 = I1. Rather than
swapping indices 1 and 2, we can also swap ~p ↔ ~p ′. This gives us two additional
integrals:

I3 = −
∫

d3~p1 d
3~p2 d

3~p1
′ d3~p2

′ ω(~p1, ~p2|~p1 ′, ~p2
′)A(~p1

′) [f(~p1
′) f(~p2

′)− f(~p1) f(~p2)]

and

I4 = −
∫

d3~p1 d
3~p2 d

3~p1
′ d3~p2

′ ω(~p1, ~p2|~p1 ′, ~p2
′)A(~p2

′) [f(~p1
′) f(~p2

′)− f(~p1) f(~p2)]

where the minus sign comes from the fact that we have reversed f(~p1) f(~p2) −
f(~p1

′) f(~p2
′). Because of time-reversibility ω(~p1

′, ~p2
′|~p1, ~p2) = ω(~p1, ~p2|~p1 ′, ~p2

′), and
we thus have that I4 = I3 = I2 = I1. Hence I1 = [I1 + I2 + I3 + I4]/4, which can
be written as

I1 =
1

4

∫
d3~p1 d

3~p2 d
3~p1

′ d3~p2
′ ω(~p1

′, ~p2
′|~p1, ~p2)×

{A(~p1) + A(~p2)− A(~p1
′)−A(~p2

′)} [f(~p1
′) f(~p2

′)− f(~p1) f(~p2)]
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Since A(~p) is a collisional invariant, the factor in curly brackets vanishes, which in
turn assures that I1 = 0, which completes our proof.

Thus far, we have derived the Boltzmann equation, and we have been able to write
down an expression for the collision integral under the assumptions of (i) short-
range, elastic collisions and (ii) molecular chaos. How do we proceed from here?
The Boltzmann equation with the above expression for the collision integral is a
non-linear integro-differential equation, and solving such an equation is extremely
difficult. Fortunately, in the fluid limit we don’t really need to. Rather, we are
interested what happens to our macroscopic quantities that describe the fluid (ρ, ~u,
P , ε, etc). We can use the Boltzmann equation to describe the time-evolution of
these macroscopic quantities by considering moment equations of the Boltzmann
equation.

In mathematics, the nth-moment of a real-valued, continuous function f(x) is

µn =

∫
xnf(x) dx

If f(x) is normalized, so that it can be interpreted as a probability function, then
µn = 〈xn〉.

In our case, consider the scalar functionQ(~v). The expectation value forQ at location
~x at time t is given by

〈Q〉 = 〈Q〉(~x, t) =
∫
Q(~v) f(~x,~v, t) d3~v∫
f(~x,~v, t) d3~v

Using that

n = n(~x, t) =

∫
f(~x,~v, t) d3~v

we thus have that

∫
Q(~v) f(~x,~v, t) d3~v = n 〈Q〉

We will use this abundantly in what follows. In particular, define
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g(~x, t) =

∫
Q(~v) f(~x,~v, t) d3~v

Then, in relation to fluid dynamics, there are a few functions Q(~v) that are of par-
ticular interest:

Q(~v) = 1 ⇒ g(~x, t) = n(~x, t) number density
Q(~v) = m ⇒ g(~x, t) = ρ(~x, t) mass density
Q(~v) = m~v ⇒ g(~x, t) = ρ(~x, t) ~u(~x, t) momentum flux density
Q(~v) = 1

2
m(~v − ~u)2 ⇒ g(~x, t) = ρ(~x, t) ε(~x, t) specific energy density

where we have defined the macroscopic velocity (also known as the bulk velocity
of streaming velocity) ~u(~x) ≡ 〈~v〉, which is the mean velocity of all particles at the
volume element centered on ~x, and the specific internal energy ε ≡ 〈(~v − ~u)2/2〉
(here ‘specific’ means ‘per unit mass’).

This indicates that we can obtain dynamical equations for the macroscopic fluid
quantities by multiplying the Boltzmann equation with appropriate functions, Q(~v),
and integrating over all of velocity space.
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Hence, we seek to solve equations of the form

∫
Q(~v)

[
∂f

∂t
+ ~v · ∇f −∇Φ · ∂f

∂~v

]
d3~v =

∫
Q(~v)

(
∂f

∂t

)

coll

d3~v

In what follows, we restrict ourselves to Q(~v) that are collisional invariants so
that the integral on the right-hand side vanishes, and we are left with

∫
Q(~v)

∂f

∂t
d3~v +

∫
Q(~v)~v · ∇f d3~v −

∫
Q(~v)∇Φ · ∂f

∂~v
d3~v = 0

Since mass, momentum and energy are all conserved in elastic, short-range collisions
we have that the momentum integral over the collision integral will be zero for the
zeroth, first and second order moment equations! In other words, although collisional
and collisionless systems solve different Boltzmann equations, their zeroth, first and
second moment equations are identical!

We now split the above equation in three terms:

I

∫
Q(~v)

∂f

∂t
d3~v

II

∫
Q(~v) vi

∂f

∂xi
d3~v

III

∫
Q(~v)

∂Φ

∂xi

∂f

∂vi
d3~v

where we have that I+ II− III = 0, as long as Q is a collisional invariant.

We now proceed to rewrite each of these three integrals in turn.

Integral I

The first integral can be written as

∫
Q(~v)

∂f

∂t
d3~v =

∫
∂Qf

∂t
d3~v =

∂

∂t

∫
Qf d3~v =

∂

∂t
n〈Q〉

where we have used that both Q(~v) and the integration volume are independent of
time.
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Integral II

Using similar logic, the second integral can be written as

∫
Q(~v) vi

∂f

∂xi
d3~v =

∫
∂Q vi f

∂xi
d3~v =

∂

∂xi

∫
Qvi f d

3~v =
∂

∂xi

[
n 〈Qvi〉

]

Here we have used that

Qvi
∂f

∂xi
=
∂(Qvi f)

∂xi
− f

∂Q vi
∂xi

=
∂(Qvi f)

∂xi

where the last step follows from the fact that neither vi nor Q depend on xi.

Integral III

For the third, and last integral, we are going to define ~F = ∇Φ and∇v ≡ (∂/∂vx, ∂/∂vy , ∂/∂vz),
i.e., ∇v is the equivalent of ∇ but in velocity space. This allows us to write

∫
Q ~F · ∇vf d

3~v =

∫
∇v · (Qf ~F )d3~v −

∫
f ∇v · (Q~F ) d3~v

=

∫
Qf ~Fd2Sv −

∫
f
∂QFi

∂vi
d3~v

= −
∫
fQ

∂Fi

∂vi
d3~v −

∫
fFi

∂Q

∂vi
d3~v

= −
∫
f
∂Φ

∂xi

∂Q

∂vi
d3~v = − ∂Φ

∂xi
n

〈
∂Q

∂vi

〉

Here we have used Gauss’ divergence theorem (see Appendix C), and the fact that

the integral of Qf ~F over the surface Sv (which is a sphere with radius |~v| = ∞) is
equal to zero. This follows from the ‘normalization’ requirement that

∫
f d3~v = n.

We have also used that Fi = ∂Φ/∂xi is independent of vi.

Combining the above expressions for I, II, and III, we obtain that

∂

∂t
n〈Q〉+ ∂

∂xi

[
n〈Qvi〉

]
+
∂Φ

∂xi
n

〈
∂Q

∂vi

〉
= 0

In what follows we refer to this as the master-moment-equation (in index-form).
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Now let us consider Q = m, which is indeed a collisional invariant, as required.
Substitution in the master-moment equation, and using that 〈m〉 = m, that mn = ρ
and that 〈mvi〉 = m〈vi〉 = mui, we obtain

∂ρ

∂t
+
∂ρui
∂xi

= 0

which is known as the continuity equation. It states that in order for the density
at some position ~x to change, there needs to be a divergence of mass flux in or out
of the volume element centered on ~x.

Next we considerQ = mvj , which is also a collisional invariant. Using that n〈mvjvi〉 =
ρ〈vivj〉 and that

∂Φ

∂xi
n

〈
∂mvj
∂vi

〉
=
∂Φ

∂xi
ρ

〈
∂vj
∂vi

〉
=
∂Φ

∂xi
ρδij = ρ

∂Φ

∂xj

substitution of Q = mvj in the master-moment equation yields

∂ρuj
∂t

+
∂ρ〈vivj〉
∂xi

+ ρ
∂Φ

∂xj
= 0

Next we use that

∂ρuj
∂t

= ρ
∂uj
∂t

+ uj
∂ρ

∂t
= ρ

∂uj
∂t

− uj
∂ρuk
∂xk

where, in the last step, we have used the continuity equation. Substitution in the
above equation, and using that k is a mere dummy variable (which can therefore be
replaced by i), we obtain that

ρ
∂uj
∂t

− uj
∂ρui
∂xi

+
∂ρ〈vivj〉
∂xi

+ ρ
∂Φ

∂xj
= 0

⇔ ρ
∂uj
∂t

−
[
∂ρuiuj
∂xi

− ρui
∂uj
∂xi

]
+
∂ρ〈vivj〉
∂xi

+ ρ
∂Φ

∂xj
= 0

⇔ ρ
∂uj
∂t

+ ρui
∂uj
∂xi

+
∂ [ρ〈vivj〉 − ρuiuj]

∂xi
+ ρ

∂Φ

∂xj
= 0

In order to make sense of the ρ〈vivj〉 − ρuiuj term, it is important to understand
the difference between the microscopic velocity vi, which is the actual velocity of a
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particle, and the macroscopic (or ‘streaming’) velocity ui, which is the average of
vi, averaged over all particles in some arbitrary small volume. This volume, which
is often called a fluid element has to be large enough to have many particles to
average over, but small enough such that we can ignore any gradients in density or
potential across it. In general, we can split the microscopic velocity of a particle, ~v,
in a streaming velocity, ~u and a ‘random’ velocity ~w:

~v = ~u+ ~w

where 〈~v〉 = ~u and 〈~w〉 = 0, and 〈·〉 indicates an average over the fluid element.
It is convenient to introduce the stress tensor

σij ≡ −ρ〈wiwj〉 = −ρ〈vivj〉+ ρuiuj

where the second step follows from the fact that ~w = ~v − ~u. Substituting the
expression for the stress tensor, we finally obtain the momentum equations:

∂uj
∂t

+ ui
∂uj
∂xi

=
1

ρ

∂σij
∂xi

− ∂Φ

∂xj

When applied to a collisionless fluid, these momentum equations are known as the
Jeans equations (see Part IV for details). For a collisional fluid, we will see that

σij = −Pδij + τij

with P the hydrodynamic pressure and

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij

∂uk
∂xk

]
+ η δij

∂uk
∂xk

is called the deviatoric stress tensor, with µ and η the coefficients of shear
viscosity and bulk viscosity, respectively (see Part III) for details. If the above
expressions for the stress tensor is substituted into the moment equations one obtains
the Navier-Stokes equations. In the limit of zero viscocity (µ = η = 0) these
reduce to what are called the Euler equations used to describe inviscid fluids.

At this point, it is instructive to realize that when we integrated the Boltzmann
equation over velocity space to obtain the master moment equation we ‘lost’
the collision integral (any velocity moment of the collision integral vanishes, as
long as it involves a collisional invariant). Hence. the master moment equation for
a collisional fluid is identical to that for a collisionless fluid! As we will see in Parts
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III and IV, the information regarding the collisionality of the fluid is hidden inside
the stress tensor, σij : for a collisionless fluid σij , which is manifest symmetric, has
6 unknowns (three diagonal elements and three off-diagonal elements), while for a
collisional fluid there are only three unknowns: P , µ and η. Most importantly, these
three quantities are actually related to other macroscopic quantities of the fluid, such
as density and/or temperature via a number of constitutive equations. As we will
see, this subtle difference has far-reaching implications!

Finally, it is left as an exercise for the reader (or look at Appendix J) to show
that substitution of Q = mv2/2 in the master moment equation yields the energy
equation (in Lagrangian index form):

∂

∂t

[
ρ

(
u2

2
+ ε

)]
= − ∂

∂xk

[
ρ

(
u2

2
+ ε

)
uk − σjkuj + ρ〈wk

1

2
w2〉
]
− ρuk

∂Φ

∂xk

where ε = 1
2
〈w2〉 is the specific internal energy.

This energy equation is rarely ever used for collisionless fluids. For collisional fluids,
though, it plays an important role. In particular, for a collisional fluid it can be
recast in the more useful form:

ρ
dε

dt
= −P ∂uk

∂xk
+ V − ∂Fcond,k

∂xk

where V is the rate of viscous dissipation and ~Fcond is the conductive heat flux.
For a more detailed discussion of the energy equation, see Part III.
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CHAPTER 8

Stochasticity & the Langevin Equation

We start this chapter on stochastic forces with a few definitions:

Random Variable: a (1-dimensional) random variable is a scalar function x(t),
where t is usually time, for which the future evolution is not determined by any set
of initial data knowable to us.

Examples of random variables are the sequence of outcomes of a repeatedly flipped
coin (here both x and t are discrete), the value of my stock portfolio, the x-coordinate
of a particle undergoing Brownian motion, the force experienced by a globular cluster
as it orbits a dark matter halo full of substructure, a star moving inside a galaxy or
globular cluster. In the latter case, the force is stochastic due to finite-N effects.

Random Process: (aka stochastic process) is an ensemble of realizations of random
variables x(t), that all represent the same physical entity. Any particular x(t) is called
a realization of the random process.

In general, a random process is completely specified by the set of probability disti-
butions

P1 = P1(x1, t1)dx1

P2 = P2(x2, t2; x1, t1)dx2 dx1

·
·

Pn = Pn(xn, tn, ...., x2, t2, x1, t1)dxn ... dx2 dx1

Here tn > tn−1 > ... > t2 > t1 and Pn is the probability that a realization x(t) drawn
at random from the random process takes on values between x1 and x1 + dx1 at t1,
between x2 and x2 + dx2 at t2, etc.

Ensemble Averages: the ensemble average of a function f(x(t)) of a random
variable is defined as

〈f(t)〉 =
∫
f(x)P1(x, t) dx
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Similarly, we can compute ensemble averages that evolve multiple epochs, such as

〈x(t1)x(t2)〉 =
∫
x1 x2 P2(x2, t2; x1, t1) dx2dx1

Stationarity: a random process is said to be stationary iff its probability distri-
butions Pn (for all n) depend only on time differences and not on absolute time,
i.e.,

Pn(xn, tn + τ ; ...; x2, t2 + τ ; x1, t1 + τ) = Pn(xn, tn, ...., x2, t2, x1, t1) ∀τ

Note: stationarity does not mean that there is no time evolution in probability distri-
butions; for instance, if at time t1 a particle is placed in a heat bath of temperature
T with zero velocity, i.e., P1(v1, t1) = δ(v1), then P2(v2, t2; v1, t1) does depend on
time (the particle experiences random collisions with the other particles in the heat
bath). The system is stationary, though, as long as T 6= T (t), since in that case
P2(v2, t2; v1, t1) only depends on t2 − t1.

Ergodicity: Let f(x) be any function of a random variable x(t). A stationary
random process is said to be ergodic iff the time average of a realization,

f = lim
T→∞

1

T

∫ T/2

−T/2

f [x(t′)] dt′

is equal to the ensemble average 〈f(x)〉. Note that because of the assumed station-
arity P1(x, t) = P1(x). For f(x) = x ergodicity means that the time average of a give
realization x(t) (when averaged over a sufficiently long time) is equal to an average
over many realizations at any given time.

Markov Process: a random process is said to be Markov (or ‘Markovian’) iff all
future probabilities are determined completely by its most recently known values,
i.e.,

Pn(xn, tn|xn−1, tn−1; ...; x2, t2; x1, t1) = P2(xn, tn|xn−1, tn−1)

Note that here we have made use of conditional probabilities which are related
to the unconditional probabilities according to Bayes theorem:

Pn(xn, tn|xn−1, tn−1; ...; x2, t2; x1, t1) =
Pn(xn, tn; xn−1, tn−1; ...; x2, t2; x1, t1)

Pn−1(xn−1, tn−1; ...; x2, t2; x1, t1)
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Hence, a stationary Markov process is completely specified by

P1(x) and P2(x2, t|x1) =
P2(x2, t; x1, 0)

P1(x1)

Throughout what follows we shall assume our random processes to be stationary, er-
godic and Markovian, unless stated otherwise. Note that a true, continuous Marko-
vian process in physics does not exist (physical trajectories x(t) are differentiable,
and therefore cannot be perfectly Markovian). However, if x(t) is examined with a
sufficiently coarse time-resolution it can become discretely Markovian, which is the
situation we are considering here.

Stochasticity in Many-Body Systems: Now that we have these preliminaries
out of the way, let’s examine the impact of stochasticity in astrophysical many-
body systems. Consider an N -body system (i.e., a gas, a galaxy of stars, a plasma
of charged particles, etc) and let (~q0, ~p0) be the initial phase-space coordinates of
some particle (hereafter the subject mass). As the particle evolves, it describes
a path µ1(t) = (~q(t), ~p(t)) in phase-space. If the system is in (quasi)-equilibrium,
and I launch a second particle from (~q0, ~p0) at some later time, then its phase-space
trajectory µ2(t) = (~q(t), ~p(t)) will be different from µ1(t). This is due to the fact that
the forces that the subject mass experiences are stochastic, i.e., F (t) is a random
variable, and as a consequence, so is µ(t). This stochasticity is a manifestation of
the collisions between the subject mass and the other N − 1 particles in the system.

To clarify, in principle if I knew the exact phase-space coordinates of all N par-
ticles in my system then the u(t) trajectories are entirely deterministic, and there
is no stochasticity in the sense of ‘unpredictability’. In practice, though, we never
know the exact (~q, ~p) for all degrees of freedom. Rather, we have some macroscopic
information about the system (i.e., its density distribution, and/or its velocity dis-
tribution). Each different microstate corresponding to that macrostate will yield a
different µ(t), and this gives rise to a random process. In the case of a ‘collision-
less’ fluid (i.e., a galaxy, or a collisionless plasma), recall that collisionless does not
mean ‘no collisions’. It merely means that the subject mass undergoes simultaneous
interactions (=collisions) with many other particles, which manifests approximately
as if the system is collisionless. In reality, the system is always somewhat collisional
(i.e., the relaxation time is large, but not infinite!)

We now proceed to develop a mathematical treatment of this collisionality-induced
stochasticity. Let 〈µ(t)〉 be the ensemble averaged trajectory of the random process
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µ(t) described above. Then we write that

~F (~x, t) = 〈~F (~x)〉+ δ ~F (~x, t)

where 〈~F (~x)〉 is the force field that gives rise to 〈µ(t)〉 starting from the initial

conditions (~q0, ~p0). The residual δ ~F is the stochastic force, which has that 〈δ ~F 〉 = 0.

We can write 〈~F (~x)〉 as a sum of a velocity-independent, conservative force ~Fc(~x) =

−∇V (~x), and a velocity dependent force ~Fnc(~x,~v). The idea that there might be
a velocity-dependent force component comes from the notion that the outcome of
collisions depends on velocity, simply because a fast moving subject mass sees a
different velocity distribution for the particles it interacts with, than a slow moving
subject mass. Hence, 〈µ(t)〉 is not the same as the trajectory in the absence of

a stochastic force. Only in the limit N → ∞, we have that both δ ~F → 0 and
~Fnc(~x,~v) → 0, which implies that the trajectory becomes equal to its average, and
identical to that in the absence of any stochastic forces.

Here is another thought-experiment that should convince you of the presence of
a drag-force. Consider a box filled with a gas in thermal equilibrium (a thermal
bath). The equilibrium velocity distribution, Peq(~v), is a Maxwell-Boltzmann
distribution with a mean velocity 〈~v〉 = 0 and a velocity dispersion σ2 = kBT/m.
Consider a random particle at some time t0 with velocity ~v0. The particle starts out
with a velocity PDF P (~v) = δ(3)(~v − ~v0). If we wait long enough (i.e., in the limit
t → ∞), we know that, due to the collisions (stochastic forces), the particle will
take on a velocity PDF P (~v) = Peq(~v). Hence, over time the expectation value for
the particle’s speed evolves from v0 = |~v0| to 0 (i.e., on average the particle must
experience some drag force). At the same time, the PDF broadens from a delta-
function into a Maxwell-Boltzmann distribution; in addition to friction, the random
collisions also cause a diffusion (as we will see in more detail below).

In what follows we simplify our picture by ignoring the spatial dependence; basically
what follows is valid for particles (‘subjects’) moving in an infinite, homogeneous
(and isotropic) sea of background particles (‘field particles’) of density ρ. The hope
is that we can use what follows in a realistic, non-homogeneous system with den-
sity distribution ρ(~x), by adopting what is known as the local approximation; the
impact of stochasticity at a position ~x in a non-homogeneous system can be approx-
imated by that of an infinite, homogeneous system of density ρ = ρ(~x). This is a fair
assumption as long as the ‘collisionality’ is dominated by collisions with relatively
nearby particles. We will address the validity of this local approximation in the next
chapter.
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Using Taylor series expansion, and the local approximation, we write

Fnc(~x,~v) = Fnc(v) = c0 + c1 v + c2 v
2 +O(v3)

where v = |~v|. Note that c0 = 0, as the velocity independent component of the force is

already accounted for through ~Fc. We also assumed here that the velocity dependent
force always acts in the direction of the velocity vector of the subject (which is
the only logical possibility if the background is homogeneous and isotropic). Let’s
truncate this series at first-order, such that the equation of motion for our subject
mass becomes

m
d~v

dt
= ~F (~x, t) = −∇V (~x)− γ~v(t) + δ ~F (t)

where we have replaced c1 by γ. Note that the γ~v(t) term is a friction term, with
γ the friction coefficient ([γ] = gs−1). The quantity 1/γ is sometimes referred to as
the mobility.

The above equation of motion is known as the Langevin equation, which is an
example of a stochastic differential equation. Although it looks like an ordinary dif-
ferential equation, it is a different beast because δF (t) is a random variable. Clearly,
there is a different solution for each realization δF (t). So how are we supposed to
solve this? The goal is to solve for ensemble averages such as 〈µ(t)〉 or 〈v(t1)v(t2)〉
using statistical properties of the random process, i.e., using information about the
probability distribution of δF (t). Note that such a probability distribution has to
be a functional: you give it a function δF (t), and it returns a scalar, which in this
case has to be between zero and one.

Note that, because of our assumption of homogeneity of the field particles we have
that ∇V = 0, which simplifies our Langevin equation (solving the Langevin equa-
tion for an arbitrary potential V (~x), as in the local approximation discussed above,
involves solving an unpleasant non-linear stochastic differential equation, which is
outside the scope of these lecture notes). If we further simplify matters by consider-
ing a 1D system, then the Langevin equation reduces to

m
dv

dt
= −γv + δF (t)

Multiplying by an integration factor eγt/m and rearranging yields

dv

dt
eγt/m +

γ

m
veγt/m =

d

dt

[
veγt/m

]
=

1

m
δF (t) eγt/m
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which is easily solved for the time dependence of the velocity

v(t) = v0 e
−γt/m +

1

m

∫ t

0

δF (t′) e−γ(t′−t)/m dt′

Taking the ensemble average, using that 〈δF 〉 = 0, we obtain

〈v(t)〉 = v0 e
−γt/m

Thus, the speed of the subject mass will slow down over time on a ‘dissipation time’
τd ∼ m/γ. Since slowing down means a decrease in kinetic energy (and since V = 0,
the potential energy is zero), γ represents dissipation. A word of caution is required
here. Everything we have discussed so far is valid for a Hamiltonian system, which
is non-dissipative. What we mean by ‘dissipation’ here is that the subject mass
experiences, on average, dissipation. The energy lost by the subject is transferred
to the field particles, through the collisions that are the source for the stochastic
nature of δF . Hence, the system as a whole does not dissipate energy, consistent
with the system as a whole being Hamiltonian. Put differently, collisions/interactions
cause an internal exchange of energies and momenta, but leave the total energy and
momentum conserved.

Let’s return to our solution for v(t) and use it to determine the average orbit of the
subject:

〈x(t)〉 = x0 +

∫ t

0

dt′ 〈v(t′)〉 = x0 +
m

γ
v0 (1− e−γt/m)

As expected, this represents a particle that moves in a straight line with a velocity
that is decaying with time.

It get’s more interesting if we try to compute the expectation values of quadratic
quantities. In particular, we find that

〈v(t1)v(t2)〉 = 〈v(t1)〉 〈v(t2)〉+
1

m2

∫ t1

0

dt′1

∫ t2

0

dt′2 〈δF (t′1) δF (t′2)〉 eγ(t
′
1+t′2−t1−t2)/m

where we have made use of the fact that 〈δF 〉 = 0 to drop the two cross terms.

Hence, evaluation of 〈v(t1)v(t2)〉, which describes how the velocity of the subject
at t1 is correlated with that at t2, requires knowledge of the correlation function
〈δF (t1) δF (t2)〉. Typically, if t2−t1 > τcoll (see Chapter 2 for definition of the collision
time) the forces will be uncorrelated, i.e., 〈δF (t1) δF (t2)〉 = 0 for t2 − t1 > τcoll.
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Typically τcoll is much shorter than any other timescale of interest, and we can
effectively take the limit τcoll → 0. In that case, we can write

〈δF (t1) δF (t2)〉 = 2Dγ2 δ(t2 − t1)

Here the factor γ2 has been put in for convenience, and D is a parameter that
characterizes the strength of the correlation (with [D] = cm2 s−1). It is called
a diffusion coefficient for reasons that will become clear shortly. A stochastic
variable that obeys this expression for the correlation function is often referred to as
white noise.

Substitution in the expression for 〈v(t1)v(t2)〉 gives

〈v(t1)v(t2)〉 = 〈v(t1)〉 〈v(t2)〉+
2Dγ2

m2
e−γ(t1+t2)/m

∫ t1

0

dt′e2γt
′/m

= 〈v(t1)〉 〈v(t2)〉+
Dγ

m

[
e−γ(t1−t2)/m − e−γ(t1+t2)/m

]

For t1, t2 → ∞ we can drop the last term, as well as 〈v(t1)〉 and 〈v(t2)〉 (after all,
due to the friction, 〈v〉 → 0). Hence,

〈v(t1)v(t2)〉 −→
t1,t2→∞

Dγ

m
e−γ(t2−t1)/m

Since we assume the stochastic force to be stationary, we can replace t2 − t1 with
∆t, to obtain the more general expression

〈v(t)v(t+∆t)〉 −→
t→∞

Dγ

m
e−γ∆t/m

As we can see, velocities are correlated, but only for a finite amount of time. The
characteristic time scale on which they become uncorrelated is the dissipation time
τd = m/γ.

If we now revert back to 3D, we can use the above result to write

〈~v(t) · ~v(t)〉 = 〈v2(t)〉 −→
t→∞

3Dγ

m

Hence, at late times the velocity dispersion among particles that all started at an
identical phase-space point (~q0, ~p0) but at different times becomes

σ2
v = 〈v2〉 − 〈v〉2 = 3Dγ

m
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where v = |~v| and we have used that 〈v〉 → 0. Hence, due to collisions, the average
velocity of our subject mass vanishes (friction), while the velocity dispersion asymp-
totes to a constant value. Since we know that collisions drive the system towards
equipartition in which the kinetic energy of the subject mass

1

2
m〈v2〉 = 3

2
Dγ

is equal to that of the field particles. If the latter are in local thermal equilibrium,
the latter is equal to 3

2
kBT , and we thus infer that

Dγ = kBT

This relation, which is known as the Einstein-Smoluchowski relation, indicates
that the diffusion coefficient D and the frictional dissipation γ are tightly related.
This is a manifestation of the fluctuation-dissipation theorem, which basically
states that fluctuating forces cause dissipation (friction).

The Smoluchowski equation: We end this chapter on stochasticity with the
Smolochowski equation, which will be the starting point for the derivation of the
Fokker-Planck equation in the next chapter. Consider three (arbitrary) times t1,
t2 and t3, ordered such that t3 > t2 > t1. Consider a realization of an arbitrary
random process x(t) starting from x1 at t1. Suppose we want to know the conditional
probability P2(x3, t3|x1, t1). Since the realization must go through some point x2 at
the intermediate time t2 we have that

P2(x3, t3|x1, t1) =
∫
P3(x3, t3|x2, t2; x1, t1)P2(x2, t2|x1, t1) dx2

This is almost too obvious to be interesting. But, now let’s consider the case in
which x(t) is Markovian. In that case we have that

P3(x3, t3|x2, t2; x1, t1) = P2(x3, t3|x2, t2) = P2(x3, t3 − t2|x2)
where the last step follows from our assumption that the probability distributions are
stationary (i.e., the value of t1 is irrelevant). Substitution in the above expression
yields

P2(x3, t3|x1) =
∫
P2(x3, t3 − t2|x2)P2(x2, t2|x1) dx2

which is known as the Smoluchowski equation or the Chapman-Kolmogorov
equation. Note that this equation is only valid for Markovian random processes,
and for t3 > t2 > 0.
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CHAPTER 9

The Fokker-Planck Equation

When describing the dynamics of many-body systems, we often want to know the
collective influence of many degrees of freedom (this is often called a ‘thermal bath’, or
‘bath’ for short) on a single (possibly vectorial) degree of freedom (say the momentum
vector ~p of one particular subject mass. The subject can have a variety of interactions
with the bath; they can be short-ranged, i.e., van der Waals forces in a gas, or long-
ranged, such as the Coulomb forces in a plasma or the gravitational forces acting
on stars in a galaxy. Typically, these interactions with the bath cause ~p to be a
(Markovian) random process, and thus subject to the Langevin and Smolochowski
equations described in the previous chapter. Our goal in this chapter is to derive an
equation that describes how the probability distribution for a (Markovian) degree
of freedom (typically this will be the velocity or momentum of our subject mass)
evolves over time due to being exposed to a stochastic force field arising from the
bath’s many degrees of freedom. This equation is called the Fokker-Planck equation,
which is a powerful differential equation for the evolution of any probability function
for any Markovian degree(s) of freedom. In particular, as we will see, it can be
used to describe the collision term, (∂f/∂t)c, in the Boltzmann equation describing
a collisional many-body system in which the interactions are long-range.

We start with a derivation for the 1-dimensional case, i.e., we consider a 1-dimensional
random variable x(t). The result is then easily generalized to higher dimensional ran-
dom variables.

Starting from the Smoluchowski equation at the end of the previous chapter, and
using the following change of notation t3 → t + ∆t, x3 → x, x2 → x − ∆x and
x1 → x0 we have that a Markovian random process obeys

P2(x, t+∆t) =

∫
Ψ(∆x,∆t|x−∆x, t)P2(x−∆x, t|x0)d(∆x)

where we have introduced the transition probability Ψ(∆x,∆t|x − ∆x, t) which
expresses the probability that starting from x−∆x at t the random variable under-
goes a change ∆x in a time step ∆t. Note that this is merely a change of notation,
since

Ψ(∆x,∆t|x−∆x, t) = P2(x, t+∆t|x−∆x, t)
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If we now use a Taylor series expansion for the integrand in the above expression,
we obtain that

P2(x, t +∆t) =

∫
d(∆x)

∞∑

n=0

(−∆x)n

n!

∂n

∂xn
[Ψ(∆x,∆t|x−∆x, t)P2(x−∆x, t|x0)]x−∆x=x

=

∫
d(∆x)

∞∑

n=0

(−∆x)n

n!

∂n

∂xn
[Ψ(∆x,∆t|x, t)P2(x, t|x0)]

=

∞∑

n=0

(−1)n

n!

∂n

∂xn

[
P2(x, t|x0)

∫
d(∆x) (∆x)n Ψ(∆x,∆t|x−∆x, t)

]

=

∞∑

n=0

(−1)n

n!

∂n

∂xn
[〈(∆x)n〉P2(x, t|x0)]

where in the last step we have used the fact that the integral expresses the expectation
value (ensemble average) of (∆x)n. Using that the n = 0 term of the sum is simply
equal to P2(x, t|x0), and bringing this term to the left-hand side of the equation, we
obtain that

∂P2(x, t|x0)
∂t

= lim
∆t→0

P2(x, t +∆t|x0)− P2(x, t|x0)
∆t

=

∞∑

n=1

(−1)n

n!

∂n

∂xn
[
D(n)(x, t)P2(x, t|x0)

]

where we have defined

D(n)(x, t) ≡ lim
∆t→0

〈(∆x)n〉
∆t

If we only keep the first two terms of the Taylor series expansion (i.e., we assume
that ∆x is small, such that the higher-order terms can be ignored), then we finally
obtain the Fokker-Planck equation:

∂P2

∂t
= − ∂

∂x
[D(1)P2] +

1

2

∂2

∂x2
[D(2)P2]

Here P2 = P2(x, t|x0) is to be regarded as a function of the variables x and t with x0
fixed, i.e., P2(x, 0|x0) = δ(x−x0). As we will see below, this Fokker-Planck (hereafter
FP) equation is a generalized diffusion equation for the evolution of P2.
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Validity of Fokker-Planck equation: Before we discuss what this equation tells
us, it is important to first ask under what conditions it is valid. Along the way we
have made the assumptions that the random process is stationary andMarkovian.
In addition, the truncation of the Taylor series implies that we have assumed that
∆x is small. We say that we have assumed that we are in the diffusive limit.
One might be tempted to argue that if one chooses ∆t to be sufficiently small, then
one is always in the diffusive limit. However, we also need to satisfy the Markovian
constraint.

Suppose we want to use the FP equation to describe the diffusion of particles in a
many-body system in velocity space, i.e., our random variable is v(t). As we have seen
in the previous chapter, v(t) is a random process due to the stochastic forces δF (t)
that it experiences. Since δF (t) is a continuous, smooth (but unpredictable, and
thus stochastic) function, it is never really Markovian. However, if we examine δF (t)
with a time step ∆t ≫ τcoll then the resulting v(t) will be Markovian. However, on
such time scales many of the collisions will result in large δv. Hence, the FP-equation
is not very well suited to study how individual particles in a gas diffuse in velocity
space. However, if we consider a relatively massive particle (say, a pollen floating in
the air), then the velocity changes due to collisions with individual gas atoms will
in general be small due to momentum conservation. Hence, the FP equation can be
used to describe the Brownian motion of massive particles immersed in a fluid.

In the case of a galaxy or globular cluster, each star undergoes many simultaneous
interactions with all other stars in the system (i.e., gravity is an unshielded long-
range force). Hence, we effectively have that τcoll = 0, and thus that δF (t) is to
good approximation Markovian, even for very small time steps. Typically, though,
there is always a non-zero probability for a very close encounter that results in a
large ∆v. These encounters are not treated by the FP equation. However, as we
will see later, the impact of the many weak encounters (those corresponding to large
impact parameters and small ∆v) is always dominant over the impact of the few
strong encounters (those corresponding to small impact parameters and larer ∆v),
and one thus should not make a large error by ignoring the strong interactions (i.e.,
the FP equation is able to accurately describe the diffusion that stars undergo due
to the fact that the system is not exactly collisionless.
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Diffusion in velocity space:
Using that ∆v = v(∆t)− v, we have that

D(1) = lim
∆t→0

〈∆v〉
∆t

= lim
∆t→0

1

∆t
[〈v(∆t)〉 − v]

D(2) = lim
∆t→0

〈(∆v)2〉
∆t

= lim
∆t→0

1

∆t

[
〈v(∆t)v(∆t)〉 − 2v〈v(∆t)〉+ v2

]

In Chapter 8 we have seen that for white noise we have that

〈v(t)〉 = v e−γt/m

and

〈v(t)v(t)〉 = 〈v(t)〉2 + Dγ

m

(
1− e−2γt/m

)

Substitution in the above expressions for D(1) and D(2), and using the Taylor series
expansion for ex, yields

D(1) = −v γ
m
, D(2) = 2D

γ2

m2

The FP equation for the diffusion in velocity space (subject to a white noise stochastic
force) is thus given by

∂P (v, t)

∂t
=

1

m

[
γ
∂ vP (v, t)

∂v
+
Dγ2

m

∂2P (v, t)

∂v2

]
=

1

τd

∂

∂v

[
vP (v, t) +

D

τd

∂P (v, t)

∂v

]

where the latter part we expressed in terms of the dissipation time τd = m/γ.

Let’s see what it does. Suppose our original distribution is a (narrow) Gaussian
centered on some velocity v0 > 0 and with a small dispersion σv. The first term
is proportional to v∂P/∂v which is negative for v < 0 and v > v0 and positive for
0 < v < v0. Hence, this term causes the center of the velocity distribution to move
towards zero (i.e., |v0| → 0), consistent with the friction term γv in front of the term.
The second term is proportional to the second derivative ∂2P/∂v2, which is negative
for |v − v0| < σv and positive otherwise. Hence, the second term causes a ‘diffusion’
of velocities away from the mean v0, and thus a broadening of P (v, t).

We can also use the Fokker-Planck equation to examine what the equilibrium ve-
locity distibution looks like. Since at equilibrium ∂P (v, t)/∂t = 0, we see that the
equilibrium distribution P satisfies

∂P

∂v
= −vτd

D
P ⇒ P ∝ exp

(
−mv2

2Dγ

)
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Using the Einstein-Smoluchowski relation according to which Dγ = kBT (see
Chapter 8), and requiring normalization, we obtain that

Peq(v) =

(
m

2πkBT

)1/2

exp

(
− mv2

2kBT

)

which we recognize as theMaxwell-Boltzmann distribution (in 1D). Hence, colli-
sions (stochastic forces) drive the velocity distribution towards the MW distribution.
In fact, we can even do better than this. Suppose that we start all the particles off
at t = 0 with some fixed velocity v0, i.e., P (v, 0) = δ(v − v0). Then, the full time-
dependent solution to the Fokker-Planck equation is

P (v, t) =

(
m

2πkBT (1− e−2γt/m)

)1/2

exp

[
− m(v − v0e

−γt/m)2

2kBT (1− e−2γt/m)

]

This distribution is known as the Ornstein-Uhlenbeck distribution. As t →
∞ it the Maxwell-Boltzmann distribution, but now we can see how the velocity
distribution approaches equilibrium!

Extension to multi-dimensional Markov processes: the discussion thus far was
restricted to one-dimensional Markov processes x(t). However, it is straightforward
to extent this to any n-dimensional Markov process ~x(t), with ~x = (x1, x2, ..., xn).
In most case that we encounter in astrophysics n will be either 3, for example when
considering the diffusion in 3D velocity space ~v, or 6, when considering diffusion
in 6D phase space ~w = (~q, ~p). The obvious generalization for the n-dimensional
Fokker-Planck equation is given by

∂P

∂t
= − ∂

∂xi
[D

(1)
i P2] +

1

2

∂2

∂xi∂xj
[D

(2)
ij P2]

Here the functions D
(1)
i and D

(2)
ij are the obvious generalizations of their 1D equiva-

lents, i.e.,

D
(1)
i = lim

∆t→0

1

∆t

∫
dn(∆~x) (∆x)i Ψ(∆~x,∆t|~x) = lim

∆t→0

〈(∆x)i〉
∆t

D
(2)
ij = lim

∆t→0

1

∆t

∫
dn(∆~x) (∆x)i (∆x)j Ψ(∆~x,∆t|~x) = lim

∆t→0

〈(∆x)i (∆x)j〉
∆t
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Recap: The FP equation we have derived thus far allows us to compute the evolution
of P2(~x, t|~x0) for a stationary, Markov process ~x(t). In the diffusive limit, which
implies that we need ∆~x on a time scale ∆t ∼ τcoll to be small, we can truncate the
Taylor series expansion of the transition probability function at second order,
thus giving rise to the FP equation, which only depends on the first and second order
diffusion coefficients D

(1)
i and D

(2)
ij .

Although this is a powerful result for many applications in physics, in some cases
we are not interested in the evolution of subject masses that start from a fixed ~x0 at
t = t0. Rather, we want to find an equation that describes how the (unconstrained
1-point probability function P (~x, t) evolves under the influence of a stochastic force
field, characterized by a correlation function 〈δF (~x1, t) δF (~x2, t+∆t)〉. A particular
application of this sort, and the one most relevant to ASTR 501, is the collision
term ∂f/∂t|c of the Boltzmann equation that we derived in Chapter 6.

As we have seen, using the BBGKY hierarchy, we have that

df

dt
=
∂f

∂t
+ {f,H} =

(
∂f

∂t

)

c

where (
∂f

∂t

)

c

=

∫
d3~q2 d

3~p2
∂U(|~q1 − ~q2|)

∂~q1
· ∂f

(2)

∂~p1

which depends on the 2-particle DF f (2)(~q1, ~q2, ~p1, ~p2, t). Solving this integro-differential
equation is extremely difficult. In addition, since it depends on f (2) it is not a closed
equation, but part of the full BBGKY hierarchy.

We have seen that if we can assume that the collisions are localized, i.e., are due to
a short-range force such as the van der Waals force, and we assume molecular
chaos, then we have that ∂f/∂t|c → I[f ], such that the Boltzmann equation becomes
closed. We can then obtain moment equations (continuity, momentum and energy)
by multiplying this closed Boltzmann equation with vn (n = 0, 1 and 2, respectively)
and integrating over momentum space.

But how can we describe ∂f/∂t|c for a gravitational N -body system (or a charged
plasma) in which the forces are long-range? As you may expect at this point, the
answer is to resort to a FP-like equation, which after all expresses how a probability
function evolves under the influence of a stochastic force field. We thus want to derive
a FP-like equation to describe ∂f(~q, ~p, t)/∂t due to collisions (i.e., due to stochasticity
in the force field that arises from finite-N effects). Note that the evolution of f(~q, ~p, t)
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due to the smooth potential is accounted for by the CBE

df

dt
=
∂f

∂t
+ {f,H} = 0 → ∂f

∂t
= {H, f}

We need to modify this by adding a term ∂f/∂t|c due to the finite-N induced non-
smoothness. This is exactly what we have been working towards in this and the
previous chapter. However, we need to modify the FP equation derived above such
that it describes the evolution of f(~q, ~p, t) (due to collisionality), rather than the
evolution of P2(~q, ~p, t|~q0, ~p0, t0). As it turns out, this is actually quite simple. The
reason is that both f and P2 are probability functions associated with a Markovian
processes. In addition, the initial conditions (i.e., (~q0, ~p0) at t0) played no role in our
derivation of the FP equation.

In what follows to simplify the notation we use (~q, ~p) → ~w, and we describe the
evolution of f(~w, t) for the 6D stochastic variable ~w(t). Let Ψ(∆~w, ~w) d6(∆~w)∆t be
the probability that a particle with phase-space coordinates ~w is ‘scattered’ to the
phase-space volume d6(∆~w) centered on ~w + ∆~w during the (short) time interval
∆t. Note that the transition probability only accounts for the effects due to the
stochastic component of the force field; the phase-space evolution due to the smooth
potential is already accounted for as described above.

The distribution function f(~w, t) at a fixed ~w changes due to collisions in two ways.
First of all, particles with phase-space coordinates ~w, ~w + d~w are scattered into
other parts of phase-space due to collisions, thus giving rise to a loss term, i.e., a
decreases of f(~w, t). Secondly, f(~w, t) increases due to the fact that particles outside
of ~w, ~w + d~w are scattered into this phase-space volume due to encounters, thus
giving rise to a gain term. It is easy to see that

loss term :

(
∂f(~w)

∂t

)

−
= −f(~w)

∫
d6(∆~w) Ψ(∆~w, ~w) ,

gain term :

(
∂f(~w)

∂t

)

+

=

∫
d6(∆~w) Ψ(∆~w, ~w −∆~w) f(~w −∆~w) .

The combination of these loss and gain terms equals the collision term of the Boltz-
mann equation, i.e.,

(
∂f

∂t

)

c

=

∫
d6(∆~w) [Ψ(∆~w, ~w −∆~w) f(~w −∆~w)−Ψ(∆~w, ~w) f(~w)]
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This is sometimes called the Master equation (not to be confused with the master-
moment equation defined in Chapter 7). Upon closer examination, there is a subtle
assumption lurking in this expression. We have assumed that f(~w) and Ψ(∆~w, ~w)
are statistically independent, such that the scattering rates can be written as their
products. This implies that we have assumed that the distributions of ‘field’ particles,
described by f(~w), and ‘subject’ masses, baked into Ψ(∆~w, ~w), are independent. But
the collisions should introduce correlations among them....Effectively we have thus
once more relied on the assumption of molecular chaos, i.e., that by the time a
field and subject particle meet for a second encounter the correlation induced by the
first encounter has been erased by encounters with other field particle.

If we restrict ourselves, as before, to weak encounters only, such that |∆~w| is
small, then we can Taylor expand the first term in the master equation and truncate
at second-order (i.e., make the Fokker-Planck assumption):

Ψ(∆~w, ~w −∆~w) f(~w −∆~w) = Ψ(∆~w, ~w) f(~w)−
6∑

i=1

∆wi
∂

∂wi

[Ψ(∆~w, ~w) f(~w)] +
1

2

6∑

i,j=1

∆wi ∆wj
∂2

∂wi∂wj

[Ψ(∆~w, ~w) f(~w)]

Substituting this in the master equation, we finally obtain that

(
∂f

∂t

)

c

= −
6∑

i=1

∂

∂wi
{D[∆wi] f(~w)}+

1

2

6∑

i,j=1

∂2

∂wi∂wj
{D[∆wi∆wj] f(~w)}

with

D[∆wi] ≡
∫

d6(∆~w)∆wiΨ(∆~w, ~w)

D[∆wi∆wj ] ≡
∫

d6(∆~w)∆wi∆wj Ψ(∆~w, ~w)

the diffusion coefficients that express the expectation values for a change ∆wi

and ∆wi∆wj per unit time interval. These coefficients describe the rate at which
particles diffuse through phase-space due to collisions. Note that the use of square
brackets after the diffusion coefficients is to remind the reader that D[∆wi∆wj ] is
not a function of the variable ∆wi∆wj . Rather, it is an average of ∆wi∆wj over
∆~w per unit time and a function of the position in phase-space where the average
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is taken. And since with this new notation it is immediately evident whether the
diffusion coefficien is first of second order, we also removed the superscripts (1) and
(2).

The above expression for the collision term ∂f/∂t|c is a Fokker-Planck equation.
Substituting this in the Boltzmann equation yields

df

dt
= −

6∑

i=1

∂

∂wi
{D[∆wi] f(~w)}+

1

2

6∑

i,j=1

∂2

∂wi∂wj
{D[∆wi∆wj ] f(~w)}

This form of the Fokker-Planck equation is sometimes called Kramers equation or
the Chandrasekhar equation. More often, though, in the astrophysical literature,
it is simply referred to as ‘the’ Fokker-Planck equation.

The virtue of the FP equation is that the Lagrangian evolution of the distribution
function is entirely described by the first and second-order diffusion coefficients,
which are functions only of the phase-space coordinates. Hence, it is a differential
equation, rather than an integro-differential equation like the first-order equation of
the BBGKY hierarchy, and therefore much more easily solved. As a consequence,
the FP equation is the primary tool to describe the evolution of the distribution
function of a gravitational system under the influence of collisions.

Weak versus Strong encounters:

As we have mentioned several times, the FP equation is only valid forweak encoun-
ters (those resulting in a small ∆~w). In a gravitational system there will always be
some encounters, though, for which ∆~w will be large. Typically these will be close
encounters with a small impact parameter b < bmin. If the net impact of these strong
encounters is small compared to that of weak encounters we are justified in ignoring
the strong encounters, and the FP equation should be accurate.

In the problem sets you derive that the velocity impuls of a subject mass due to a
(high-speed) encounter with a field particle of mass m with impact parameter b and
velocity v is given by

∆v⊥ ≃ 2Gm

b v

where the perpendicular sign is used to indicate that the velocity impuls is in the
direction perpendicular to that of the encounter velocity. This approximation as-
sumes that the deflection angle is small, such that the trajectory of the field particle
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wrt the subject mass can be approximated as a straight line. Roughly speaking, this
approximation breaks down when ∆v⊥ ≈ v, which occurs when

b = b90 =
2Gm

v2

Here the ‘90’ is to indicate that for this impact parameter the deflection angle is
equal to 90 degrees. In what follows we set bmin = b90

4

The surface density of field particles in a system of size R is roughly of the order of
N/(πR2). Hence, when a subject mass crosses the system once it has

dN

db
db =

N

πR2
· 2π b db = 2N

R2
b db

encounters with impact parameters in the range b, b + db. Each such encounter
(assuming weak encounters only, i.e., b > bmin) produces an impulsive velocity per-
turbation ∆v⊥(b) ∼ 2Gm/bv. If, for simplicity, we assume that the system is homo-
geneous then the net ∆v⊥ per crossing will be approximately zero (the perturbing
field particles are randomly distributed in the plane perpendicular to the subject’s
velocity). However, the mean square velocity change is given by

∆v2 =

∫ bmax

bmin

(∆v⊥)
2(b)

dN

db
db = 8N

(
Gm

Rv

)2 ∫ bmax

bmin

db

b

An important conclusion from this is that

Each octave in impact parameters contributes equally to gravitational scattering

If we use that the typical velocity is given by

v ∼
√
GM

R
=

√
GNm

R
,

and introduce the Coulomb logarithm

ln Λ = ln

(
bmax

bmin

)

4Defining the minimum impact parameter for a weak encounter as that for which the deflection
angle is somewhat smaller, say 5 degrees, which may seem more reasonable, does not significantly
impact any of what follows.

102



then we can obtain that

∆v2 =
8

N
ln Λ v2

If we set bmax = R and bmin = b90, then, using the above expression for the typ-
ical velocity, we have that ln Λ ≃ lnN . We thus have that it takes of the order
of N/(8 lnN) crossing times for the net effect of weak encounters to be such that
(∆v⊥)2 ∼ v2. This time is often called the two-body relaxation time:

τrelax =
N

8 lnN
τcross

(see also Chapter 2).

For comparison, we now compute how long it takes for strong encounters to
produce a net effect of that magnitude. In fact, this is trivial: by definition, a
strong encounter has b < b90, and therefore a single strong encounter suffices to
have (∆v⊥)2 ≥ v2. All we need to compute is therefore the collision time for strong
encounters. Using that τcoll = (nσv)−1 (see Chapter 2), where the number density
n = 3N/4πR3 and the cross section σ = π(2b90)

2 = 4πb290, we find that

τ strongcoll =
1

3N

(
R

b90

)2

τcross

Using the expression for b90 and the typical velocity v, we have that R/b90 ≃ N/2,
so that

τ strongcoll =
N

12
τcross =

2

3
lnN τrelax

Hence, we see that

The net impact ofweak encounters is of order lnN

times as important as that of strong encounters

Thus, as long as N is large, we can safely ignore strong encounters, and the Fokker-
Planck equation accurately describes the evolution of the distribution function due
to collisions.

Diffusion coefficients:

Solving the Fokker-Planck equations requires that we can write down expressions for
the diffusion coefficients D[∆wi] and D[∆wi ∆wj] with wi being a 6D phase-space
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vector. Working out the diffusion coeffients in 6D phase-space from first principles is
extremely complicated. However, we can drastically simplify matters using the fact
that each octave in impact parameter makes an equal contribution to the scattering.
If we focus on weak encounters only then the impact parameters to consider run
from bmin = b90 to bmax = R. We now derive the impact parameter b1/2, such that
encounters with b < b1/2 account for 50 percent of the total (∆v⊥)

2. Using that each
octave makes an equal contribution we thus have that

ln(b1/2)− ln(bmin) = ln(bmax)− ln(bmin)

Solving for b1/2 and using that bmax = R and bmax/bmin = Λ ∼ N one trivially finds
that

b1/2 =
R√
N

Hence, more than 50 percent of the scattering impact is due to encounters with an
impact parameter that is significantly smaller than the mean particle separation λint =
R/N1/3! This amazing result implies that we are more than justified in making
a local approximation, i.e., it is surprisingly accurate to assume that the field
particles are an infinite, homogeneous sea with a DF that is equal to the local DF. But
there is more; since scattering is mainly a local process, this supports the assumption
of molecular chaos (i.e., it is unlikely to have a local encounter with the same particle
twice, and even if one does, the memory/correlation from the previous encounter will
have been erased in the meantime). It also implies that the encounter time, which is
of the order of b/v, is much smaller than the orbital time. Hence, we can ignore any
change in position during the encounter (further justifying the local approximation),
and focus purely on changes in velocity (a change in velocity will, over time, induce
a change in position, which is accounted for by the CBE).

If we choose the canonical phase-space coordinates to be the Cartesian coordinates,
~w = (~x,~v), and use that we can ignore changes in position, such that D[∆xi] =
D[∆xi∆xj ] = D[∆xi∆vj ] = 0, then the collision term in the Fokker-Planck equation
simplifies to

(
∂f

∂t

)

c

= −
3∑

i=1

∂

∂vi
{D[∆vi] f(~w)}+

1

2

3∑

i,j=1

∂2

∂vi∂vj
{D[∆vi∆vj ] f(~w)}

Hence, we are left with the task to compute D[∆vi] (3 components) and D[∆vi∆vj ]
(6 independent components). In the specific case of local gravitational encounters
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this can be done fairly straightforward. Consider an infinite, homogeneous sea of
field particles of mass ma and with a velocity distribution fa(~va) (note, because of
the assumed homogeneity, we can ignore the position dependence). Let m be the
mass of our subject(s), whose velocity distribution function is f(~v). Often, but not
always, we are interested in the situation where the subject masses are the field
particles themselves, in which case m = ma and f(~v) = fa(~va)δ(~va − ~v). In what
follows, though, we consider the more general case in which the subjects can be
different from the field particles.

Working out how an encounter with impact parameter b between a field particle and
a subject mass impacts the velocity of the latter, and computing the expectation
values 〈∆vi〉 and 〈∆vi∆vj〉 by integrating over b and the velocity distribution f(~v)
of the field particles (see Galactic Dynamics by Binney & Tremaine, or Dynamics
and Evolution of Galactic Nuclei by Merritt for detailed derivations), one obtains

D[∆vi] = 〈∆vi〉 = 4πG2ma(m+ma) lnΛ
∂

∂vi
h(~v)

D[∆vi∆vj ] = 〈∆vi∆vj〉 = 4πG2m2
a ln Λ

∂2

∂vi∂vj
g(~v)

where h(~v) and g(~v) are known as the Rosenbluth potentials, given by

h(~v) ≡
∫

d3~va
fa(~va)

|~v − ~va|

g(~v) ≡
∫

d3~vafa(~va) |~v − ~va|

Here we have assumed that Λ is sufficiently large, such that ln(1+Λ2) = 2 lnΛ. Note
that the expression the Coulomb logarithm is slightly different than before due to
the fact that we consider the general case in which subject and field particles have
different masses, i.e.,

Λ ≡ bmax

bmin
=

Rv2

G(m+ma)

If we assume that the velocity distributions are isotropic, such that f(~v) → f(v) and
fa(~va) → fa(va), then the above expressions for the diffusion coefficients significantly
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simplify to

D[∆v‖] = −16π2G2ma(m+ma) ln Λ E2(v)

D[(∆v‖)
2] =

32

3
π2G2m2

a ln Λ v [E4(v) + F1(v)]

D[(∆v⊥)
2] =

32

3
π2G2m2

a ln Λ v [3E2(v)− E4(v) + 2F1(v)]

where

En(v) =

∫ v

0

(va
v

)n
fa(va)dva

Fn(v) =

∫ ∞

v

(va
v

)n
fa(va)dva

As a final aside; once the diffusion coefficients in velocity space are known it is fairly
straightforward to derive related diffusion coefficients. As an example,

D[∆E] =
1

2
〈(~v +∆~v)2 − ~v2〉 = 〈∆v · ~v〉+ 〈∆~v ·∆~v〉

= v D[(∆v)‖] +
1

2
D[((∆~v)‖)

2] +
1

2
D[((∆~v)⊥)

2]

and, along similar lines, one finds that

D[(∆E)2] = v2D[(∆~v)‖)
2]

The two-body relaxation time:

Now that we have derived expressions for the diffusion coefficients we can derive a
more accurate, more local expression for the relaxation time. The latter is loosely
defined as the time scale on which the cumulative effect of two-body encounters
becomes significant for a typical particle. A meaningful way to quantify this is as
follows:

τrelax =
v2rms

D[(∆v‖)2]

We want to derive an expression for the characteristic relaxation time for a population
of identical particles (i.e., m = ma). For simplicity, we assume that the velocity
distribution of the field particles is isotropic and Maxwellian, with a one-dimensional
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velocity dispersion σ. Using that v2rms = σ2 and assuming that a typical particle is
moving with a speed equal to the rms velocity of the field particles, i.e., v =

√
3σ,

then it is an easy exercise to show that one finds that

τrelax = 0.34
σ3

G2mρ ln Λ

Note that σ and ρ are local properties here. Substituting typical values for the So-
lar neighborhood (σ = 30 km s−1, ρ = 0.04 M⊙ pc−3, m = 1 M⊙) yields τrelax =
6 × 1014 yr(ln Λ/18.5)−1 indicating that the impact of stellar encounters in the So-
lar neighborhood is entirely unimportant; i.e., to very good approximation we may
consider the Solar neighborhood to be collisionless.
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Summary Flowcharts:

Figures 8 and 9 on the next two pages summarize the material covered in Part II of
these lecture notes. In particular, Fig. 8 shows a flowchart for the dynamical equa-
tions describing many-body systems, starting from Liouville’s theorem, it shows
how, via the BBGKY hierarchy, one arrives at the collisionless Boltzmann
equation (CBE) for collisionless fluids, at the (collisional) Boltzmann equation
for a collisional fluid in which the inter-particle forces are short-range (this relies
on the assumption of molecular chaos which closes the first-order equation of the
BBGKY hierarchy), and finally at the Fokker-Planck equation for a collisional
system in which the inter-particle forces are long-range.

Fig. 9 lists three fundamental equations used to describe the dynamics of many-body
systems5. It also shows how the Boltzmann equations (both collisional and collision-
less) can be integrated over velocity space to give rise to the master-moment equa-
tions (using collisional invariants), from which one derives the continuity, momentum
and energy equations. For collisionless fluids the resulting momentum equations are
known as the Jeans equations, while for a collisional fluid they are the Navier-Stokes
equations, which reduce to the Euler equations for in inviscid fluid.

5One equation is missing from this list, which is the Lenard-Balescu equation to be discussed
later in Part V
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Figure 8:
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Figure 9:
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Part III: Hydro-Dynamics

Hydrodynamics is the study of gases and liquids which are many-body systems in
which the inter-particle forces are short-range. In this Part III of the lecture notes
we develop the equations used to liquids and gases, and consider a number of astro-
physical applications.

Fluid dynamics is a rich topic, and one could easily devote an entire course to it.
The following chapters therefore only scratch the surface of this rich topic. Readers
who want to get more indepth information are referred to the following excellent
textbooks
- The Physics of Fluids and Plasmas by A. Choudhuri
- Modern Fluid Dynamics for Physics and Astrophysics by O.Regev et al.
- The Physics of Astrophysics II. Gas Dynamics by F. Shu
- Principles of Astrophysical Fluid Dynamics by C. Clarke & B. Carswell
- Modern Classical Physics by K.Thorne & R. Blandford
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CHAPTER 10

Introduction to Hydrodynamics

Hydrodynamics is the study of liquids and neutral gases. In this chapter we introduce
some relevant nomenclature.

Compressibility: The main difference between a liquid and a gas is with regard
to their compressibility. A gas is compressible and will completely fill the volume
available to it. A liquid, on the other hand, is (to good approximation) incompress-
ible, which means that a liquid of given mass occupies a given volume.

NOTE: Although a gas is said to be compressible, many gaseous flows (and virtually
all astrophysical flows) are incompressible. When the gas is in a container, you can
easily compress it with a piston, but if you move your hand (sub-sonically) through
the air, the gas adjust itself to the perturbation in an incompressible fashion (it
moves out of the way at the speed of sound). The small compression at your
hand propagates forward at the speed of sound (sound wave) and disperses the
gas particles out of the way. In astrophysics we rarely encounter containers, and
subsonic gas flow is often treated (to good approximation) as being incompressible.

If a flow is incompressible then ∇ · ~u = 0.

If a substance is incompressible then dρ/dt = 0.

Ideal (Perfect) Fluids and Ideal Gases:

As we discuss in more detail in the next Chapter, the resistance of fluids to shear
distortions is called viscosity, which is a microscopic property of the fluid that de-
pends on the nature of its constituent particles, and on thermodynamic properties
such as temperature. Fluids are also conductive, in that the microscopic collisions
between the constituent particles cause heat conduction through the fluid. In many
fluids encountered in astrophysics, the viscosity and conduction are very small. An
ideal fluid, also called a perfect fluid, is a fluid with zero viscosity and zero conduc-
tion.

NOTE: An ideal (or perfect) fluid should NOT be confused with an ideal or perfect
gas, which is defined as a gas in which the pressure is solely due to the kinetic motions
of the constituent particles. As shown in Appendix I, and as you have probably seen
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before, this implies that the pressure can be written as P = n kB T , with n the
particle number density, kB the Boltzmann constant, and T the temperature.

Fluid Elements & the Macroscopic Continuum Approach:

In the macroscopic approach, the fluid is treated as a continuum. It is often useful
to think of this continuum as ‘made up’ of fluid elements (FE). These are small
fluid volumes that nevertheless contain many particles, that are significantly larger
than the mean-free path of the particles, and for which one can define local hydro-
dynamical variables such as density, pressure and temperature. The requirements
are:

1. the FE needs to be much smaller than the characteristic scale in the problem,
which is the scale over which the hydrodynamical quantities Q change by an
order of magnitude, i.e.

lFE ≪ lscale ∼
Q

∇Q
2. the FE needs to be sufficiently large that fluctuations due to the finite number

of particles (‘discreteness noise’) can be neglected, i.e.,

n l3FE ≫ 1

where n is the number density of particles.

3. the FE needs to be sufficiently large that it ‘knows’ about the local conditions
through collisions among the constituent particles, i.e.,

lFE ≫ λmfp

The ratio of the mean-free path, λmfp, to the characteristic scale, lscale is known as
the Knudsen number: Kn = λmfp/lscale. Fluids typically have Kn ≪ 1; if not,
then one is not justified in using the continuum approach to fluid dynamics, and one
is forced to resort to a more statistical approach based on kinetic theory (i.e., using
the Boltzmann equation).

Fluid Dynamics: Eulerian vs. Lagrangian Formalism:

One distinguishes two different formalisms for treating fluid dynamics:
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• Eulerian Formalism: in this formalism one solves the fluid equations ‘at
fixed positions’: the evolution of a quantity Q is described by the local (or
partial, or Eulerian) derivative ∂Q/∂t. An Eulerian hydrodynamics code is a
‘grid-based code’, which solves the hydro equations on a fixed grid, or using
an adaptive grid, which refines resolution where needed. The latter is called
Adaptive Mesh Refinement (AMR).

• Lagrangian Formalism: in this formalism one solves the fluid equations
‘comoving with the fluid’. The evolution of a quantity Q is described by the
‘substantial’ (or ‘Lagrangian’) derivative dQ/dt (sometimes written as DQ/Dt).
A Lagrangian hydrodynamics code is a ‘particle-based code’, which solves the
hydro equations per simulation particle. Since it needs to smooth over neigh-
boring particles in order to compute quantities such as the fluid density, it is
called Smoothed Particle Hydrodynamics (SPH).

To derive an expression for the substantial derivative dQ/dt, realize that Q =
Q(t, x, y, z). When the fluid element moves, the scalar quantity Q experiences a
change

dQ =
∂Q

∂t
dt +

∂Q

∂x
dx+

∂Q

∂y
dy +

∂Q

∂z
dz

Dividing by dt yields

dQ

dt
=
∂Q

∂t
+
∂Q

∂x
ux +

∂Q

∂y
uy +

∂Q

∂z
uz

where we have used that dx/dt = ux, which is the x-component of the fluid velocity
~u, etc. Hence we have that

dQ

dt
=
∂Q

∂t
+ ~u · ∇Q

Using a similar derivation, but now for a vector quantity ~A(~x, t), it is straightforward
to show that

d ~A

dt
=
∂ ~A

∂t
+ (~u · ∇) ~A

which, in index-notation, is written as
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dAi

dt
=
∂Ai

∂t
+ uj

∂Ai

∂xj

Another way to derive the above relation between the Eulerian and Lagrangian
derivatives, is to think of dQ/dt as

dQ

dt
= lim

δt→0

[
Q(~x+ δ~x, t + δt)−Q(~x, t)

δt

]

Using that

~u = lim
δt→0

[
~x(t + δt)− ~x(t)

δt

]
=
δ~x

δt

and

∇Q = lim
δ~x→0

[
Q(~x+ δ~x, t)−Q(~x, t)

δ~x

]

it is straightforward to show that this results in the same expression for the substan-
tial derivative as above.

Figure 10: Streaklines showing laminar flow across an airfoil; made by injecting dye at
regular intervals in the flow

Kinematic Concepts: Streamlines, Streaklines and Particle Paths:

In fluid dynamics it is often useful to distinguish the following kinematic constructs:
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• Streamlines: curves that are instantaneously tangent to the velocity vector
of the flow. Streamlines show the direction a massless fluid element will travel
in at any point in time.

• Streaklines: the locus of points of all the fluid particles that have passed con-
tinuously through a particular spatial point in the past. Dye steadily injected
into the fluid at a fixed point extends along a streakline.

• Particle paths: (aka pathlines) are the trajectories that individual fluid ele-
ments follow. The direction the path takes is determined by the streamlines of
the fluid at each moment in time.

Only if the flow is steady, which means that all partial time derivatives (i.e., ∂~u/∂t =
∂ρ/∂t = ∂P/∂t) vanish, will streamlines be identical to streaklines be identical to
particle paths. For a non-steady flow, they will differ from each other.

Fluid Dynamics: closure:

The starting point for our development of macroscopic hydrodynamics are the mo-
ment equations of the Boltzmann equation. In Chapter 7, starting from the master-
moment equation, we obtained the continuity equation,

∂ρ

∂t
+
∂ρui
∂xi

= 0 ,

the momentum equations,

∂uj
∂t

+ ui
∂uj
∂xi

=
1

ρ

∂σij
∂xi

− ∂Φ

∂xj
,

and the energy equation,

∂

∂t

[
ρ

(
u2

2
+ ε

)]
= − ∂

∂xk

[
ρ

(
u2

2
+ ε

)
uk − σjkuj + ρ〈wk

1

2
w2〉
]
− ρuk

∂Φ

∂xk
.

Here ~u = 〈~v〉 is the ‘bulk’ (or ‘streaming’ velocity), σij ≡ −ρ〈wiwj〉 is the stress
tensor, and ε = 1

2
〈w2〉 is the specific internal energy. Here and throughout Part

III, the angle brackets 〈·〉 can be interpreted as an average over the fluid element.
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Together with the Poisson equation,

4πGρ = ∇2Φ

this is a set of 6 equations (the momentum equations is a set of 3 equations, one for
each direction) that contain a total of 15 unknowns: ρ, Φ, ui, ε, σij and 〈wi

1
2
w2〉.

Note that i and j run from 1 to 3, and that the stress tensor is manifestly symmetric
(thus contributing a total of 6 unknowns). Clearly, this is not a closed set.

In the next Chapter, we will show that the stress tensor can be written in terms of
two fluid properties, the (thermodynamic) pressure, P , and the (shear) viscosity,
µ, while the vector 〈wi

1
2
w2〉 is specified by a single property, the conductivity, K.

These three fluid properties obey constitutive equations, which ultimately allow
us to achieve closure; i.e., to have as many equations as unknowns.
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CHAPTER 11

Tranport Mechanisms & Constitutive Equations

In the previous chapter we summarized the moment equations obtained from the
Boltzmann equation. If we momentarily ignore the gravitational potential, we
have

1 continuum equation relating ρ and ~u
3 momentum equations relating ρ, ~u and σij

1 energy equation relating ρ, ~u, ε, σij and Fi

Here σij = −ρ〈wiwj〉 is the stress tensor and Fi ≡ ρ〈wi
1
2
w2〉 is a vector, the

physical interpretation of which will become clear shortly. Our goal in this chapter
is to find expressions for σij and Fi that allow the moment equations to become a
closed set of macroscopic equations of hydrodynamics. Note that both σij and Fi

depend on the microscopic random velocities wi ≡ vi − 〈vi〉, and are thus dependent
on the random collisions. Recall that the angle-brackets indicate an average over the
fluid elements, which are large compared to the mean free path; i.e., there are many
collisions within a fluid element, and our goal to develop macroscopic equations
of hydrodynamics is to determine the ‘macroscopic outcome’ of the many, many
collisions. Collisions will drive the system towards thermal equilibrium, in which
the (local) velocity distribution is Maxwell-Boltzmann. In addition, if there are
gradients in density, velocity or internal energy, collisions will work towards erasing
these gradients.

• When there are gradients in the streaming velocity, ~u, in the direction perpendic-
ular to ~u (shear) then the collisions among neighboring fluid elements give rise to
a net transport of momentum. The collisions drive the system towards equilib-
rium, i.e., towards no shear. Hence, the collisions act as a resistance to shear, which
is called viscosity. See Fig. 11 for an illustration.

• When there are gradients in temperature (i.e., in specific internal energy), then
the collisions give rise to a net transport of energy. Again, the collisions drive
the system towards equilibrium, in which the gradients vanish, and the rate at which
the fluid can erase a non-zero ∇T is called the (thermal) conductivity, K.
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Figure 11: Illustration of origin of viscosity and shear stress. Three neighboring fluids
elements (1, 2 and 3) have different streaming velocities, ~u. Due to the microscopic motions
and collisions (characterized by a non-zero mean free path), there is a net transfer of
momentum from the faster moving fluid elements to the slower moving fluid elements.
This net transfer of momentum will tend to erase the shear in ~u(~x), and therefore manifests
itself as a shear-resistance, known as viscosity. Due to the transfer of momentum, the
fluid elements deform; in our figure, 1 transfers linear momentum to the top of 2, while 3
extracts linear momentum from the bottom of 2. Consequently, fluid element 2 is sheared as
depicted in the figure at time t+∆t. From the perspective of fluid element 2, some internal
force (from within its boundaries) has exerted a shear-stress on its bounding surface.

The transport of momentum and internal energy (heat) due to microscopic collisions
among the constituent atoms or molecules are examples of transport mechanisms.
Their efficiency depends on the interparticle forces (i.e., the effective cross section
of the collisions). Typically, ‘transport’ is more efficient for smaller cross sections
(i.e., a shorter-range force), as a smaller (effective) cross section, σeff , implies a larger
mean free path, λmfp.

Transport mechanisms can be treated rigorously using the Chapman-Enskog ex-
pansion, which is valid as long as the collisions are well separated in space and time
(i.e., collision duration is much smaller than the time in between collisions), and the
Knudsen number is small (Kn = λmfp/lscale ≪ 1 with lscale the characteristic scale
over which macroscopic fluid properties change). In the Chapman-Enskog expansion
one expands the distribution function (DF) as f = f (0)+ ǫf (1)+ ǫ2f (2)+ .... Here f (0)

is the equilibrium Maxwell-Boltzmann distribution, while ǫ = Kn ≪ 1. Substituting
this expansion in the Boltzmann equation, and equating orders of ǫ yields a hierarchy
of equations (one for each order of ǫ). The zeroth-order expression yields the Eu-
ler equations for an ideal (inviscid, zero conduction) fluid. The first-order expression
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yields the Navier-stokes and energy equations, but with σij and Fi expressed in forms
that allow for closure of the macroscopic equations of hydrodynamics. The detailed
derivation of these expressions using Chapman-Enskog expansion is extremely com-
plicated, and outside of the scope of this course. Interested readers should consult the
classical monographs ”Statistical Mechanics” by K. Huang (highly recommended), or
”The Mathematical Theory of Non-uniform Gases” by S. Chapman and T. Cowling.

In what follows we shall use a more heuristic approach to obtain useful expressions
for σij and Fi. Let’s start with

Fi = ρ〈wi
1

2
w2〉

Since 〈wi〉 is zero, the only way for Fi to be non-zero is for w2 to have a gradient over
the fluid element. And since ε = 1

2
〈w2〉, this means that we need to have a gradient

in the specific, internal energy, which is basically a measure for heat (i.e., as we will
see, ε ∝ T ). With that interpretation we see that Fi is a measure for how internal
energy density is transported in direction i due to microscopic motions (collisions).
That is what we call the conductive heat flux, which experimentally is known to
scale proportional to the temperature gradient; i.e., we suspect that

Fi = ρ〈wi
1

2
w2〉 = −K ∂T

∂xi
⇒ ~Fcond = −K∇T

with K the coefficient of conductivity (or ‘conductivity’ for short). This is indeed
what a more elaborate treatment based on the Chapman-Enskog expansion yields.
In addition, the latter shows that

K = k1
cV
σeff

√
mkBT

with k1 a numerical constant of order unity, cV the specific heat capacity (i.e., per
unit mass), and σeff the effective cross section for the inter-particle forces (typically
this is comparable to the diameter of the atoms or molecules that make up the gas).

The stress tensor: In order to obtain an expression for the stress tensor, we first
realize that ρ〈wiwj〉 has the form of a ram pressure due to the microscopic motions.
Imagine injecting a surface with normal vector n̂ inside a fluid element at ~x. Let the
surface be at rest with respect to the fluid element (i.e., it has the same ~u as the
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fluid element itself). The stress tensor is related to the stress ~Σ(~x, n̂) acting on the
surface located at ~x according to

Σi(n̂) = σij nj

Here Σi(n̂) is the i-component of the stress acting on a surface with normal n̂, whose
j-component is given by nj . Hence, in general the stress will not necessarily be along
the normal to the surface, and it is useful to decompose the stress in a normal
stress, which is the component of the stress along the normal to the surface, and a
shear stress, which is the component along the tangent to the surface.

To see that fluid elements in general are subjected to shear stress, imagine injecting
a small, spherical blob (a fluid element) of dye in a flow (i.e., a river). If the only
stress to which the blob is subject is normal stress, the only thing that can happen to
the blob is an overall compression or expansion. However, from experience we know
that the blob of dye will shear into an extended, ‘spaghetti’-like feature; hence, the
blob is clearly subjected to shear stress, and this shear stress is obvisouly related to
another tensor called the deformation tensor

Tij =
∂ui
∂xj

which describes the (local) shear in the fluid flow.

Since ∂ui/∂xj = 0 in a static fluid (~u(~x) = 0), we see that in a static fluid the stress
tensor can only depend on the normal stress, which we call the pressure.

Pascal’s law for hydrostatistics: In a static fluid, there is no preferred direction,
and hence the (normal) stress has to be isotropic:

static fluid ⇐⇒ σij = −P δij

The minus sign is a consequence of the sign convention of the stress.

Sign Convention: The stress ~Σ(~x, n̂) acting at location ~x on a surface with normal
n̂, is exerted by the fluid on the side of the surface to which the normal points, on
the fluid from which the normal points. In other words, a positive stress results in
compression. Hence, in the case of pure, normal pressure, we have that Σ = −P .

121



Viscous Stress Tensor: The expression for the stress tensor in the case of a static
fluid motivates us to write in general

σij = −P δij + τij

where we have introduced a new tensor, τij , which is known as the viscous stress
tensor, or the deviatoric stress tensor.

Since the deviatoric stress tensor is only non-zero in the presence of shear in the fluid
flow, this suggests that in full generality

τij = Tijkl
∂uk
∂xl

where Tijkl is a proportionality tensor of rank four. In what follows we derive an
expression for Tijkl. We start by noting that since σij is symmetric, we also have
that τij will be symmetric. Hence, we expect that the above dependence can only
involve the symmetric component of the deformation tensor, Tkl = ∂uk/∂xl. Hence,
it is useful to split the deformation tensor in its symmetric and anti-symmetric
components:

∂ui
∂xj

= eij + ξij

where

eij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]

ξij =
1

2

[
∂ui
∂xj

− ∂uj
∂xi

]

The symmetric part of the deformation tensor, eij, is called the rate of strain
tensor, while the anti-symmetric part, ξij, expresses the vorticity ~w ≡ ∇ × ~u
in the velocity field, i.e., ξij = −1

2
εijk wk (here εijk is the Levi-Civita symbol; see

Appendix G). Note that one can always find a coordinate system for which eij is
diagonal. The axes of that coordinate frame indicate the eigendirections of the
strain (compression or stretching) on the fluid element.

In terms of the relation between the viscous stress tensor, τij , and the deformation
tensor, Tkl, there are a number of properties that are important.
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• Locality: the τij − Tkl-relation is said to be local if the stress tensor is only
a function of the deformation tensor and the local values of thermodynamic
state functions like temperature.

• Homogeneity: the τij − Tkl-relation is said to be homogeneous if it is ev-
erywhere the same. The viscous stress tensor may depend on location ~x only
insofar as Tij or the thermodynamic state functions depend on ~x. This distin-
guishes a fluid from a solid, in which the stress tensor depends on the stress
itself.

• Isotropy: the τij − Tkl-relation is said to be isotropic if it has no preferred
direction.

• Linearity: the τij − Tkl-relation is said to be linear if the relation between
the stress and rate-of-strain is linear. This is equivalent to saying that τij does
not depend on ∇2~u or higher-order derivatives.

A fluid that is local, homogeneous and isotropic is called a Stokesian fluid. A
Stokesian fluid that is linear is called a Newtonian fluid. Experiments have shown
that most fluids are Newtonian to good approximation. Hence, in what follows we
will assume that our astrophysical fluids of interest are Newtonian, unless specifically
stated otherwise. For a Newtonian fluid, it can be shown (using linear algebra) that
the most general form of our proportionality tensor is given by

Tijkl = λδijδkl + µ (δikδjl + δilδjk)

where λ and µ are scalar quantities, and δij is the Kronecker delta function.

Substitution in the expression relating the deviatoric stress tensor and the deforma-
tion tensor yields that, for a Newtonian fluid,

τij = 2µeij + λekkδij

Here ekk = Tr(e) = ∂uk/∂xk = ∇ · ~u (Einstein summation convention).

Thus far we have derived that the stress tensor, σij , which in principle has 6 un-
knowns, can be reduced to a function of three unknowns only (P , µ, λ) as long as
the fluid is Newtonian. We now focus on these three scalars in more detail, starting
with the pressure P . To be exact, P is the thermodynamic equilibrium pres-
sure, and is normally computed thermodynamically from some equation of state,
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P = P (ρ, T ). Another way to define the pressure is purely ‘mechanical’ as arising
from the microscopic, translational motion of the particles, i.e., as

Pm = −1

3
Tr(σij) = −1

3
(σ11 + σ22 + σ33)

where we have used the subscript ‘m’ to indicate that this is the mechanical pres-
sure. Using that

σij = −P δij + 2µ eij + λ ekk δij

we thus obtain that
Pm = P − η∇ · ~u

where η = 2
3
µ + λ. Typically (but not always, see below), we have that Pm = P ,

which implies that λ = −2
3
µ; i.e., λ and µ are not independent. This allows us to

write the stress tensor as

σij = −Pδij + µ

[
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

]

Using the Chapman-Enskog expansion one obtains exactly the same expression.
The parameter µ is called the coefficient of shear viscosity, and according to the
Chapman-Enskog expansion we have that

µ = k2
1

σeff

√
mkBT =

k2
k1

K
cV

with k2 another numerical constant of order unity.

Constitutive equations: We have shown that (for a Newtonian fluid), the stress
tensor, despite being a symmetric tensor of rank two, only has two independent
quantities: P and µ, while the conductive flux is characterized by only a single
quantity, K. Most importantly, these are not ‘unknowns’ but rather depend on
other macroscopic quantities via what are called constitutive relations. For the
pressure this is the equation of state P = P (ρ, T ) (see Appendix I for a detailed
treatment), while both the viscosity and conductivity only depend on temperature,
i.e., µ ∝ T 1/2 and K ∝ T 1/2. Note that the µ ∝ T 1/2 scaling implies that viscosity
increases with temperature. This only holds for gases! For liquids we know from
experience that viscosity decreases with increasing temperature (think of honey).
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Since in astrophysics we are mainly concerned with gas, µ ∝ T 1/2 will be a good
approximation for most of what follows.

The second viscosity: There is one complication to the story outlined above. We
assumed that the thermodynamic pressure, P , is equal to the mechanical pressure Pm.
This, however, is only true if the fluid, in equilibrium, has reached equipartition
of energy among all its degrees of freedom, including (in the case of molecules)
rotational and vibrations degrees of freedom. For a fluid of monoatoms (ideal gas),
this is always the case. However, if the fluid consists of particles with internal degrees
of freedom (e.g., molecules) and has just undergone a large volumetric change (i.e.,
during a shock) then there can be a lag between the time the translational motions
reach equilibrium and the time when the system reaches full equipartition in energy
among all degrees of freedom. In these (rare) circumstances, we have that

η =
Pm − P

∇ · ~u
is non-zero. In that case the expression for the stress tensor becomes

σij = −Pδij + µ

[
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

]
+ η δij

∂uk
∂xk

Note that there is now an extra term, proportional to η which is called the coefficient
of bulk viscosity, also known as the second viscosity. Typically, though, the bulk
viscosity can safely be ignored. This only leaves the shear viscosity µ, which describes
the ability of the fluid to resist shear stress via momentum transport resulting from
collisions and the non-zero mean free path of the particles.
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CHAPTER 12

Hydrodynamic Equations

Having derived expressions for the stress tensor σij = −ρ〈wiwj〉 and the con-
ductive flux Fcond,i = ρ〈wi

1
2
w2〉, we are now ready to write down the macroscopic

equations of hydrodynamics. Our starting point are the moment equations of the
Boltzmann equation that we derived in Chapter 7. For completeness, here they
are once more (in Eulerian index form):

Continuity Eq.
∂ρ

∂t
+
∂ρui
∂xi

= 0

Momentum Eqs.
∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ

∂σij
∂xj

− ∂Φ

∂xi

Energy Eq.
∂

∂t

[
ρ

(
u2

2
+ ε

)]
=

− ∂

∂xk

[
ρ

(
u2

2
+ ε

)
uk − σjkuj + ρ〈wk

1

2
w2〉
]
− ρuk

∂Φ

∂xk

All we need to do at this point is substitute the expressions for σij and ρ〈wk
1
2
w2〉

that we derived in the previous chapter. We now discuss the resulting equations in
some detail:

Continuity Equation: this equation expresses mass conservation. This is clear
from the Eulerian form, which shows that changing the density at some fixed point
in space requires a converging, or diverging, mass flux at that location. In Lagrangian
vector form, the continuity equation is given by

dρ

dt
=
∂ρ

∂t
+ ~u · ∇ρ = −ρ∇ · ~u

which shows that the density of a fluid element (moving with the flow) can only
change if the flow is compressible (i.e., the flow has non-zero divergence).

126



If a flow is incompressible, then∇·~u = 0 everywhere, and we thus have that dρ/dt = 0
(i.e., the density of each fluid element is fixed in time as it moves with the flow).

If a fluid is incompressible, than dρ/dt = 0 and we see that the flow is divergence
free (∇ · ~u = 0), which is also called solenoidal.

Students should become familiar with switching between the Eulerian
and Lagrangian versions of the equations, and between the vector no-
tation and the index notation. The latter is often easier to work with.
When writing down the index versions, make sure that each term carries
the same index, and make use of the Einstein summation convention.

Momentum Equations: substituting the full expression for the stress tensor in
the momentum equations yields:

∂ui
∂t

+ uj
∂ui
∂xj

=

− 1

ρ

∂P

∂xi
+

1

ρ

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

)]
+

1

ρ

∂

∂xi

(
η
∂uk
∂xk

)
− ∂Φ

∂xi

These are the Navier-Stokes equations (in Lagragian index form) in all their glory,
containing both the shear viscosity term and the bulk viscosity term.

Note that µ and η are usually functions of density and temperature so that they
have spatial variations. However, it is common to assume that these are suficiently
small so that µ and η can be treated as constants, in which case they can be taken
outside the differentials. In what follows we will make this assumption as well.

In Lagrangian vector form the Navier-Stokes equations become

ρ
d~u

dt
= −∇P + µ∇2~u+

(
η +

1

3
µ

)
∇(∇ · ~u)− ρ∇Φ

If we ignore the bulk viscosity (η = 0) then this reduces to

d~u

dt
= −∇P

ρ
+ ν

[
∇2~u+

1

3
∇(∇ · ~u)

]
−∇Φ

where we have introduced the kinetic viscosity ν ≡ µ/ρ. This is the form of
the Navier-Stokes equation most commonly encountered. It expresses that the fluid
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element can be accelerated by pressure gradients, by gradients in the gravitational
potential (i.e., by an external gravitational force acting on the fluid element), and by

viscosity. Basically these momentum equations are nothing but Newton’s ~F = m~a
applied to a fluid element.

The ∇(∇ · ~u) component of the viscosity term is only significant in the case of flows
with variable compression (i.e., viscous dissipation of accoustic waves or shocks).
As discussed in Chapter 10, astrophysical flows are typically incompressible, and
this term can thus typically be ignored. That leaves the ν∇2~u term. This term
quantifies viscous momentum diffusion, and describes how, in the presence of
shear, momentum ‘diffuses’ across fluid elements.

It is interesting to point out that this innocent-looking diffuse term dramatically
changes the character of the equation. The main reason is that it introduces a
higher spatial derivative. Hence, additional boundary conditions are required to
solve the equations. When solving problems with solid boundaries (not common in
astrophysics), this condition is typically that the tangential (or shear) velocity at
the boundary vanishes (”no-slip boundary condition”). Although this may sound ad
hoc, it is supported by observation; for example, the blades of a fan collect dust.

Recall that when writing the Navier-Stokes equation in Eulerian form, we have that
d~u/dt→ ∂~u/∂t+~u ·∇~u. It is often useful to rewrite this extra term using the vector
calculus identity (see Appendix A)

~u · ∇~u = ∇
(
~u · ~u
2

)
+ (∇× ~u)× ~u

Hence, for an irrotational flow (i.e., a flow for which ∇ × ~u = 0), we have that
~u · ∇~u = 1

2
∇u2, where u ≡ |~u|.

Energy Equation: The energy equation written above, with ρ〈wk
1
2
w2〉 replaced

by Fcond,k is obtained from the Boltzmann equation, which in turn derives from the
Liouville theorem (and thus Hamiltonian dynamics) via the BBGKY hierarchy. The
assumption of Hamiltonian dynamics implies that we have assumed that two-body
collisions are non-dissipative. In reality, though, the atoms and molecules in a gas
have internal degrees of freedom that can absorb kinetic energy from the collisions
(excitation) and then radiate it away (spontaneous decay). In addition, the atoms
and molecules can also absorb incoming photons, and, due to collisional deexcitation
or photo-ionization transfer some of that energy into kinetic energy (heat). As long
as the time scale on which these radiative processes change the internal energy of
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the gas is long compared to the hydrodynamical time scales, we can simply add their
impact by adding the net volumetric cooling rate,

L = ρ
dQ

dt
= C − H

to the rhs of the energy equation. Here Q is the thermodynamic heat, and C and H
are the net volumetric cooling and heating rates, respectively.

We also want to recast the above energy equation in a form that more directly
describes the evolution of the internal energy, ε. This is obtained by subtracting ui
times the Navier-Stokes equation in conservative, Eulerian form from the energy
equation derived above as follows

The Navier-Stokes equation in Eulerian index form is

∂ui
∂t

+ uk
∂ui
∂xk

=
1

ρ

∂σik
∂xk

− ∂Φ

∂xi

Using the continuity equation, this can be rewritten in the so-called conservation
form as

∂ρui
∂t

+
∂

∂xk
[ρuiuk − σik] = −ρ ∂Φ

∂xi

Next we multiply this equation with ui. Using that

ui
∂ρui
∂t

=
∂ρu2

∂t
− ρui

∂ui
∂t

=
∂

∂t

[
ρ
u2

2

]
+
∂

∂t

[
ρ
u2

2

]
− ρui

∂ui
∂t

=
∂

∂t

[
ρ
u2

2

]
+
ρ

2

∂u2

∂t
+
u2

2

∂ρ

∂t
− ρui

∂ui
∂t

=
∂

∂t

[
ρ
u2

2

]
+
u2

2

∂ρ

∂t

where we have used that ∂u2/∂t = 2ui∂ui/∂t. Similarly, we have that

ui
∂

∂xk
[ρuiuk] =

∂

∂xk

[
ρ
u2

2
uk

]
+

∂

∂xk

[
ρ
u2

2
uk

]
− ρuiuk

∂ui
∂xk

=
∂

∂xk

[
ρ
u2

2
uk

]
+
ρ

2
uk
∂u2

∂xk
+
u2

2

∂ρuk
∂xk

− ρuiuk
∂ui
∂xk

=
∂

∂xk

[
ρ
u2

2
uk

]
+
u2

2

∂ρuk
∂xk
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Combining the above two terms, and using the continuity equation to dispose of
the two terms containing the factor u2/2, the Navier-Stokes equation in conservation
form multiplied by ui becomes

∂

∂t

[
ρ
u2

2

]
+

∂

∂xk

[
ρ
u2

2
uk

]
= ui

∂σik
∂xk

− ρui
∂Φ

∂xi

Subtracting this from the energy equation at the beginning of this chapter (with the
radiative term added) yields

∂

∂t
(ρε) +

∂

∂xk
(ρεuk) = −P ∂uk

∂xk
+ V − ∂Fcond,k

∂xk
− L

Note the minus sign in front of L, which expresses that net cooling results in a loss
of internal energy. Here

V ≡ τik
∂ui
∂xk

is the rate of viscous dissipation, describing the rate at which heat is added to
the internal energy budget via viscous conversion of ordered motion (~u) to disordered
energy in random particle motions (~w).

Finally, using that the left-hand side of the above energy equation can be written as

∂

∂t
(ρε) +

∂

∂xk
(ρεuk) = ρ

∂ε

∂t
+ ε

∂ρ

∂t
+ ε

∂ρuk
∂xk

+ ρuk
∂ε

∂xk
= ρ

(
∂ε

∂t
+ uk

∂ε

∂xk

)

where in the second step we have used the continuity equation, we obtain the energy
equation in Lagrangian vector form as

ρ
dε

dt
= −P ∇ · ~u−∇ · ~Fcond + V − L

This equation shows that the internal energy of a fluid element (a measure of its
temperature or ‘heat’) can change due to (i) adiabatic compression or expansion of
the fluid element, (ii) a local divergence in the conductive heat flux, (iii) viscous
dissipation, or (iv) radiation (net cooling or heating). Note that (i), (ii) and (iv) can
either cause an increase or a decrease in the internal specific energy, while viscous
dissipation can only cause an increase in ε.

Hydrodynamic equations for an ideal fluid:
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As mentioned in Chapter 10, an ideal (or perfect) fluid is a fluid without viscosity and
without conductivity. Formally, ideal fluids are also incompressible (i.e., dρ/dt = 0)
and irrotational (∇× ~u = 0, i.e., flow is laminar w.o. turbulence), but throughout
these lecture notes we adopt the somewhat weaker definition of an inviscid, non-
conductive fluid.

The hydrodynamic equations for an ideal fluid simply follow from the more general
equations derived above by simply setting ν = ~Fcond = 0. The momentum equations
for an ideal fluid (i.e., the equivalent of the Navier-Stokes equations) are known as
the Euler equations. The table below lists the full set of hydrodynamic equations
for ideal fluids, in both Eulerian and Lagrangian form.

Lagrangian Eulerian

Continuity Eq:
dρ

dt
= −ρ∇ · ~u ∂ρ

∂t
+∇ · (ρ~u) = 0

Momentum Eqs:
d~u

dt
= −∇P

ρ
−∇Φ

∂~u

∂t
+ (~u · ∇) ~u = −∇P

ρ
−∇Φ

Energy Eq:
dε

dt
= −P

ρ
∇ · ~u− L

ρ

∂ε

∂t
+ ~u · ∇ε = −P

ρ
∇ · ~u− L

ρ

Hydrodynamic equations for an ideal, neutral fluid in gravitational field

In astrophysics, numerical hydrodynamical simulations rarely if ever account for
viscosity and/or conductivity; in other words, they assume an ideal fluid and solve
the equations listed above. For numerical reasons, it is advantageous to write the
hydro equations in conservative form. Let A(~x, t) be some state variable of the fluid
(either scalar or vector). The evolution equation for A is said to be in conservative
form if

∂A

∂t
+∇ · ~F (A) = S

Here ~F (A) describes the appropriate flux of A and S describes the various sources
and/or sinks of A. The continuity, momentum and energy equations for an ideal
fluid in conservative form are:
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∂ρ

∂t
+∇ · (ρ~u) = 0

∂ρ~u

∂t
+∇ ·Π = −ρ∇Φ

∂E

∂t
+∇ · [(E + P ) ~u] = ρ

∂Φ

∂t
−L

Here
Π = ρ~u⊗ ~u+ P

is the momentum flux density tensor (of rank 2), and

E = ρ

(
1

2
u2 + Φ + ε

)

is the energy density.

NOTE: In the expression for the momentum flux density tensor ~A⊗ ~B is the tensor
product of ~A and ~B defined such that ( ~A⊗ ~B)ij = ai bj (see Appendix A). Hence,
the index-form of the momentum flux density tensor is simply Πij = ρ ui uj + Pδij,
with δij the Kronecker delta function. Note that this expression is ONLY valid for
an ideal fluid.

Note also that whereas there is no source or sink term for the density, gradients in
the gravitational field act as a source of momentum, while its time-variability can
cause an increase or decrease in the energy density of the fluid. Another source/sink
term for the energy density is radiation (emission or absorption of photons).

Poisson equation: If a hydrodynamic fluid is governed by self-gravity (as opposed
to, is placed in an external gravitational field), then one needs to complement the
hydrodynamical equations (continuity, momentum and energy) with the Poisson
equation:

∇2Φ = 4πGρ

Constitutive equations: Closure of the set of macroscopic equations of hydrody-
namics requires additional constitutive relations. As discussed in Chapter 11, both
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the viscosity and conductivity scale with temperature as T 1/2, with proportionality
constants that are best determined experimentally. The more important constitutive
relation is the equation-of-state (EoS), relating the (hydrodynamical) pressure to
one or more other macroscopic quantities. Typically, these are the density and the
internal energy or temperature. In particular, for an ideal gas (i.e., a fluid that obeys
the ideal gas law), we have that

P =
kB T

µmp
ρ , ε =

1

γ − 1

kB T

µmp

Here µ is the mean molecular weight of the fluid in units of the proton mass, mp,
and γ is the adiabatic index, which is often taken to be 5/3 as appropriate for a
mono-atomic gas (see Appendix I for details).

• If the EoS is of the form P = P (ρ), the EoS is said to be barotropic. In the
case of a barotropic fluid, the continuity equation, the momentum equations and
the EoS form a closed set, and the energy equation is not needed. There are two
barotropic EoS that are encountered frequently in astrophysics: the isothermal
EoS, which describes a fluid for which cooling and heating always balance each other
to maintain a constant temperature, and the adiabatic EoS, in which there is no net
heating or cooling (other than adiabatic heating or cooling due to the compression
or expansion of volume, i.e., the P dV work). We will discuss these cases in more
detail later in the course.

• If a barotropic EoS is of the form P ∝ ρΓ, the EoS is said to be polytropic,
with Γ the polytropic index. Isothermal and adiabatic equations of state are both
polytropic. Whereas the former has Γ = 1, the latter has Γ = γ = 5/3.
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SUMMARY: The Equations of Gravitational, Radiative Hydrodynamics

Continuity Eq.
dρ

dt
= −ρ∇ · ~u

Momentum Eqs. ρ
d~u

dt
= −∇P + µ

[
∇2~u+

1

3
∇(∇ · ~u)

]
− ρ∇Φ

Energy Eq. ρ
dε

dt
= −P ∇ · ~u−∇ · ~Fcond − L+ V

Poisson Eq. ∇2Φ = 4πGρ

Dissipation V ≡ τik
∂ui
∂xk

, τik = µ

[
∂ui
∂xk

+
∂uk
∂xi

− 2

3
δik∇ · ~u

]

Conduction ~Fcond = ρ〈~w1

2
w2〉 = −K∇T

Radiation L ≡ C −H

Constitutive Eqs. P = P (ρ, ε) , µ = µ(T ) ∝ T 1/2 , K = K(T ) ∝ T 1/2
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CHAPTER 13

Vorticity & Circulation

Vorticity: The vorticity of a flow is defined as the curl of the velocity field:

vorticity : ~w = ∇× ~u

It is a microscopic measure of rotation (vector) at a given point in the fluid, which
can be envisioned by placing a paddle wheel into the flow. If it spins about its axis
at a rate Ω, then w = |~w| = 2Ω.

Circulation: The circulation around a closed contour C is defined as the line integral
of the velocity along that contour:

circulation : ΓC =

∮

C

~u · d~l =
∫

S

~w · d~S

where S is an arbitrary surface bounded by C. The circulation is a macroscopic
measure of rotation (scalar) for a finite area of the fluid.

Irrotational fluid: An irrotational fluid is defined as being curl-free; hence, ~w = 0
and therefore ΓC = 0 for any C.

Vortex line: a line that points in the direction of the vorticity vector. Hence, a
vortex line relates to ~w, as a streamline relates to ~u (cf. Chapter 10).

Vortex tube: a bundle of vortex lines. The circularity of a curve C is proportional
to the number of vortex lines that thread the enclosed area.

In an inviscid fluid the vortex lines/tubes move with the fluid: a vortex line an-
chored to some fluid element remains anchored to that fluid element.
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Figure 12: Evolution of a vortex tube. Solid dots correspond to fluid elements. Due to
the shear in the velocity field, the vortex tube is stretched and tilted. However, as long as
the fluid is inviscid and barotropic Kelvin’s circularity theorem assures that the circularity
is conserved with time. In addition, since vorticity is divergence-free (‘solenoidal’), the
circularity along different cross sections of the same vortex-tube is the same.

Vorticity equation: The Navier-Stokes momentum equations, in the absence of
bulk viscosity, in Eulerian vector form, are given by

∂~u

∂t
+ (~u · ∇) ~u = −∇P

ρ
−∇Φ + ν

[
∇2~u+

1

3
∇(∇ · ~u)

]

Using the vector identity (~u · ∇) ~u = 1
2
∇u2 + (∇× ~u)× ~u = ∇(u2/2)− ~u× ~w allows

us to rewrite this as

∂~u

∂t
− ~u× ~w = −∇P

ρ
−∇Φ− 1

2
∇u2 + ν

[
∇2~u+

1

3
∇(∇ · ~u)

]

If we now take the curl on both sides of this equation, and we use that curl(gradS) =

0 for any scalar field S, and that ∇× (∇2 ~A) = ∇2(∇× ~A), we obtain the vorticity
equation:

136



∂ ~w

∂t
= ∇× (~u× ~w)−∇×

(∇P
ρ

)
+ ν∇2 ~w

To write this in Lagrangian form, we first use that ∇× (S ~A) = ∇S× ~A+S (∇× ~A)
[see Appendix A] to write

∇× (
1

ρ
∇P ) = ∇(

1

ρ
)×∇P +

1

ρ
(∇×∇P ) = ρ∇(1)− 1∇ρ

ρ2
×∇P =

∇P ×∇ρ
ρ2

where we have used, once more, that curl(gradS) = 0. Next, using the vector
identities from Appendix A, we write

∇× (~w × ~u) = ~w(∇ · ~u)− (~w · ∇)~u− ~u(∇ · ~w) + (~u · ∇)~w

The third term vanishes because ∇· ~w = ∇· (∇×~u) = 0. Hence, using that ∂ ~w/∂t+
(~u · ∇)~w = d~w/dt we finally can write the vorticity equation in Lagrangian
form:

d~w

dt
= (~w · ∇)~u− ~w(∇ · ~u) + ∇ρ×∇P

ρ2
+ ν∇2 ~w

This equation describes how the vorticity of a fluid element evolves with time. We
now describe the various terms of the rhs of this equation in turn:

• (~w ·∇)~u: This term represents the stretching and tilting of vortex tubes due
to velocity gradients. To see this, we pick ~w to be pointing in the z-direction.
Then

(~w · ∇)~u = wz
∂~u

∂z
= wz

∂ux
∂z

~ex + wz
∂uy
∂z

~ey + wz
∂uz
∂z

~ez

The first two terms on the rhs describe the tilting of the vortex tube, while the
third term describes the stretching.

• ~w(∇ · ~u): This term describes stretching of vortex tubes due to flow com-
pressibility. This term is zero for an incompressible fluid or flow (∇ · ~u = 0).
Note that, again under the assumption that the vorticity is pointing in the
z-direction,
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~w(∇ · ~u) = wz

[
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

]
~ez

• (∇ρ × ∇P )/ρ2: This is the baroclinic term. It describes the production of
vorticity due to a misalignment between pressure and density gradients. This
term is zero for a barotropic EoS: if P = P (ρ) the pressure and density
gradiens are parallel so that ∇P × ∇ρ = 0. Obviously, this baroclinic term
also vanishes for an incompressible fluid (∇ρ = 0) or for an isobaric fluid (∇P =
0). The baroclinic term is responsible, for example, for creating vorticity in
pyroclastic flows (see Fig. 13).

• ν∇2 ~w: This term describes the diffusion of vorticity due to viscosity, and
is obviously zero for an inviscid fluid (ν = 0). Typically, viscosity gener-
ates/creates vorticity at a bounding surface: due to the no-slip boundary con-
dition shear arises giving rise to vorticity, which is subsequently diffused into
the fluid by the viscosity. In the interior of a fluid, no new vorticity is generated;
rather, viscosity diffuses and dissipates vorticity.

• ∇× ~F : There is a fifth term that can create vorticity, which however does not
appear in the vorticity equation above. The reason is that we assumed that the
only external force is gravity, which is a conservative force and can therefore be
written as the gradient of a (gravitational) potential. More generally, though,
there may be non-conservative, external body forces present, which would give
rise to a ∇× ~F term in the rhs of the vorticity equation. An example of a non-
conservative force creating vorticity is the Coriolis force, which is responsible
for creating hurricanes.
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Figure 13: The baroclinic creation of vorticity in a pyroclastic flow. High density
fluid flows down a mountain and shoves itself under lower-density material, thus
creating non-zero baroclinicity.

Using the definition of circulation, it can be shown (here without proof) that

dΓ

dt
=

∫

S

[
∂ ~w

∂t
+∇× (~w × ~u)

]
· d~S

Using the vorticity equation, this can be rewritten as

dΓ

dt
=

∫

S

[∇ρ×∇P
ρ2

+ ν∇2 ~w +∇× ~F

]
· d~S

where, for completeness, we have added in the contribution of an external force ~F
(which vanishes if ~F is conservative). Using Stokes’ Curl Theorem (see Appendix B)
we can also write this equation in a line-integral form as

dΓ

dt
= −

∮ ∇P
ρ

· d~l + ν

∮
∇2~u · d~l +

∮
~F · d~l

which is the form that is more often used.

139



NOTE: By comparing the equations expressing d~w/dt and dΓ/dt it is clear that the
stretching and tilting terms present in the equation describing d~w/dt, are absent in
the equation describing dΓ/dt. This implies that stretching and tilting changes the
vorticity, but keeps the circularity invariant. This is basically the first theorem of
Helmholtz described below.

Kelvin’s Circulation Theorem: The number of vortex lines that thread any
element of area that moves with the fluid (i.e., the circulation) remains unchanged
in time for an inviscid, barotropic fluid, in the absence of non-conservative forces.

The proof of Kelvin’s Circulation Theorem is immediately evident from the
above equation, which shows that dΓ/dt = 0 if the fluid is both inviscid (ν = 0),
barotropic (P = P (ρ) ⇒ ∇ρ×∇P = 0), and there are no non-conservative forces

(~F = 0).

We end this chapter on vorticity and circulation with the three theorems of Helmholtz,
which hold in the absence of non-conservative forces (i.e., ~F = 0).

Helmholtz Theorem 1: The strength of a vortex tube, which is defined as the
circularity of the circumference of any cross section of the tube, is constant along its
length. This theorem holds for any fluid, and simply derives from the fact that the
vorticity field is divergence-free (we say solenoidal): ∇ · ~w = ∇ · (∇×~u) = 0. To
see this, use Gauss’ divergence theorem to write that

∫

V

∇ · ~w dV =

∫

S

~w · d2S = 0

Here V is the volume of a subsection of the vortex tube, and S is its bounding
surface. Since the vorticity is, by definition, perpendicular to S along the sides of
the tube, the only non-vanishing components to the surface integral come from the
areas at the top and bottom of the vortex tube; i.e.

∫

S

~w · d2~S =

∫

A1

~w · (−n̂) dA+

∫

A2

~w · n̂dA = 0

where A1 and A2 are the areas of the cross sections that bound the volume V of the
vortex tube. Using Stokes’ curl theorem, we have that
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∫

A

~w · n̂ dA =

∮

C

~u · d~l

Hence we have that ΓC1 = ΓC2 where C1 and C2 are the curves bounding A1 and A2,
respectively.

Helmholtz Theorem 2: A vortex line cannot end in a fluid. Vortex lines and tubes
must appear as closed loops, extend to infinity, or start/end at solid boundaries.

Helmholtz Theorem 3: A barotropic, inviscid fluid that is initially irrotational
will remain irrotational in the absence of rotational (i.e., non-conservative) external
forces. Hence, such a fluid does not and cannot create vorticity (except across curved
shocks, see Chapter 11).

The proof of Helmholtz’ third theorem is straightforward. According to Kelvin’s
circulation theorem, a barotropic, inviscid fluid has dΓ/dt = 0 everywhere. Hence,

dΓ

dt
=

∫

S

[
∂ ~w

∂t
+∇× (~w × ~u)

]
· d2~S = 0

Since this has to hold for any S, we have that ∂ ~w/∂t = ∇× (~u× ~w). Hence, if ~w = 0
initially, the vorticity remains zero for ever.
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Figure 14: A beluga whale demonstrating Kelvin’s circulation theorem and Helmholtz’
second theorem by producing a closed vortex tube under water, made out of air.
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CHAPTER 14

Hydrostatics and Steady Flows

Having derived all the relevant equations for hydrodynamics, we now start examining
several specific flows. Since a fully general solution of the Navier-Stokes equation is
(still) lacking (this is one of the seven Millenium Prize Problems, a solution of which
will earn you $1,000,000), we can only make progress if we make several assumptions.

We start with arguably the simplest possible flow, namely ‘no flow’. This is the area
of hydrostatics in which ~u(~x, t) = 0. And since we seek a static solution, we also
must have that all ∂/∂t-terms vanish. Finally, in what follows we shall also ignore
radiative processes (i.e., we set L = 0).

Applying these restrictions to the continuity, momentum and energy equations (see
box at the end of Chapter 5) yields the following two non-trivial equations:

∇P = −ρ∇Φ

∇ · ~Fcond = 0

The first equation is the well known equation of hydrostatic equilibrium, stating
that the gravitational force is balanced by pressure gradients, while the second equa-
tion states that in a static fluid the conductive flux needs to be divergence-free.

To further simplify matters, let’s assume (i) spherical symmetry, and (ii) a barotropic
equation of state, i.e., P = P (ρ).

The equation of hydrostatic equilibrium now reduces to

dP

dr
= −GM(r) ρ(r)

r2
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In addition, if the gas is self-gravitating (such as in a star) then we also have that

dM

dr
= 4πρ(r) r2

For a barotropic EoS this is a closed set of equations, and the density profile can be
solved for (given proper boundary conditions). Of particular interest in astrophysics,
is the case of a polytropic EoS: P ∝ ρΓ, where Γ is the polytropic index. Note
that Γ = 1 and Γ = γ for isothermal and adiabatic equations of state, respectively.
A spherically symmetric, polytropic fluid in HE is called a polytropic sphere.

Lane-Emden equation: Upon substituting the polytropic EoS in the equation
of hydrostatic equilibrium and using the Poisson equation, one obtains a single
differential equation that completely describes the structure of the polytropic sphere,
known as the Lane-Emden equation:

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn

Here n = 1/(Γ−1) is related to the polytropic index (in fact, confusingly, some texts
refer to n as the polytropic index),

ξ =

(
4πGρc
Φ0 − Φc

)1/2

r

is a dimensionless radius,

θ =

(
Φ0 − Φ(r)

Φ0 − Φc

)

with Φc and Φ0 the values of the gravitational potential at the center (r = 0) and
at the surface of the star (where ρ = 0), respectively. The density is related to θ
according to ρ = ρcθ

n with ρc the central density.

Solutions to the Lane-Emden equation are called polytropes of index n. In general,
the Lane-Emden equation has to be solved numerically subject to the boundary
conditions θ = 1 and dθ/dξ = 0 at ξ = 0. Analytical solutions exist, however, for
n = 0, 1, and 5. Examples of polytropes are stars that are supported by degeneracy
pressure. For example, a non-relativistic, degenerate equation of state has P ∝ ρ5/3
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(see Appendix I) and is therefore describes by a polytrope of index n = 3/2. In the
relativistic case P ∝ ρ4/3 which results in a polytrope of index n = 3.

Another polytrope that is often encountered in astrophysics is the isothermal
sphere, which has P ∝ ρ and thus n = ∞. It has ρ ∝ r−2 at large radii, which im-
plies an infinite total mass. If one truncates the isothermal sphere at some radius and
embeds it in a medium with external pressure (to prevent the sphere from expand-
ing), it is called a Bonnor-Ebert sphere, which is a structure that is frequently
used to describe molecular clouds.

Stellar Structure: stars are gaseous spheres in hydrostatic equilibrium (except
for radial pulsations, which may be considered perturbations away from HE). The
structure of stars is therefore largely governed by the above equation.

However, in general the equation of state is of the form P = P (ρ, T, {Xi}), where
{Xi} is the set of the abundances of all emements i. The temperature structure of a
star and its abundance ratios are governed by nuclear physics (which provides the
source of energy) and the various heat transport mechanisms.

Heat transport in stars: Typically, ignoring abundance gradients, stars have the
equation of state of an ideal gas, P = P (ρ, T ). This implies that the equations of
stellar structure need to be complemented by an equation of the form

dT

dr
= F (r)

Since T is a measure of the internal energy, the rhs of this equation describes the
heat flux, F (r).

The main heat transport mechanisms in a star are:

• conduction

• convection

• radiation

Note that the fourth heat transport mechanism, advection, is not present in the case
of hydrostatic equilibrium, because ~u = 0.
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Recall from Chapter 4 that the thermal conductivity K ∝ (kB T )
1/2/σ where σ

is the collisional cross section. Using that kBT ∝ v2 and that the mean-free path of
the particles is λmfp = 1/(nσ), we have that

K ∝ nλmfp v

with v the thermal, microscopic velocity of the particles (recall that ~u = 0). Since
radiative heat transport in a star is basically the conduction of photons, and since
c≫ ve and the mean-free part of photons is much larger than that of electrons (after
all, the cross section for Thomson scattering, σT, is much smaller than the typical
cross section for Coulomb interactions), we have that in stars radiation is a far more
efficient heat transport mechanism than conduction. An exception are relativistic,
degenerate cores, for which ve ∼ c and photons and electrons have comparable mean-
free paths.

Convection: convection only occurs if the Schwarzschild Stability Criterion is
violated, which happens when the temperature gradient dT/dr becomes too large
(i.e., larger than the temperature gradient that would exist if the star was adiabatic;
see Chapter 18). If that is the case, convection always dominates over radiation as
the most efficient heat transport mechanism. In general, as a rule of thumb, more
massive stars are more radiative and less convective.

Trivia: On average it takes ∼ 200.000 years for a photon created at the core of the
Sun in nuclear burning to make its way to the Sun’s photosphere; from there it only
takes ∼ 8 minutes to travel to the Earth.

Hydrostatic Mass Estimates: Now let us consider the case of an ideal gas, for
which

P =
kBT

µmp
ρ ,

but this time the gas is not self-gravitating; rather, the gravitational potential may
be considered ‘external’. A good example is the ICM; the hot gas that permeates
clusters. From the EoS we have that
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dP

dr
=

∂P

∂ρ

dρ

dr
+
∂P

∂T

dT

dr
=
P

ρ

dρ

dr
+
P

T

dT

dr

=
P

r

[
r

ρ

dρ

dr
+
r

T

dT

dr

]
=
P

r

[
d ln ρ

d ln r
+

d lnT

d ln r

]

Substitution of this equation in the equation for Hydrostatic equilibrium (HE) yields

M(r) = −kB T (r) r
µmpG

[
d ln ρ

d ln r
+

d lnT

d ln r

]

This equation is often used to measure the ‘hydrostatic’ mass of a galaxy cluster;
X-ray measurements can be used to infer ρ(r) and T (r) (after deprojection, which is
analytical in the case of spherical symmetry). Substitution of these two radial depen-
dencies in the above equation then yields an estimate for the cluster’s mass profile,
M(r). Note, though, that this mass estimate is based on three crucial assump-
tions: (i) sphericity, (ii) hydrostatic equilibrium, and (iii) an ideal-gas EoS. Clusters
typically are not spherical, often are turbulent (such that ~u 6= 0, violating the as-
sumption of HE), and can have significant contributions from non-thermal pressure
due to magnetic fields, cosmic rays and/or turbulence. Including these non-thermal
pressure sources the above equation becomes

M(r) = −kB T (r) r
µmpG

[
d ln ρ

d ln r
+

d lnT

d ln r
+
Pnt

Pth

d lnPnt

d ln r

]

were Pnt and Pth are the non-thermal and thermal contributions to the total gas
pressure. Unfortunately, it is extremely difficult to measure Pnt reliably, which is
therefore often ignored. This may result in systematic biases of the inferred cluster
mass (typically called the ‘hydrostatic mass’).

Solar Corona: As a final example of a hydrostatic problem in astrophysics, consider
the problem of constructing a static model for the Solar corona.

The Solar corona is a large, spherical region of hot (T ∼ 106K) plasma extending
well beyond its photosphere. Let’s assume that the heat is somehow (magnetic
reconnection?) produced in the lower layers of the corona, and try to infer the density,
temperature and pressure profiles under the assumption of hydrostatic equilibrium.
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We have the boundary condition of the temperature at the base, which we assume
to be T0 = 3× 106K, at a radius of r = r0 ∼ R⊙ ≃ 6.96× 1010 cm. The mass of the
corona is negligble, and we therefore have that

dP

dr
= −G M⊙

r2
µmp

kB

P

T

d

dr

(
K r2

dT

dr

)
= 0

where we have used the ideal gas EoS to substitute for ρ. As we have seen above
K ∝ nλmfpT

1/2. In a plasma one furthermore has that λmfp ∝ n−1 T 2, which implies
that K ∝ T 5/2. Hence, the second equation can be written as

r2T 5/2dT

dr
= constant

which implies

T = T0

(
r

r0

)−2/7

Note that this equation satisfies our boundary condition, and that T∞ = limr→∞ T (r) =
0. Substituting this expression for T in the HE equation yields

dP

P
= −G M⊙ µmp

kBT0 r
2/7
0

dr

r12/7

Solving this ODE under the boundary condition that P = P0 at r = r0 yields

P = P0 exp

[
−7

5

G M⊙ µmp

kBT0 r0

{(
r

r0

)−5/7

− 1

}]

Note that

lim
r→∞

P = P0 exp

[
+
7

5

G M⊙ µmp

kBT0 r0

]
6= 0

Hence, you need an external pressure to confine the corona. Well, that seems OK,
given that the Sun is embedded in an ISM, whose pressure we can compute taking
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characteristic values for the warm phase (T ∼ 104K and n ∼ 1 cm−3). Note that the
other phases (cold and hot) have the same pressure. Plugging in the numbers, we
find that

P∞
PISM

∼ 10
ρ0
ρISM

Since ρ0 ≫ ρISM we thus infer that the ISM pressure falls short, by orders of magni-
tude, to be able to confine the corona....

As first inferred by Parker in 1958, the correct implicication of this puzzling result is
that a hydrostatic corona is impossible; instead, Parker made the daring suggestion
that there should be a solar wind, which was observationally confirmed a few years
later.

————————————————-

Having addressed hydrostatics (‘no flow’), we now consider the next simplest flow;
steady flow, which is characterised by ~u(~x, t) = ~u(~x). For steady flow ∂~u/∂t = 0,
and fluid elements move along the streamlines (see Chapter 10).

Using the vector identity (~u · ∇) ~u = 1
2
∇u2 + (∇× ~u)× ~u = ∇(u2/2)− ~u× ~w, allows

us to write the Navier-Stokes equation for a steady flow of ideal fluid as

∇
(
u2

2
+ Φ

)
+

∇P
ρ

− ~u× ~w = 0

This equation is known as Crocco’s theorem. In order to write this in a more
‘useful’ form, we first proceed to demonstrate that ∇P/ρ can be written in terms of
the gradients of the specific enthalpy, h, and the specific entropy, s:

The enthalpy, H , is a measure for the total energy of a thermodynamic system that
includes the internal energy, U , and the amount of energy required to make room
for it by displacing its environment and establishing its volume and pressure:

H = U + PV
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The differential of the enthalpy can be written as

dH = dU + P dV + V dP

Using the first law of thermodynamics, according to which dU = dQ − PdV , and
the second law of thermodynamics, according to which dQ = TdS, we can rewrite
this as

dH = T dS + V dP

which, in specific form, becomes

dh = Tds+
dP

ρ

(i.e., we have s = S/m). This relation is one of the Gibbs relations frequently
encountered in thermodynamics. NOTE: for completeness, we point out that this
expression ignores changes in the chemical potential (see Appendix K).

The above expression for dh implies that

∇P
ρ

= ∇h− T ∇s

(for a formal proof, see at the end of this chapter). Now recall from the previous
chapter on vorticity that the baroclinic term is given by

∇×
(∇P

ρ

)
=

∇ρ×∇P
ρ2

Using the above relation, and using that the curl of the gradient of a scalar vanishes,
we can rewrite this baroclinic term as ∇× (T ∇s). This implies that one can create
vorticity by creating a gradient in (specific) entropy! One way to do this, which is
one of the most important mechanisms for creating vorticity in astrophysics, is via
curved shocks; when an irrotational, isentropic fluid comes across a curved shock,
different streamlines will experience a different jump in entropy (∆s will depend on
the angle under which you cross the shock). Hence, in the post-shocked gas there
will be a gradient in entropy, and thus vorticity.
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Intermezzo: isentropic vs. adiabatic

We consider a flow to be isentropic if it conserves (specific) entropy,
which implies that ds/dt = 0. Note that an ideal fluid is a fluid without
dissipation (viscosity) and conduction (heat flow). Hence, any flow of
ideal fluid is isentropic. A fluid is said to be isentropic if ∇s = 0. A
process is said to be adiabatic if dQ/dt = 0. Note that, according to
the second law of thermodynamics, TdS ≥ dQ. Equality only holds for
a reversible process; in other words, only if a process is adiabatic and
reversible do we call it isentropic. An irreversible, adiabatic process,
therefore, can still create entropy.

Using the momentum equation for a steady, ideal fluid, and substituting ∇P/ρ →
∇h− T ∇s, we obtain

∇B = T ∇s+ ~u× ~w

where we have introduced the Bernoulli function

B ≡ u2

2
+ Φ + h =

u2

2
+ Φ + ε+ P/ρ

which obviously is a measure of energy. The above equation is sometimes referred
to as Crocco’s theorem. It relates entropy gradients to vorticity and gradients in
the Bernoulli function.

Let’s investigate what happens to the Bernoulli function for an ideal fluid in a
steady flow. Since we are in a steady state we have that

dB

dt
=
∂B

∂t
+ ~u · ∇B = ~u · ∇B

Next we use that

~u · ∇B = ~u · T∇s+ ~u · (~u× ~w)

= T~u · ∇s = 0
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Here we have used that the cross-product of ~u and ~w is perpendicular to ~u, and that
in an ideal fluid ~u · ∇s = 0. The latter follow from the fact that in an ideal fluid
ds/dt = 0, and the fact that ds/dt = ∂s/∂t + ~u · ∇s. Since all ∂/∂t terms vanish
for a steady flow, we see that ~u · ∇s = 0 for a steady flow of ideal fluid. In words, if
gradients in the Bernoulli function are present in a steady, ideal fluid, flow can only
be perpendicular to those gradient. And as a consequence, we thus also have that

dB

dt
= 0

Hence, in a steady flow of ideal fluid, the Bernoulli function is conserved. Using the
definition of the Bernoulli function we can write this as

dB

dt
= ~u · d~u

dt
+

dΦ

dt
+ T

ds

dt
+

1

ρ

dP

dt
= 0

Since ds/dt = 0 for an ideal fluid, we have that if the flow is such that the gravita-
tional potential along the flow doesn’t change significantly (such that dΦ/dt ≃ 0),
we find that

~u · d~u
dt

= −1

ρ

dP

dt

This is known as Bernoulli’s theorem, and states that as the speed of a steady
flow increases, the internal pressure of the ideal fluid must decrease. Applications of
Bernoulli’s theorem discussed in class include the shower curtain and the pitot tube
(a flow measurement device used to measure fluid flow velocity).

————————————————-
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Potential flow: The final flow to consider in this chapter is potential flow. Consider
an irrotational flow, which satisfies ~w ≡ ∇ × ~u = 0 everywhere. This implies that
there is a scalar function, φu(x), such that ~u = ∇φu, which is why φu(x) is called
the velocity potential. The corresponding flow ~u(~x) is called potential flow.

If the fluid is ideal (i.e., ν = K = 0), and barotropic or isentropic, such that the flow
fluid has vanishing baroclinicity, then Kelvin’s circulation theorem assures that
the flow will remain irrotational throughout (no vorticity can be created), provided
that all forces acting on the fluid are conservative.

If the fluid is incompressible, in addition to being irrotational, then we have that
both the curl and the divergence of the velocity field vanish. This implies that

∇ · ~u = ∇2φu = 0

This is the well known Laplace equation, familiar from electrostatics. Mathemat-
ically, this equation is of the elliptic PDE type which requires well defined boundary
conditions in order for a solution to both exist and be unique. A classical case of
potential flow is the flow around a solid body placed in a large fluid volume. In this
case, an obvious boundary condition is the one stating that the velocity component
perpendicular to the surface of the body at the body (assumed at rest) is zero. This
is called a Neumann boundary condition and is given by

∂φu

∂n
= ~n · ∇φu = 0

with ~n the normal vector. The Laplace equation with this type of boundary condition
constitutes a well-posed problem with a unique solution. An example of potential
flow around a solid body is shown in Fig. 10 in Chapter 10. We will not examine any
specific examples of potential flow, as this means having to solve a Laplace equation,
which is purely a mathematical exercise. We end, though, by pointing out that real
fluids are never perfectly inviscid (ideal fluids don’t exist). And any flow past a
surface involves a boundary layer inside of which viscosity creates vorticity (due to
no-slip boundary condition, which states that the tangential velocity at the surface
of the body must vanish). Hence, potential flow can never fully describe the flow
around a solid body; otherwise one would run into d’Alembert’s paradox which
is that steady potential flow around a body exerts zero force on the body; in other
words, it costs no energy to move a body through the fluid at constant speed. We
know from everyday experience that this is indeed not true. The solution to the
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paradox is that viscosity created in the boundary layer, and subsequently dissipated,
results in friction.

Although potential flow around an object can thus never be a full description of the
flow, in many cases, the boundary layer is very thin, and away from the boundary
layer the solutions of potential flow still provide an accurate description of the flow.

————————————————-

As promised in the text, we end this chapter by demonstrating that

dh = T ds+
dP

ρ
⇐⇒ ∇h = T ∇s+ ∇P

ρ

To see this, use that the natural variables of h are the specific entropy, s, and the
pressure P . Hence, h = h(s, P ), and we thus have that

dh =
∂h

∂s
ds+

∂h

∂P
dP

From a comparison with the previous expression for dh, we see that

∂h

∂s
= T ,

∂h

∂P
=

1

ρ

which allows us to derive

∇h =
∂h

∂x
~ex +

∂h

∂y
~ey +

∂h

∂z
~ez

=

(
∂h

∂s

∂s

∂x
+
∂h

∂P

∂P

∂x

)
~ex +

(
∂h

∂s

∂s

∂y
+
∂h

∂P

∂P

∂y

)
~ey +

(
∂h

∂s

∂s

∂z
+
∂h

∂P

∂P

∂z

)
~ez

=
∂h

∂s

(
∂s

∂x
~ex +

∂s

∂y
~ey +

∂s

∂z
~ez

)
+
∂h

∂P

(
∂P

∂x
~ex +

∂P

∂y
~ey +

∂P

∂z
~ez

)

= T∇s+ 1

ρ
∇P

which completes our proof.

————————————————-
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CHAPTER 15

Viscous Flow and Accretion Flow

As we have seen in our discussion on potential flow in the previous chapter, realistic
flow past an object always involves a boundary layer in which viscosity results in
vorticity. Even if the viscosity of the fluid is small, the no-slip boundary condition
typically implies a region where the shear is substantial, and viscocity thus manifests
itself.

In this chapter we examine two examples of viscous flow. We start with a well-
known example from engineering, known as Poiseuille-Hagen flow through a pipe.
Although not really an example of astrophysical flow, it is a good illustration of how
viscosity manifests itself as a consequence of the no-slip boundary condition. The
second example that we consider is viscous flow in a thin accretion disk. This flow,
which was first worked out in detail in a famous paper by Shakura & Sunyaev in
1973, is still used today to describe accretion disks in AGN and around stars.

————————————————-

Pipe Flow: Consider the steady flow of an incompressible viscous fluid through
a circular pipe of radius Rpipe and lenght L. Let ρ be the density of the fluid as
it flows through the pipe, and let ν = µ/ρ be its kinetic viscosity. Since the
flow is incompressible, we have that fluid density will be ρ throughout. If we pick a
Cartesian coordinate system with the z-axis along the symmetry axis of the cylinder,
then the velocity field of our flow is given by

~u = uz(x, y, z)~ez

In other words, ux = uy = 0.

Starting from the continuity equation

∂ρ

∂t
+∇ · ρ~u = 0
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Figure 15: Poiseuille-Hagen flow of a viscous fluid through a pipe of radius Rpipe and
lenght L.

and using that all partial time-derivatives of a steady flow vanish, we obtain that

∂ρux
∂x

+
∂ρuy
∂y

+
∂ρuz
∂z

= 0 ⇒ ∂uz
∂z

= 0

where we have used that ∂ρ/∂z = 0 because of the incompressibility of the flow.
Hence, we can update our velocity field to be ~u = uz(x, y)~ez.

Next we write down the momentum equations for a steady, incompressible flow,
which are given by

(~u · ∇)~u = −∇P
ρ

+ ν∇2~u−∇Φ

In what follows we assume the pipe to be perpendicular to ∇Φ, so that we may
ignore the last term in the above expression. For the x- and y- components of the
momentum equation, one obtains that ∂P/∂x = ∂P/∂y = 0. For the z-component,
we instead have

uz
∂uz
∂z

= −1

ρ

∂P

∂z
+ ν∇2uz

Combining this with our result from the continuity equation, we obtain that

1

ρ

∂P

∂z
= ν∇2uz

Next we use that ∂P/∂z cannot depend on z; otherwise uz would depend on z, but
according to the continuity equation ∂uz/∂z = 0. This means that the pressure
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gradient in the z-direction must be constant, which we write as −∆P/L, where ∆P
is the pressure different between the beginning and end of the pipe, and the minus
sign us used to indicate the the fluid pressure declines as it flows throught the pipe.

Hence, we have that

∇2uz = − ∆P

ρ ν L
= constant

At this point, it is useful to switch to cylindrical coordinates, (R, θ, z), with the
z-axis as before. Because of the symmetries involved, we have that ∂/∂θ = 0, and
thus the above expression reduces to

1

R

d

dR

(
R
duz
dR

)
= − ∆P

ρ ν L

(see Appendix D). Rewriting this as

duz = −1

2

∆P

ρ ν L
R dR

and integrating from R to Rpipe using the no-slip boundary condition that uz(Rpipe) =
0, we finally obtain the flow solution

uz(R) =
∆P

4ρ ν L

[
R2

pipe −R2
]

This solution is called Poiseuille flow or Poiseuille-Hagen flow.

As is evident from the above expression, for a given pressure difference ∆P , the flow
speed u ∝ ν−1 (i.e., a more viscous fluid will flow slower). In addition, for a given
fluid viscosity, applying a larger pressure difference ∆P results in a larger flow speed
(u ∝ ∆P ).

Now let us compute the amount of fluid that flows through the pipe per unit time:

Ṁ = 2π

Rpipe∫

0

ρ uz(R)R dR =
π

8

∆P

ν L
R4

pipe

Note the strong dependence on the pipe radius; this makes it clear that a clogging of
the pipe has a drastic impact on the mass flow rate (relevant for both arteries and oil-
pipelines). The above expression also gives one a relatively easy method to measure
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the viscosity of a fluid: take a pipe of known Rpipe and L, apply a pressure difference
∆P across the pipe, and measure the mass flow rate, Ṁ ; the above expression allows
one to then compute ν.

The Poiseuille velocity flow field has been experimentally confirmed, but only for
slow flow! When |~u| gets too large (i.e., ∆P is too large), then the flows becomes
irregular in time and space; turbulence develops and |~u| drops due to the enhanced
drag from the turbulence. This will be discussed in more detail in Chapter 16.

————————————————-

Accretion Disks: We now move to a viscous flow that is more relevant for as-
trophysics; accretion flow. Consider a thin accretion disk surrounding an accreting
object of mass M• ≫ Mdisk (such that we may ignore the disk’s self-gravity). Because
of the symmetries involved, we adopt cylindrical coordinates, (R, θ, z), with the
z-axis perpendicular to the disk. We also have that ∂/∂θ is zero, and we set uz = 0
throughout.

We expect uθ to be the main velocity component, with a small uR component repre-
senting the radial accretion flow. We also take the flow to be incompressible.

Let’s start with the continuity equation, which in our case reads

∂ρ

∂t
+

1

R

∂

∂R
(RρuR) = 0

(see Appendix D for how to express the divergence in cylindrical coordinates).

Next up is the Navier-Stokes equations. For now, we only consider the θ-
component, which is given by

∂uθ
∂t

+ uR
∂uθ
∂R

+
uθ
R

∂uθ
∂θ

+ uz
∂uθ
∂z

+
uR uθ
R

= −1

ρ

∂P

∂θ

+ ν

[
∂2uθ
∂R2

+
1

R2

∂2uθ
∂θ2

+
∂2uθ
∂z2

+
1

R

∂uθ
∂R

+
2

R2

∂uR
∂θ

− uθ
R2

]
+
∂Φ

∂θ

NOTE: There are several terms in the above expression that may seem ‘surprising’.
The important thing to remember in writing down the equations in curvi-linear
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coordinates is that operators can also act on unit-direction vectors. For example,
the θ-component of ∇2~u is NOT ∇2uθ. That is because the operator ∇2 acts on
uR~eR + uθ~eθ + uz~ez, and the directions of ~eR and ~eθ depend on position! The same
holds for the convective operator (~u · ∇) ~u. The full expressions for both cylindrical
and spherical coordinates are written out in Appendix D.

Setting all the terms containing ∂/∂θ and/or uz to zero, the Navier-Stokes equation
simplifies considerably to

ρ

[
∂uθ
∂t

+ uR
∂uθ
∂R

+
uR uθ
R

]
= µ

[
∂2uθ
∂R2

+
∂2uθ
∂z2

+
1

R

∂uθ
∂R

− uθ
R2

]

where we have replaced the kinetic viscosity, ν, with µ = νρ.

Integrating over z and writing ∫ ∞

−∞
ρ dz = Σ

where Σ is the surface density, as well as neglecting variation of ν, uR and uθ with z
(a reasonable approximation), the continuity and Navier-Stokes equation become

∂Σ

∂t
+

1

R

∂

∂R
(RΣuR) = 0

Σ

(
∂uθ
∂t

+ uR
∂uθ
∂R

+
uR uθ
R

)
= F(µ,R)

where F(µ,R) describes the various viscous terms.

Next we multiply the continuity equation by Ruθ which we can then write as

∂(ΣRuθ)

∂t
− Σ

∂(Ruθ)

∂t
+
∂(ΣRuR uθ)

∂R
−RΣuR

∂uθ
∂R

= 0

Adding this to R times the Navier-Stokes equation, and rearranging terms, yields

∂(ΣRuθ)

∂t
+
∂(ΣRuR uθ)

∂R
+ ΣuR uθ = G(µ,R)

where G(µ,R) = RF(µ). Next we introduce the angular frequency Ω ≡ uθ/R
which allows us to rewrite the above expression as

∂(ΣR2 Ω)

∂t
+

1

R

∂

∂R

(
ΣR3 ΩuR

)
= G(µ,R)

159



Note that ΣR2Ω = ΣRuθ is the angular momentum per unit area. Hence the above
equation describes the evolution of angular momentum in the accretion disk. It is
also clear, therefore, that G(µ,R) must describe the viscous torque on the disk
material, per unit surface area. To derive an expression for it, recall that

G(µ,R) = R

∫
dz µ

[
∂2uθ
∂R2

+
1

R

∂uθ
∂R

− uθ
R2

]

where we have ignored the ∂2uθ/∂z
2 term which is assumed to be small. Using that

µ = νρ and that µ is independent of R and z (this is an assumption that underlies
the Navier-Stokes equation from which we started) we have that

G(µ,R) = ν RΣ

[
∂2uθ
∂R2

+
1

R

∂uθ
∂R

− uθ
R2

]

Next we use that uθ = ΩR to write

∂uθ
∂R

= Ω+R
dΩ

dR

Substituting this in the above expression for G(µ,R) yield

G(µ,R) = ν Σ

[
R2 d

2Ω

dR2
+ 3R

dΩ

dR

]
=

1

R

∂

∂R

(
ν ΣR3 dΩ

dR

)

Substituting this expression for the viscous torque in the evolution equation for the
angular momentum per unit surface density, we finally obtain the full set of equations
that govern our thin accretion disk:

∂

∂t

(
ΣR2 Ω

)
+

1

R

∂

∂R

(
ΣR3ΩuR

)
=

1

R

∂

∂R

(
ν ΣR3 dΩ

dR

)

∂Σ

∂t
+

1

R

∂

∂R
(RΣuR) = 0

Ω =

(
GM•
R3

)1/2
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These three equations describe the dynamics of a thin, viscous accretion disk. The
third equation indicates that we assume that the fluid is in Keplerian motion around
the accreting object of mass M•. As discussed further below, this is a reasonable
assumption as long as the accretion disk is thin.

Note that the non-zero uR results in a mass inflow rate

Ṁ(R) = −2πΣRuR

(a positive uR reflects outwards motion).

Now let us consider a steady accretion disk. This implies that ∂/∂t = 0 and
that Ṁ(R) = Ṁ ≡ Ṁ• (the mass flux is constant throughout the disk, otherwise
∂Σ/∂t 6= 0). In particular, the continuity equation implies that

RΣuR = C1

Using the above expression for the mass inflow rate, we see that

C1 = − Ṁ•
2π

Similarly, for the Navier-Stokes equation, we have that

ΣR3 ΩuR − ν ΣR3 dΩ

dR
= C2

Using the boundary condition that at the radius of the accreting object, R•, the disk
material must be dragged into rigid rotation (a no-slip boundary condition), which
implies that dΩ/dR = 0 at R = R•, we obtain that

C2 = R2
• Ω•C1 = − Ṁ•

2π
(GM• R•)

1/2

Substituting this in the above expression, and using that

dΩ

dR
=

d

dR

(
GM•
R3

)1/2

= −3

2

Ω

R
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we have that

ν Σ = − Ṁ•
2π

[
R2Ω− (GM• R•)

1/2
] (

R3 dΩ

dR

)−1

= +
Ṁ•
3π

[
1−

(
R•
R

)1/2
]

This shows that the mass inflow rate and kinetic viscosity depend linearly on each
other.

The gravitational energy lost by the inspiraling material is converted into heat. This
is done through viscous dissipation: viscosity robs the disk material of angular
momentum which in turn causes it to spiral in.

We can work out the rate of viscous dissipation using

V = πij
∂ui
∂xj

where we have that the viscous stress tensor is

πij = µ

[
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

]

(see Chapter 11). Note that the last term in the above expression vanishes because
the fluid is incompressible, such that

V = µ

[(
∂ui
∂xj

)2

+
∂uj
∂xi

∂ui
∂xj

]

(remember to apply the Einstein summation convention here!).

In our case, using that ∂/∂θ = ∂/∂z = 0 and that uz = 0, the only surviving terms
are

V = µ

[(
∂uR
∂R

)2

+

(
∂uθ
∂R

)2

+
∂uR
∂R

∂uR
∂R

]
= µ

[
2

(
∂uR
∂R

)2

+

(
∂uθ
∂R

)2
]
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If we make the reasonable assumption that uR ≪ uθ, we can ignore the first term,
such that we finally obtain

V = µ

(
∂uθ
∂R

)2

= µR2

(
dΩ

dR

)2

which expresses the viscous dissipation per unit volume. Note that ∂uθ/∂R = Ω +
R dΩ/dR. Hence, even in a solid body rotation (dΩ/dR = 0) there is a radial
derivative of uθ. However, when dΩ/dR = 0 there is no velocity shear in the disk,
which shows that the Ω term cannot contribute to the viscous dissipation rate.

As before, we now proceed by integrating over the z-direction, to obtain

dE

dt
=

∫
µR2

(
dΩ

dR

)2

dz = ν ΣR2

(
dΩ

dR

)2

Using our expression for νΣ derived above, we can rewrite this as

dE

dt
=

Ṁ•
3π

R2

[
1−

(
R•
R

)1/2
] (

dΩ

dR

)2

Using once more that dΩ/dR = −(3/2)Ω/R, and integrating over the entire disk
yields the accretion luminosity of a thin accretion disk:

Lacc ≡ 2π

∞∫

R•

dE

dt
R dR =

GM• Ṁ•
2 R•

To put this in perspective, realize that the gravitational energy of mass m at radius
R• is GM•m/ R•. Thus, Lacc is exactly half of the gravitational energy lost due to
the inflow. This obviously begs the question where the other half went...The answer
is simple; it is stored in kinetic energy at the ‘boundary’ radius R• of the accreting
flow.

We end our discussion on accretion disks with a few words of caution. First of
all, our entire derivation is only valid for a thin accretion disk. In a thin disk, the
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pressure in the disk must be small (otherwise it would puff up). This means that the
∂P/∂R term in the R-component of the Navier-Stokes equation is small compared
to ∂Φ/∂R = GM/R2. This in turn implies that the gas will indeed be moving on
Keplerian orbits, as we have assumed. If the accretion disk is thick, the situation is
much more complicated, something that will not be covered in this course.

Finally, let us consider the time scale for accretion. As we have seen above, the
energy loss rate per unit surface area is

ν ΣR2

(
dΩ

dR

)2

=
9

4
νΣ

GM•
R3

We can compare this with the gravitation potential energy of disk material per unit
surface area, which is

E =
GM•Σ

R

This yields an accretion time scale

tacc ≡
E

dE/dt
=

4

9

R2

ν
∼ R2

ν

Too estimate this time-scale, we first estimate the molecular viscosity. Recall that
ν ∝ λmfpv with v a typical velocity of the fluid particles. In virtually all cases
encountered in astrophysics, we have that the size of the accretion disk, R, is many,
many orders of magnitude larger than λmfp. As a consequence, the corresponding
tacc easily exceeds the Hubble time!

The conclusion is that molecular viscosity is way too small to result in any signif-
icant accretion in objects of astrophysical size. Hence, other source of viscosity are
required, which is a topic of ongoing discussion in the literature. Probably the most
promising candidates are turbulence (in different forms), and the magneto-rotational
instability (MRI). Given the uncertainties involved, it is common practice to simply
write

ν = α
P

ρ

1

R

(
dΩ

dR

)−1

where α is a ‘free parameter’. A thin accretion disk modelled this way is often called
an alpha-accretion disk. If you wonder what the origin is of the above expression;
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Figure 16: Image of the central region of NGC 4261 taken with the Hubble Space
Telescope. It reveals a ∼ 100pc scale disk of dust and gas, which happens to be per-
pendicular to a radio jet that emerges from this galaxy. This is an alledged ‘accretion
disk’ supplying fuel to the central black hole in this galaxy. This image was actually
analyzed by the author as part of his thesis.

it simply comes from assuming that the only non-vanishing off-diagonal term of the
stress tensor is taken to be αP (where P is the value along the diagonal of the stress
tensor).
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CHAPTER 16

Turbulence

Non-linearity: The Navier-Stokes equation is non-linear. This non-linearity arises
from the convective (material) derivative term

~u · ∇~u =
1

2
∇u2 − ~u× ~w

which describes the ”inertial acceleration” and is ultimately responsible for the origin
of the chaotic character of many flows and of turbulence. Because of this non-
linearity, we cannot say whether a solution to the Navier-Stokes equation with nice
and smooth initial conditions will remain nice and smooth for all time (at least not
in 3D).

Laminar flow: occurs when a fluid flows in parallel layers, without lateral mixing
(no cross currents perpendicular to the direction of flow). It is characterized by high
momentum diffusion and low momentum convection.

Turbulent flow: is characterized by chaotic and stochastic property changes. This
includes low momentum diffusion, high momentum convection, and rapid variation
of pressure and velocity in space and time.

The Reynold’s number: In order to gauge the importance of viscosity for a fluid,
it is useful to compare the ratio of the inertial acceleration (~u · ∇~u) to the viscous
acceleration (ν

[
∇2~u+ 1

3
∇(∇ · ~u)

]
). This ratio is called the Reynold’s number, R,

and can be expressed in terms of the typical velocity scale U ∼ |~u| and length scale
L ∼ 1/∇ of the flow, as

R =

∣∣∣∣∣
~u · ∇~u

ν
[
∇2~u+ 1

3
∇(∇ · ~u)

]
∣∣∣∣∣ ∼

U2/L

νU/L2
=
U L

ν

If R ≫ 1 then viscosity can be ignored (and one can use the Euler equations to
describe the flow). However, if R ≪ 1 then viscosity is important.
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Figure 17: Illustration of laminar vs. turbulent flow.

Similarity: Flows with the same Reynold’s number are similar. This is evident
from rewriting the Navier-Stokes equation in terms of the following dimensionless
variables

ũ =
~u

U
x̃ =

~x

L
t̃ = t

U

L
p̃ =

P

ρU2
Φ̃ =

Φ

U2
∇̃ = L∇

This yields (after multiplying the Navier-Stokes equation with L/U2):

∂ũ

∂t̃
+ ũ · ∇̃ũ+ ∇̃p̃+ ∇̃Φ̃ =

1

R

[
∇̃2ũ+

1

3
∇̃(∇̃ · ũ)

]

which shows that the form of the solution depends only on R. This principle is
extremely powerful as it allows one to making scale models (i.e., when developing
airplanes, cars etc). NOTE: the above equation is only correct for an incompressible
fluid, i.e., a fluid that obeys ∇ρ = 0. If this is not the case the term P̃ (∇ρ/ρ) needs
to be added at the rhs of the equation, braking its scale-free nature.
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Figure 18: Illustration of flows at different Reynolds number.

As a specific example, consider fluid flow past a cylinder of diameter L:

• R ≪ 1: ”creeping flow”. In this regime the flow is viscously dominated and
(nearly) symmetric upstream and downstream. The inertial acceleration (~u ·
∇~u) can be neglected, and the flow is (nearly) time-reversible.

• R ∼ 1: Slight asymmetry develops

• 10 ≤ R ≤ 41: Separation occurs, resulting in two counter-rotating votices in
the wake of the cylinder. The flow is still steady and laminar, though.

• 41 ≤ R ≤ 103: ”von Kármán vortex street”; unsteady laminar flow with
counter-rotating vortices shed periodically from the cylinder. Even at this stage
the flow is still ‘predictable’.

• R > 103: vortices are unstable, resulting in a turbulent wake behind the
cylinder that is ‘unpredictable’.
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Figure 19: The image shows the von Kármán Vortex street behind a 6.35 mm di-
ameter circular cylinder in water at Reynolds number of 168. The visualization was
done using hydrogen bubble technique. Credit: Sanjay Kumar & George Laughlin,
Department of Engineering, The University of Texas at Brownsville

The following movie shows a R = 250 flow past a cylinder. Initially one can witness
separation, and the creation of two counter-rotating vortices, which then suddenly
become ‘unstable’, resulting in the von Kármán vortex street:

http://www.youtube.com/watch?v=IDeGDFZSYo8
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Figure 20: Typical Reynolds numbers for various biological organisms. Reynolds
numbers are estimated using the length scales indicated, the rule-of-thumb in the
text, and material properties of water.

Locomotion at Low-Reynolds number: Low Reynolds number corresponds to
high kinetic visocisity for a given U and L. In this regime of ‘creeping flow’ the
flow past an object is (nearly) time-reversible. Imagine trying to move (swim) in a
highly viscous fluid (take honey as an example). If you try to do so by executing time-
symmetric movements, you will not move. Instead, you need to think of a symmetry-
breaking solution. Nature has found many solutions for this problem. If we make
the simplifying ”rule-of-thumb” assumption that an animal of size L meters moves
roughly at a speed of U = L meters per second (yes, this is very, very rough, but an
ant does move close to 1 mm/s, and a human at roughly 1 m/s), then we have that
R = UL/ν ≃ L2/ν. Hence, with respect to a fixed substance (say water, for which
ν ∼ 10−2cm2/s), smaller organisms move at lower Reynolds number (effectively in
a fluid of higher viscosity). Scaling down from a human to bacteria and single-cell
organisms, the motion of the latter in water has R ∼ 10−5 − 10−2. Understanding
the locomotion of these organisms is a fascinating sub-branch of bio-physics.
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Boundary Layers: Even when R ≫ 1, viscosity always remains important in thin
boundary layers adjacent to any solid surface. This boundary layer must exist in
order to satisfy the no-slip boundary condition. If the Reynolds number exceeds
a critical value, the boundary layer becomes turbulent. Turbulent layes and their
associated turbulent wakes exert a much bigger drag on moving bodies than their
laminar counterparts.

Momentum Diffusion & Reynolds stress: This gives rise to an interesting phe-
nomenon. Consider flow through a pipe. If you increase the viscosity (i.e., decrease
R), then it requires a larger force to achieve a certain flow rate (think of how much
harder it is to push honey through a pipe compared to water). However, this trend
is not monotonic. For sufficiently low viscosity (large R), one finds that the trend
reverses, and that is becomes harder again to push the fluid through the pipe. This
is a consequence of turbulence, which causes momentum diffusion within the flow,
which acts very much like viscosity. However, this momentum diffusion is not due
to the viscous stress tensor, τij , but rather to the Reynolds stress tensor Rij .
To understand the ‘origin’ of the Reynolds stress tensor,consider the following:

For a turbulent flow, ~u(t), it is advantageous to decompose each component of ~u into
a ‘mean’ component, ūi, and a ‘fluctuating’ component, u′i, according to

ui = ūi + u′i

This is knowns as the Reynolds decomposition. The ‘mean’ component can be a
time-average, a spatial average, or an ensemble average, depending on the detailed
characteristics of the flow. Note that this is reminiscent of how we decomposed the
microscopic velocities of the fluid particles in a ‘mean’ velocity (describing the fluid
elements) and a ‘random, microscopic’ velocity (~v = ~u+ ~w).

Substituting this into the Navier-Stokes equation, and taking the average of that, we
obtain what is known as the Reynolds Averaged Navier-Stokes equation, or RANS
for short:

∂ūi
∂t

+ ūj
∂ūi
∂xj

=
1

ρ

∂

∂xj

[
σij − ρu′iu

′
j

]

where, for simplicity, we have ignored gravity (the ∇Φ-term). This equation looks
identical to the Navier-Stokes equation (in absence of gravity), except for the −ρu′iu′j
term, which is what we call the Reynolds stress tensor:
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Rij = −ρu′iu′j
Note that u′iu

′
j means the same averaging (time, space or ensemble) as above, but

now for the product of u′i and u
′
j. Note that ū′i = 0, by construction. However, the

expectation value for the product of u′i and u
′
j is generally not. As is evident from

the equation, the Reynolds stresses (which reflect momentum diffusion due to
turbulence) act in exactly the same way as the viscous stresses. However, they are
only present when the flow is turbulent. RANS-modelling is an approximate method
used often in engineering to account for turbulence without having to simulate it in
detail.

Note also that the Reynolds stress tensor is related to the two-point correlation
tensor

ξij(~r) ≡ u′i(~x, t) u
′
j(~x+ ~r, t)

in the sense that Rij = ξij(0). At large separations, ~r, the fluctuating velocities
will be uncorrelated so that limr→∞ ξij = 0. But on smaller scales the fluctuating
velocities will be correlated, and there will be a ‘characteristic’ scale associated with
these correlations, called the correlation length.

Turbulence: Turbulence is still considered as one of the last ”unsolved problems of
classical physics” [Richard Feynman]. What we technically mean by this is that we
do not yet know how to calculate ξij(~r) (and higher order correlation functions, like
the three-point, four-point, etc) in a particular situation from a fundamental theory.
Salmon (1998) nicely sums up the challenge of defining turbulence:

Every aspect of turbulence is controversial. Even the definition of
fluid turbulence is a subject of disagreement. However, nearly everyone
would agree with some elements of the following description:

• Turbulence requires the presence of vorticity; irrotational flow is
smooth and steady to the extent that the boundary conditions per-
mit.

• Turbulent flow has a complex structure, involving a broad range of
space and time scales.

• Turbulent flow fields exhibit a high degree of apparent randomness
and disorder. However, close inspection often reveals the presence
of embedded cohererent flow structures
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• Turbulent flows have a high rate of viscous energy dissipation.

• Advected tracers are rapidly mixed by turbulent flows.

However, one further property of turbulence seems to be more fun-
damental than all of these because it largely explains why turbulence
demands a statistical treatment...turbulence is chaotic.

The following is a brief, qualitative description of turbulence:

Turbulence kicks in at sufficiently high Reynolds number (typically R > 103 − 104).
Turbulent flow is characterized by irregular and seemingly random motion. Large
vortices (called eddies) are created. These contain a large amount of kinetic energy.
Due to vortex stretching these eddies are stretched thin until they ‘break up’ in
smaller eddies. This results in a cascade in which the turbulent energy is trans-
ported from large scales to small scales. This cascade is largely inviscid, conserving
the total turbulent energy. However, once the length scale of the eddies becomes
comparable to the mean free path of the particles, the energy is dissipated; the ki-
netic energy associated with the eddies is transformed into internal energy. The scale
at which this happens is called the Kolmogorov length scale. The length scales
between the scale of turbulence ‘injection’ and the Kolmogorov length scale at which
it is dissipated is called the inertial range. Over this inertial range turbulence is
believed/observed to be scale invariant. The ratio between the injection scale, L,
and the dissipation scale, l, is proportional to the Reynolds number according to
L/l ∝ R3/4. Hence, two turbulent flows that look similar on large scales (comparable
L), will dissipate their energies on different scales, l, if their Reynolds numbers are
different.

Molecular clouds: an example of turbulence in astrophysics are molecular clouds.
These are gas clouds of masses 105 − 106M⊙, densities nH ∼ 100 − 500 cm−3, and
temperatures T ∼ 10K. They consist mainly of molecular hydrogen and are the
main sites of star formation. Observations show that their velocity linewidths are∼
6−10km/s, which is much higher than their sound speed (cs ∼ 0.2km/s). Hence, they
are supported against (gravitational) collapse by supersonic turbulence. On small
scales, however, the turbulent motions compress the gas to high enough densities
that stars can form. A numerical simulation of a molecular cloud with supersonic
turbulence is available here:

http://www.youtube.com/watch?v=3z9ZKAkbMhY
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CHAPTER 17

Sound Waves

If a (compressible) fluid in equilibrium is perturbed, and the perturbation is suffi-
ciently small, the perturbation will propagate through the fluid as a sound wave
(aka acoustic wave), which is a mechanical, longitudinal wave (i.e, a displacement
in the same direction as that of propagation). Note that sound waves are perpet-
uated by the two-body collisions among the particles; this is very different from
some of the waves that we encounter in a collisionless plasma (e.g., Langmuir waves,
Alvèn waves) or a collisionless galaxy (e.g., spiral waves). These are perpetuated by
collective effects, as will be discussed in Parts IV and V of these lecture notes.

If the perturbation is small, we may assume that the velocity gradients are so small
that viscous effects are negligble (i.e., we can set ν = 0). In addition, we assume that
the time scale for conductive heat transport is large, so that energy exchange due to
conduction can also safely be ignored. In the absence of these dissipative processes,
the wave-induced changes in gas properties are adiabatic.

Before proceeding, let us examine the Reynold’s number of a (propagating) sound
wave. Using that R = U L/ν, and setting U = cs (the typical velocity involved is the
sound speed, to be defined below), L = λ (the characteristic scale of the flow is the
wavelength of the acoustic wave), we have that R = λ cs/ν. Using the expressions
for the viscosity µ = νρ from the constitutive relations in Chapter 11, we see that
ν ∝ λmfp cs. Hence, we have that

R ≡ U L

ν
∝ λ

λmfp

Thus, as long as the wave-length of the acoustic wave is much larger than the mean-
free path of the fluid particles, we have that the Reynolds number is large, and thus
that viscosity and conduction can be ignored.

Let (ρ0, P0, ~u0) be a uniform, equilibrium solution of the Euler fluid equations
(i.e., ignore viscosity). Also, in what follows we will ignore gravity (i.e., ∇Φ = 0).
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Uniformity implies that ∇ρ0 = ∇P0 = ∇~u0 = 0. In addition, since the only al-
lowed motion is uniform motion of the entire system, we can always use a Galilean
coordinate transformation so that ~u0 = 0, which is what we adopt in what follows.

Substitution into the continuity and momentum equations, one obtains that ∂ρ0/∂t =
∂~u0/∂t = 0, indicative of an equilibrium solution as claimed.

Perturbation Analysis: Consider a small perturbation away from the above equi-
librium solution:

ρ0 → ρ0 + ρ1

P0 → P0 + P1

~u0 → ~u0 + ~u1 = ~u1

where |ρ1/ρ0| ≪ 1, |P1/P0| ≪ 1 and ~u1 is small (compared to the sound speed, to
be derived below).

Substitution in the continuity and momentum equations yields

∂(ρ0 + ρ1)

∂t
+∇ · (ρ0 + ρ1)~u1 = 0

∂~u1
∂t

+ (~u1 · ∇)~u1 = −∇(P0 + P1)

(ρ0 + ρ1)

which, using that ∇ρ0 = ∇P0 = ∇~u0 = 0 reduces to

∂ρ1
∂t

+ ρ0∇ · ~u1 +∇ · (ρ1~u1) = 0

∂~u1
∂t

+
ρ1
ρ0

∂~u1
∂t

+ (~u1 · ∇)~u1 +
ρ1
ρ0

(~u1 · ∇)~u1 = −∇P1

ρ0

The latter follows from first multiplying the momentum equations with (ρ0+ ρ1)/ρ0.
Note that we don’t need to consider the energy equation; this is because (i) we have
assumed that conduction is negligble, and (ii) the disturbance is adiabatic (meaning
dQ = 0, and there is thus no heating or cooling).

Next we linearize these equations, which means we use that the perturbed values
are all small such that terms that contain products of two or more of these quantities
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are always negligible compared to those that contain only one such quantity. Hence,
the above equations reduce to

∂ρ1
∂t

+ ρ0∇ · ~u1 = 0

∂~u1
∂t

+
∇P1

ρ0
= 0

These equations describe the evolution of perturbations in an inviscid and uniform
fluid. As always, these equations need an additional equation for closure. As men-
tioned above, we don’t need the energy equation: instead, we can use that the
flow is adiabatic, which implies that P ∝ ργ .

Using Taylor series expansion, we then have that

P (ρ0 + ρ1) = P (ρ0) +

(
∂P

∂ρ

)

0

ρ1 +O(ρ21)

where we have used (∂P/∂ρ)0 as shorthand for the partial derivative of P (ρ) at
ρ = ρ0. And since the flow is isentropic, we have that the partial derivative is for
constant entropy. Using that P (ρ0) = P0 and P (ρ0 + ρ1) = P0 + P1, we find that,
when linearized,

P1 =

(
∂P

∂ρ

)

0

ρ1

Note that P1 6= P (ρ1); rather P1 is the perturbation in pressure associated with the
perturbation ρ1 in the density.

Substitution in the fluid equations of our perturbed quantities yields

∂ρ1
∂t

+ ρ0∇ · ~u1 = 0

∂~u1
∂t

+

(
∂P

∂ρ

)

0

∇ρ1
ρ0

= 0

Taking the partial time derivative of the above continuity equation, and using that
∂ρ0/∂t = 0, gives

∂2ρ1
∂t2

+ ρ0∇ · ∂~u1
∂t

= 0
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Substituting the above momentum equation, and realizing that (∂P/∂ρ)0 is a
constant, then yields

∂2ρ1
∂t2

−
(
∂P

∂ρ

)

0

∇2ρ1 = 0

which we recognize as a wave equation, whose solution is a plane wave:

ρ1 ∝ ei(
~k·~x−ωt)

with ~k the wavevector, k = |~k| = 2π/λ the wavenumber, λ the wavelength,
ω = 2πν the angular frequency, and ν the frequency.

To gain some insight, consider the 1D case: ρ1 ∝ ei(kx−ωt) ∝ eik(x−vpt), where we have
defined the phase velocity vp ≡ ω/k. This is the velocity with which the wave
pattern propagates through space. For our perturbation of a compressible fluid, this
phase velocity is called the sound speed, cs. Substituting the solution ρ1 ∝ ei(kx−ωt)

into the wave equation, we see that

cs =
ω

k
=

√(
∂P

∂ρ

)

s

where we have made it explicit that the flow is assumed to be isentropic. Note that
the partial derivative is for the unperturbed medium. This sound speed is sometimes
called the adiabatic speed of sound, to emphasize that it relies on the assumption
of an adiabatic perturbation. If the fluid is an ideal gas, then

cs =

√
γ
kBT

µmp

which shows that the adiabatic sound speed of an ideal fluid increases with temper-
ature.

We can repeat the above derivation by relaxing the assumption of isentropic flow,
and assuming instead that (more generally) the flow is polytropic. In that case,
P ∝ ρΓ, with Γ the polytropic index (Note: a polytropic EoS is an example of a
barotropic EoS). The only thing that changes is that now the sound speed becomes

cs =

√
∂P

∂ρ
=

√
Γ
P

ρ

177



which shows that the sound speed is larger for a stiffer EoS (i.e., a larger value of Γ).

Note also that, for our barotropic fluid, the sound speed is independent of ω. This
implies that all waves move equally fast; the shape of a wave packet is preserved
as it moves. We say that an ideal (inviscid) fluid with a barotropic EoS is a non-
dispersive medium.

To gain further insight, let us look once more at the (1D) solution for our perturba-
tion:

ρ1 ∝ ei(kx−ωt) ∝ eikx e−iωt

Recalling Euler’s formula (eiθ = cos θ + i sin θ), we see that:

• The eikx part describes a periodic, spatial oscillation with wavelength λ = 2π/k.

• The e−iωt part describes the time evolution:

– If ω is real, then the solution describes a sound wave which propagates
through space with a sound speed cs.

– If ω is imaginary then the perturation is either exponentially growing
(‘unstable’) or decaying (‘damped’) with time.

We will return to this in Chapter 19, when we discuss the Jeans stability criterion.

As discussed above acoustic waves result from disturbances in a compressible fluid.
These disturbances may arise from objects being moved through the fluid. However,
sound waves can also be sourced by fluid motions themselves. A familiar example is
the noise from jet-engines; the noise emenates from the turbulent wake created by
engines. In astrophysics, turbulence will also typically create sound waves. In general
these sound waves will not have an important impact on the physics. A potential ex-
ception is the heating of the ICM by sound waves created by turbulent wakes created
by AGN feedback. Appendix L discusses this topic, deriving an inhomogeneous
wave equation, known as the Lighthill equation that describes how fluid motion
can source sound waves. This equation can also be used to include the effects of
viscosity and conductivity. As we stated at the beginning of this chapter, these
transport mechanisms can be ignored as long as the wavelength of the sound wave
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is much larger than the mean-free path of the fluid particles. However, in the long
run viscosity and conductivity will cause some level of momentum dissipation and
energy diffusion, which will cause the sound waves to die out.
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CHAPTER 18

Shocks

When discussing sound waves in the previous chapter, we considered small (linear)
perturbations. In this Chapter we consider the case in which the perturbations are
large (non-linear). Typically, a large disturbance results in an abrupt discontinuity
in the fluid, called a shock. Note: not all discontinuities are shocks, but all shocks
are discontinuities.

Consider a polytropic EoS:

P = P0

(
ρ

ρ0

)Γ

The sound speed is given by

cs =

(
∂P

∂ρ

)1/2

=

√
Γ
P

ρ
= cs,0

(
ρ

ρ0

)(Γ−1)/2

If Γ = 1, i.e., the EoS is isothermal, then the sound speed is a constant, independent
of density or pressure. However, if Γ 6= 1, then the sound speed varies with the local
density. An important example, often encountered in (astro)physics is the adiabatic
EoS, for which Γ = γ (γ = 5/3 for a mono-atomic gas). In that case we have that cs
increases with density (and pressure, and temperature).

In our discussion of sound waves (Chapter 17), we used perturbation theory, in
which we neglected the ~u1 · ∇~u1 term. However, when the perturbations are not
small, this term is no longer negligble, and causes non-linearities to develop. The
most important of those, is the fact that the sound speed itself varies with density (as
we have seen above). This implies that the wave-form of the acoustic wave changes
with time; the wave-crest is moving faster than the wave-trough, causing an overall
steepening of the wave-form. This steepening continues until the wave-crest tries to
overtake the wave-trough, which is not allowed, giving rise to a shock front.

Mach Number: if v is the flow speed of the fluid, and cs is the sound speed, then
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the Mach number of the flow is defined as

M =
v

cs

Note: simply accelerating a flow to supersonic speeds does not necessarily generate
a shock. Shocks only arise when an obstruction in the flow causes a deceleration of
fluid moving at supersonic speeds. The reason is that disturbances cannot propagate
upstream, so that the flow cannot ‘adjust itself’ to the obstacle because there is no
way of propagating a signal (which always goes at the sound speed) in the upstream
direction. Consequently, the flow remains undisturbed until it hits the obstacle,
resulting in a discontinuous change in flow properties; a shock.

Structure of a Shock: Fig. 21 shows the structure of a planar shock. The shock
has a finite, non-zero width (typically a few mean-free paths of the fluid particles),
and separates the ‘up-stream’, pre-shocked gas, from the ‘down-stream’, shocked gas.

For reasons that will become clear in what follows, it is useful to split the downstream
region in two sub-regions; one in which the fluid is out of thermal equilibrium, with
net cooling L > 0, and, further away from the shock, a region where the downstream
gas is (once again) in thermal equilibrium (i.e., L = 0). If the transition between
these two sub-regions falls well outside the shock (i.e., if x3 ≫ x2) the shock is said
to be adiabatic. In that case, we can derive a relation between the upstream (pre-
shocked) properties (ρ1, P1, T1, u1) and the downstream (post-shocked) properties
(ρ2, P2, T2, u2); these relations are called theRankine-Hugoniot jump conditions.
Linking the properties in region three (ρ3, P3, T3, u3) to those in the pre-shocked gas
is in general not possible, except in the case where T3 = T1. In this case one may
consider the shock to be isothermal.

Rankine-Hugoniot jump conditions: We now derive the relations between the
up- and down-stream quantities, under the assumption that the shock is adiabatic.
Consider a rectangular volume V that encloses part of the shock; it has a thickness
dx > (x2 − x1) and is centered in the x-direction on the middle of shock. At fixed
x the volume is bounded by an area A. If we ignore variations in ρ and ~u in the y-
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Figure 21: Structure of a planar shock.

and z-directions, the continuity equation becomes

∂ρ

∂t
+

∂

∂x
(ρ ux) = 0

If we integrate this equation over our volume V we obtain

∫ ∫ ∫
∂ρ

∂t
dx dy dz +

∫ ∫ ∫
∂

∂x
(ρux) dx dy dz = 0

⇔ ∂

∂t

∫
ρ dx dy dz + A

∫
∂

∂x
(ρux) dx = 0

⇔ ∂M

∂t
+ A

∫
d(ρux) = 0

Since there is no mass accumulation in the shock, and mass does not dissapear in
the shock, we have that

ρux|+dx/2 = ρux|−dx/2

In terms of the upstream (index 1) and downstream (index 2) quantities:

ρ1 u1 = ρ2 u2

This equation describes mass conservation across a shock.
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The momentum equation in the x-direction, ignoring viscosity, is given by

∂

∂t
(ρ ux) = − ∂

∂x
(ρ ux ux + P )− ρ

∂Φ

∂x

Integrating this equation over V and ignoring any gradient in Φ across the shock, we
obtain

ρ1 u
2
1 + P1 = ρ2 u

2
2 + P2

This equation describes how the shock converts ram pressure into thermal
pressure.

Finally, applying the same to the energy equation under the assumption that the
shock is adiabatic (i.e., dQ/dt = 0), one finds that (E + P )u has to be the same on
both sides of the shock, i.e.,

[
1

2
u2 + Φ+ ε+

P

ρ

]
ρ u = constant

We have already seen that ρ u is constant. Hence, if we once more ignore gradients
in Φ across the shock, we obtain that

1

2
u21 + ε1 + P1/ρ1 =

1

2
u22 + ε2 + P2/ρ2

This equation describes how the shock converts kinetic energy into enthalpy.
Qualitatively, a shock converts an ordered flow upstream into a disordered (hot) flow
downstream.

The three equations in the rectangular boxes are known as the Rankine-Hugoniot
(RH) jump conditions for an adiabatic shock. Using straightforward but
tedious algebra, these RH jump conditions can be written in a more useful form
using the Mach number M1 of the upstream gas:

ρ2
ρ1

=
u1
u2

=

[
1

M2
1

+
γ − 1

γ + 1

(
1− 1

M2
1

)]−1

P2

P1
=

2γ

γ + 1
M2

1 −
γ − 1

γ + 1

T2
T1

=
P2 ρ2
P1 ρ1

=
γ − 1

γ + 1

[
2

γ + 1

(
γM2

1 −
1

M2
1

)
+

4γ

γ − 1
− γ − 1

γ + 1

]
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Here we have used that for an ideal gas

P = (γ − 1) ρ ε =
kB T

µmp
ρ

Given that M1 > 1, we see that ρ2 > ρ1 (shocks compress), u2 < u1 (shocks
decelerate), P2 > P1 (shocks increase pressure), and T2 > T1 (shocks heat).
The latter may seem surprising, given that the shock is considered to be adiabatic:
although the process has been adiabatic, in that dQ/dt = 0, the gas has changed its
adiabat; its entropy has increased as a consequence of the shock converting kinetic
energy into thermal, internal energy. In general, in the presence of viscosity, a
change that is adiabatic does not imply that the states before and after are simply
linked by the relation P = K ργ , with K some constant. Shocks are always viscous,
which causes K to change across the shock, such that the entropy increases; it is this
aspect of the shock that causes irreversibility, thus defining an ”arrow of time”.

Back to the RH jump conditions: in the limit M1 ≫ 1 we have that

ρ2 =
γ + 1

γ − 1
ρ1 = 4 ρ1

where we have used that γ = 5/3 for a monoatomic gas. Thus, with an adiabatic
shock you can achieve a maximum compression in density of a factor four! Physi-
cally, the reason why there is a maximal compression is that the pressure and tem-
perature of the downstream fluid diverge as M2

1. This huge increase in downstream
pressure inhibits the amount of compression of the downstream gas. However, this
is only true under the assumption that the shock is adiabatic. The downstream,
post-shocked gas is out of thermal equilibrium, and in general will be cooling (i.e.,
L > 0). At a certain distance past the shock (i.e., when x = x3 in Fig. 21), the
fluid will re-establish thermal equilibrium (i.e., L = 0). In some special cases, one
can obtain the properties of the fluid in the new equilibrium state; one such case is
the example of an isothermal shock, for which the downstream gas has the same
temperature as the upstream gas (i.e., T3 = T1).

In the case of an isothermal shock, the first two Rankine-Hugoniot jump con-
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ditions are still valid, i.e.,

ρ1 u1 = ρ3 u3

ρ1 u
2
1 + P1 = ρ3 u

2
3 + P3

However, the third condition, which derives from the energy equation, is no longer
valid. After all, in deriving that one we had assumed that the shock was adiabatic.
In the case of an isothermal shock we have to replace the third RH jump condition
with T1 = T3. The latter implies that c2s = P3/ρ3 = P1/ρ1, and allows us to rewrite
the second RH condition as

ρ1(u
2
1 + c2s) = ρ3(u

2
3 + c2s )

⇔ u21 − ρ3
ρ1
u23 =

ρ3
ρ1
c2s − c2s

⇔ u21 − u1u3 = (u1

u3
− 1) c2s

⇔ u1u3(u1 − u3) = (u1 − u3) c
2
s

⇔ c2s = u1u3

Here the second step follows from using the first RH jump condition. If we now
substitute this result back into the first RH jump condition we obtain that

ρ3
ρ1

=
u1
u3

=

(
u1
cs

)2

= M2
1

Hence, in the case of isothermal shock (or an adiabatic shock, but sufficiently far
behind the shock in the downstream fluid), we have that there is no restriction to
how much compression the shock can achieve; depending on the Mach number of the
shock, the compression can be huge.
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Figure 22: An actual example of a supernova blastwave. The red colors show the
optical light emitted by the supernova ejecta, while the green colors indicate X-ray
emission coming from the hot bubble of gas that has been shock-heated when the
blast-wave ran over it.

Supernova Blastwave: An important example of a shock in astrophysics are su-
pernova blastwaves. When a supernova explodes, it blasts a shell of matter (the
‘ejecta’) at high (highly supersonic) speed into the surrounding medium. The ki-
netic energy of this shell material is roughly ESN = 1051 erg. This is roughly 100
times larger than the amount of energy emitted in radiation by the supernova explo-
sion (which is what we ‘see’). For comparison, the entire Milky Way has a luminosity
of ∼ 1010 L⊙ ≃ 4×1043 ergs−1, which amounts to an energy emitted by stars over an
entire year that is of the order of 1.5 × 1051 erg. Hence, the kinetic energy released
by a single SN is larger than the energy radiated by stars, by the entire galaxy, in
an entire year!
The mass of the ejecta is of the order of 1 Solar mass, which implies (using that
ESN = 1

2
Mejv

2
ej), that the ejecta have a velocity of ∼ 10, 000 km s−1!! Initially, this

shell material has a mass that is much larger than the mass of the surroundings swept
up by the shock, and to lowest order the shell undergoes free expansion. This phase
is therefore called the free-expansion phase. As the shock moves out, it engulves
more and more interstellar material, which is heated (and compressed) by the shock.
Hence, the interior of the shell (=shock) is a super-hot bubble of over-pressurized
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gas, which ‘pushes’ the shock outwards. As more and more material is swept-up, and
accelerated outwards, the mass of the shell increases, which causes the velocity of the
shell to decelerate. At the early stages, the cooling of the hot bubble is negligble, and
the blastwave is said to be in the adiabatic phase, also known as the Sedov-Taylor
phase. At some point, though, the hot bubble starts to cool, radiating away the
kinetic energy of the supernova, and lowering the interior pressure up to the point
that it no longer pushes the shell outwards. This is called the radiative phase.
From this point on, the shell expands purely by its inertia, being slowed down by the
work it does against the surrounding material. This phase is called the snow-plow
phase. Ultimately, the velocity of the shell becomes comparable to the sound speed
of the surrounding material, after which it continues to move outward as a sound
wave, slowly dissipating into the surroundings.

During the adiabatic phase, we can use a simple dimensional analysis to solve for
the evolution of the shock radius, rsh, with time. Since the only physical parameters
that can determine rsh in this adiabatic phase are time, t, the initial energy of the
SN explosion, ε0, and the density of the surrounding medium, ρ0, we have that

rsh = f(t, ε0, ρ0) = Atη εα0 ρ
β
0

It is easy to check that there is only one set of values for η, α and β for which the
product on the right has the dimensions of length (which is the dimension of rsh.
This solution has η = 2/5, α = 1/5 and β = −1/5, such that

rsh = A

(
ε

ρ0

)1/5

t2/5

and thus

vsh =
drsh
dt

=
2A

5

(
ε

ρ0

)1/5

t−3/5

which shows that indeed the shock decelerates as it moves outwards.
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CHAPTER 19

Fluid Instabilities

In this Chapter we discuss the following instabilities:

• convective instability (Schwarzschild criterion)
• interface instabilities (Rayleigh-Taylor & Kelvin-Helmholtz)
• gravitational instability (Jeans criterion)
• thermal instability (Field criterion)

Convective Instability: In astrophysics we often need to consider fluids heated
from ”below” (e.g., stars, Earth’s atmosphere where Sun heats surface, etc.) This
results in a temperature gradient: hot at the base, colder further ”up”. Since warmer
fluids are more buoyant (‘lighter’), they like to be further up than colder (‘heavier’)
fluids. The question we need to address is under what conditions this adverse tem-
perature gradient becomes unstable, developing ”overturning” motions known as
thermal convection.

Consider a blob with density ρb and pressure Pb embedded in an ambient medium of
density ρ and pressure P . Suppose the blob is displaced
by a small distance δz upward. After the displace-
ment the blob will have conditions (ρ∗b, P

∗
b ) and its

new ambient medium is characterized by (ρ′, P ′),
where

ρ′ = ρ+
dρ

dz
δz P ′ = P +

dP

dz
δz

Initially the blob is assumed to be in mechani-
cal and thermal equilibrium with its ambient
medium, so that ρb = ρ and Pb = P . After the
displacement the blob needs to re-establish a new
mechanical and thermal equilibrium. In general,
the time scale on which it re-establishes mechan-
ical (pressure) equilibrium is the sound crossing
time, τs, while re-establishing thermal equilibrium
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proceeds much slower, on the conduction time, τc. Given that τs ≪ τc we can assume
that P ∗

b = P ′, and treat the displacement as adiabatic. The latter implies that the
process can be described by an adiabatic EoS: P ∝ ργ. Hence, we have that

ρ∗b = ρb

(
P ∗
b

Pb

)1/γ

= ρb

(
P ′

P

)1/γ

= ρb

[
1 +

1

P

dP

dz
δz

]1/γ

In the limit of small displacements δz, we can use Taylor series expansion to show
that, to first order,

ρ∗b = ρ+
ρ

γ P

dP

dz
δz

where we have used that initially ρb = ρ, and that the Taylor series expansion,
f(x) ≃ f(0)+f ′(0)x+ 1

2
f ′′(0)x2+..., of f(x) = [1+x]1/γ is given by f(x) ≃ 1+ 1

γ
x+....

Suppose we have a stratified medium in which dρ/dz < 0 and dP/dz < 0. In that
case, if ρ∗b > ρ′ the blob will be heavier than its surrounding and it will sink back to its
original position; the system is stable to convection. If, on the other hand, ρ∗b < ρ′

then the displacement has made the blob more buoyant, resulting in instability.
Hence, using that ρ′ = ρ+ (dρ/dz) δz we see that stability requires that

dρ

dz
<

ρ

γ P

dP

dz

This is called the Schwarzschild criterion for convective stability.

It is often convenient to rewrite this criterion in a form that contains the temperature.
Using that

ρ = ρ(P, T ) =
µmp

kBT
P

it is straightforward to show that

dρ

dz
=
ρ

P

dP

dz
− ρ

T

dT

dz

Substitution in ρ′ = ρ+ (dρ/dz) δz then yields that

ρ∗b − ρ′ =

[
−(1− 1

γ
)
ρ

P

dP

dz
+
ρ

T

dT

dz

]
δz

Since stability requires that ρ∗b − ρ′ > 0, and using that δz > 0, dP/dz < 0 and
dT/dz < 0 we can rewrite the above Schwarzschild criterion for stability as

∣∣∣∣
dT

dz

∣∣∣∣ <
(
1− 1

γ

)
T

P

∣∣∣∣
dP

dz

∣∣∣∣
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Figure 23: Example of Rayleigh-Taylor instability in a hydro-dynamical simulation.

This shows that if the temperature gradient becomes too large the system becomes
convectively unstable: blobs will rise up until they start to loose their thermal en-
ergy to the ambient medium, resulting in convective energy transport that tries to
“overturn” the hot (high entropy) and cold (low entropy) material. In fact, without
any proof we mention that in terms of the specific entropy, s, one can also write
the Schwarzschild criterion for convective stability as ds/dz > 0.

To summarize, the Schwarzschild criterion for convective stability is given by
either of the following three expressions:

∣∣∣∣
dT

dz

∣∣∣∣ <
(
1− 1

γ

)
T

P

∣∣∣∣
dP

dz

∣∣∣∣

dρ

dz
<

ρ

γ P

dP

dz

ds

dz
> 0

Rayleigh-Taylor Instability: The Rayleigh-Taylor (RT) instability is an insta-
bility of an interface between two fluids of different densities that occurs when one
of the fluids is accelerated into the other. Examples include supernova explosions
in which expanding core gas is accelerated into denser shell gas and the common
terrestrial example of a denser fluid such as water suspended above a lighter fluid
such as oil in the Earth’s gravitational field.
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It is easy to see where the RT instability comes from. Consider a fluid of density
ρ2 sitting on top of a fluid of density ρ1 < ρ2 in a gravitational field that is point-
ing in the downward direction. Consider a small perturbation in which the initially
horizontal interface takes on a small amplitude, sinusoidal deformation. Since this
implies moving a certain volume of denser material down, and an equally large vol-
ume of the lighter material up, it is immediately clear that the potential energy of
this ‘perturbed’ configuration is lower than that of the initial state, and therefore
energetically favorable. Simply put, the initial configuration is unstable to small
deformations of the interface.

Stability analysis (i.e., perturbation analysis of the fluid equations) shows that the
dispersion relation corresponding to the RT instability is given by

ω = ±i k
√
g

k

ρ2 − ρ1
ρ2 + ρ1

where g is the gravitational acceleration, and the factor (ρ2 − ρ1)/(ρ2 + ρ1) is called
the Atwood number. Since the wavenumber of the perturbation k > 0 we see
that ω is imaginary, which implies that the perturbations will grow exponentially
(i.e., the system is unstable). If ρ1 > ρ2 though, ω is real, and the system is stable
(perturbations to the interface propagate as waves).

Kelvin-Helmholtz Instability: the Kelvin-Helmholtz (KH) instability is an in-
terface instability that arises when two fluids with different densities have a velocity
difference across their interface. Similar to the RT instability, the KH instability
manifests itself as a small wavy pattern in the interface which develops into turbu-
lence and which causesmixing. Examples where KH instability plays a role are wind
blowing over water, (astrophysical) jets, the cloud bands on Jupiter (in particular
the famous red spot), and clouds of denser gas falling through the hot, low density
intra-cluster medium (ICM).

Stability analysis (i.e., perturbation analysis of the fluid equations) shows that the
the dispersion relation corresponding to the KH instability is given by

ω

k
=

(ρ1u1 + ρ2u2)± i (u1 − u2) (ρ1ρ2)
1/2

ρ1 + ρ2
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Figure 24: Illustration of onset of Kelvin-Helmholtz instability

Note that this dispersion relation has both real and imaginary parts, given by

ωR

k
=

(ρ1u1 + ρ2u2)

ρ1 + ρ2

and
ωI

k
= (u1 − u2)

(ρ1ρ2)
1/2

ρ1 + ρ2

Since the imaginary part is non-zero, except for u1 = u2, we we have that, in principle,
any velocity difference across an interface is KH unstable. In practice, surface
tension can stabilize the short wavelength modes so that typically KH instability
kicks in above some velocity treshold.

As an example, consider a cold cloud of radius Rc falling into a cluster of galax-
ies. The latter contains a hot intra-cluster medium (ICM), and as the cloud moves
through this hot ICM, KH instabilities can develop on its surface. If the cloud started
out at a large distance from the cluster with zero velocity, than at infall it has a ve-
locity v ∼ vesc ∼ cs,h, where the latter is the sound speed of the hot ICM, assumed
to be in hydrostatic equilibrium. Defining the cloud’s overdensity δ = ρc/ρh − 1, we
can write the (imaginary part of the) dispersion relation as

ω =
ρh (ρc/ρh)

1/2

ρh[1 + (ρc/ρh)]
cs,h k =

(δ + 1)1/2

δ + 2
cs,h k

The mode that will destroy the cloud has k ∼ 1/Rc, so that the time-scale for cloud
destruction is

τKH ≃ 1

ω
≃ Rc

cs,h

δ + 2

(δ + 1)1/2
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Assuming pressure equilibrium between cloud and ICM, and adopting the EoS of an
ideal gas, implies that ρh Th = ρc Tc, so that

cs,h
cs,c

=
T

1/2
h

T
1/2
c

=
ρ
1/2
c

ρ
1/2
h

= (δ + 1)1/2

Hence, one finds that the Kelvin-Helmholtz time for cloud destruction is

τKH ≃ 1

ω
≃ Rc

cs,c

δ + 2

δ + 1

Note that τKH ∼ ζ(Rc/cs,c) = ζτs, with ζ = 1(2) for δ ≫ 1(≪ 1). Hence, theKelvin-
Helmholtz instability will typically destroy clouds falling into a hot ”atmosphere”
on a time scale between one and two sound crossing times, τs, of the cloud. Note,
though, that magnetic fields and/or radiative cooling at the interface may stabilize
the clouds.

Gravitational Instability: In our discussion of sound waves we used perturbation
analysis to derive a dispersion relation ω2 = k2 c2s . In deriving that equation we
ignored gravity by setting ∇Φ = 0 (see Chapter 17). If you do not ignore gravity,
then you add one more perturbed quantity; Φ = Φ0 + Φ1 and one more equation,
namely the Poisson equation ∇2Φ = 4πGρ.
It is not difficult to show that this results in a modified dispersion relation:

ω2 = k2 c2s − 4πGρ0 = c2s
(
k2 − k2J

)

where we have introduced the Jeans wavenumber

kJ =

√
4πGρ0
cs

to which we can also associate a Jeans length

λJ ≡
2π

kJ
=

√
π

Gρ0
cs

and a Jeans mass

MJ =
4

3
πρ0

(
λJ
2

)3

=
π

6
ρ0 λ

3
J
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From the dispersion relation one immediately sees that the system is unstable (i.e.,
ω is imaginary) if k < kJ (or, equivalently, λ > λJ or M > MJ). This is called the
Jeans criterion for gravitational instability. It expresses when pressure forces
(which try to disperse matter) are no longer able to overcome gravity (which tries to
make matter collapse), resulting in exponential gravitational collapse on a time scale

τff =

√
3 π

32Gρ

known as the free-fall time for gravitational collapse.

The Jeans stability criterion is of utmost importance in astrophysics. It is used to
describes the formation of galaxies and large scale structure in an expanding space-
time (in this case the growth-rate is not exponential, but only power-law), to describe
the formation of stars in molecular clouds within galaxies, and it may even play an
important role in the formation of planets in protoplanetary disks.

In deriving the Jeans Stability criterion you will encounter a somewhat puzzling issue.
Consider the Poisson equation for the unperturbed medium (which has density ρ0
and gravitational potential Φ0):

∇2Φ0 = 4πGρ0

Since the initial, unperturbed medium is supposed to be homogeneous there can be
no gravitational force; hence ∇Φ0 = 0 everywhere. The above Poisson equation
then implies that ρ0 = 0. In other words, an unperturbed, homogeneous density
field of non-zero density does not seem to exist. Sir James Jeans ‘ignored’ this
‘nuisance’ in his derivation, which has since become known as the Jeans swindle.
The problem arises because Newtonian physics is not equipped to deal with systems
of infinite extent (a requirement for a perfectly homogeneous density distribution).
See Kiessling (1999; arXiv:9910247) for a detailed discussion, including an elegant
demonstration that the Jeans swindle is actually vindicated!

Thermal Instability: Let L = L(ρ, T ) = C − H be the net cooling rate. If L = 0
the system is said to be in thermal equilibrium (TE), while L > 0 and L < 0
correspond to cooling and heating, respectively.
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Figure 25: The locus of ther-
mal equilibrium (L = 0) in
the (ρ, T ) plane, illustrating the
principle of thermal instability.
The dashed line indicates a line
of constant pressure.

The condition L(ρ, T ) = 0 corresponds to a curve in the (ρ, T )-plane with a shape
similar to that shown in Fig. 25. It has flat parts at T ∼ 106K, at T ∼ 104K, at
T ∼ 10−100K. This can be understood from simple atomic physics (see for example
§ 8.5.1 of Mo, van den Bosch & White, 2010). Above the TE curve we have that
L > 0 (net cooling), while below it L < 0 (net heating). The dotted curve indicates
a line of constant pressure (T ∝ ρ−1). Consider a blob in thermal and mechanical
(pressure) equilibrium with its ambient medium, and with a pressure indicated by
the dashed line. There are five possible solutions for the density and temperature of
the blob, two of which are indicated by P1 and P2; here confusingly the P refers to
‘point’ rather than ‘pressure’. Suppose I have a blob located at point P2. If I heat
the blob, displacing it from TE along the constant pressure curve (i.e., the blob is
assumed small enough that the sound crossing time, on which the blob re-established
mechanical equilibrium, is short). The blob now finds itself in the region where L > 0
(i.e, net cooling), so that it will cool back to its original location on the TE-curve;
the blob is stable. For similar reasons, it is easy to see that a blob located at point
P1 is unstable. This instability is called thermal instability, and it explains
why the ISM is a three-phase medium, with gas of three different temperatures
(T ∼ 106K, 104K, and ∼ 10− 100K) coexisting in pressure equilibrium. Gas at any
other temperature but in pressure equilibrium is thermally unstable.

It is easy to see that the requirement for thermal instability translates into

(
∂L
∂T

)

P

< 0
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which is known as the Field criterion for thermal instability (after astrophysicist
George B. Field).

Fragmentation and Shattering: Consider the Jeans criterion, expressing a bal-
ance between gravity and pressure. Using that the Jeans mass MJ ∝ ρ λ3J and that
λJ ∝ ρ−1/2 cs, we see that

MJ ∝ ρ−1/2 T 3/2

where we have used that cs ∝ T 1/2. Now consider a polytropic equation of state,
which has P ∝ ρΓ, with Γ the polytropic index. Assuming an ideal gas, such that

P =
kB T

µmp

ρ

we thus see that a polytropic ideal gas must have that T ∝ ρΓ−1. Substituting that
in the expression for the Jeans mass, we obtain that

MJ ∝ ρ
3
2
Γ−2 = ρ

3
2
(Γ− 4

3
)

Thus, we see that for Γ > 4/3 the Jeans mass will increase with increasing density,
while the opposite is true for Γ < 4/3. Now consider a system that is (initially)
larger than the Jeans mass. Since pressure can no longer support it against its own
gravity, the system will start to collapse, which increases the density. If Γ < 4/3,
the Jeans mass will becomes smaller as a consequence of the collapse, and now small
subregions of the system will find themselves having a mass larger than the Jeans
mass ⇒ the system will start to fragment.

If the collapse is adiabatic (i.e., we can ignore cooling), then Γ = γ = 5/3 > 4/3 and
there will be no fragmentation. However, if cooling is very efficient, such that while
the cloud collapses it maintains the same temperature, the EoS is now isothermal,
which implies that Γ = 1 < 4/3: the cloud will fragment into smaller collapsing
clouds. Fragmentation is believed to underly the formation of star clusters.

A very similar process operates related to the thermal instability. In the discussion
of the Field criterion we had made the assumption “the blob is assumed small
enough that the sound crossing time, on which the blob re-established mechanical
equilibrium, is short”. Here ‘short’ means compared to the cooling time of the cloud.
Let’s define the cooling length lcool ≡ csτcool, where cs is the cloud’s sound speed and
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τcool is the cooling time (the time scale on which it radiates away most of its internal
energy). The above assumption thus implies that the size of the cloud, lcloud ≪
lcool. As a consequence, whenever the cloud cools somewhat, it can immediately
re-establish pressure equilibrium with its surrounding (i.e., the sound crossing time,
τs = lcloud/cs is much smaller than the cooling time τcool = lcool/cs).

Now consider a case in which lcloud ≫ lcool (i.e., τcool ≪ τs). As the cloud cools,
it cannot maintain pressure equilibrium with its surroundings; it takes too long for
mechanical equilibrium to be established over the entire cloud. What happens is that
smaller subregions, of order the size lcool, will fragment. The smaller fragments will
be able to maintain pressure equilibrium with their surroundings. But as the small
cloudlets cool further, the cooling length lcool shrinks. To see this, realize that when T
drops this lowers the sound speed and decreases the cooling time; after all, we are in
the regime of thermal instability, so (∂L/∂T )P < 0. As a consequence, lcool = csτcool
drops as well. So the small cloudlet soon finds itself larger than the cooling length,
and it in turn will fragment. This process of shattering continues until the cooling
time becomes sufficiently long and the cloudlets are no longer thermally unstable.

This process of shattering is believed to play an important role in the inter-galactic
medium (IGM) in between galaxies, and the circum-galactic medium (CGM) in the
halos of galaxies.
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Part IV: Collisionless Dynamics

The following chapters give an elementary introduction into the rich topic of colli-
sionless dynamics. The main goal is to highlight how the lack of collisions among the
constituent particles give rise to a dynamics that differs remarkably from collisional
fluids. We also briefly discuss the theory of orbits, which are the building blocks of
collisionless systems, the Virial theorem, and the gravothermal catastrophe, which
is a consequence of the negative heat capacity of a gravitational system. Finally, we
briefly discuss interactions (‘collisions’) among collisionless systems.

Collisionless Dynamics is a rich topic, and one could easily devote an entire course
to it (for example the Yale Graduate Course ‘ASTR 518; Galactic Dynamics’). The
following chapters therefore only scratch the surface of this rich topic. Readers who
want to get more indepth information are referred to the following excellent text-
books
- Galactic Dynamics by J. Binney & S. Tremaine
- Galactic Nuclei by D. Merritt
- Galaxy Formation and Evolution by H.J. Mo, F. van den Bosch & S. White
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CHAPTER 20

Jeans Equations and Dynamical Modelling

In this chapter we consider collisionless fluids, such as galaxies and dark matter halos.
As discussed in previous chapters, their dynamics is governed by the Collisionless
Boltzmann equation (CBE)

df

dt
=
∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0

By taking the velocity moment of the CBE (see Chapter 7), we obtain the Jeans
equations

∂ui
∂t

+ ui
∂uj
∂xi

=
1

ρ

∂σ̂ij
∂xi

− ∂Φ

∂xi

which are the equivalent of the Navier-Stokes equations (or Euler equations), but for
a collisionless fluid. The quantity σ̂ij in the above expression is the stress tensor,
defined as

σ̂ij = −ρ 〈wiwj〉 = ρ〈vi〉 〈vj〉 − ρ〈vivj〉
In this chapter, we write a hat on top of the stress tensor, in order to distinguish it
from the velocity dispersion tensor given by

σ2
ij = 〈vivj〉 − 〈vi〉 〈vj〉 = − σ̂ij

ρ

This notation may cause some confusion, but it is adapted here in order to be con-
sistent with the notation in standard textbooks on galactic dynamics. For the same
reason, in what follows we will write 〈vi〉 instead of ui.

As we have discussed in detail in chapter 11, for a collisional fluid the stress tensor
is given by

σ̂ij = −ρσ2
ij = −Pδij + τij

and therefore completely specified by two scalar quantities; the pressure P and the
shear viscosity µ (as always, we ignore bulk viscosity). Both P and µ are related to
ρ and T via constitutive equations, which allow for closure in the equations.

199



In the case of a collisionless fluid, though, no constistutive relations exist, and the
(symmetric) velocity dispersion tensor has 6 unknowns. As a consequence, the Jeans
equations do not form a closed set. Adding higher-order moment equations of the
CBE will yield more equations, but this also adds new, higher-order unknowns such
as 〈vivjvk〉, etc. As a consequence, the set of CBE moment equations never closes!

Note that σ2
ij is a local quantity; σ2

ij = σ2
ij(~x). At each point ~x it defines the

velocity ellipsoid; an ellipsoid whose principal axes are defined by the orthogonal
eigenvectors of σ2

ij with lengths that are proportional to the square roots of the
respective eigenvalues.

Since these eigenvalues are typically not the same, a collisionless fluid experiences
anisotropic pressure-like forces. In order to be able to close the set of Jeans equa-
tions, it is common to make certain assumptions about the symmetry of the fluid.
For example, a common assumption is that the fluid is isotropic, such that the
(local) velocity dispersion tensor is specified by a single quantity; the local velocity
dispersion σ2. Note, though, that if with this approach, a solution is found, the
solution may not correspond to a physical distribution function (DF) (i.e., in order
to be physical, f ≥ 0 everywhere). Thus, although any real DF obeys the Jeans
equations, not every solution to the Jeans equations corresponds to a physical DF!!!

As a worked out example, we now derive the Jeans equations under cylindrical
symmetry. We therefore write the Jeans equations in the cylindrical coordinate
system (R, φ, z). The first step is to write the CBE in cylindrical coordinates.

df

dt
=
∂f

∂t
+ Ṙ

∂f

∂R
+ φ̇

∂f

∂φ
+ ż

∂f

∂z
+ v̇R

∂f

∂vR
+ v̇φ

∂f

∂vφ
+ v̇z

∂f

∂vz

Recall from vector calculus (see Appendices A and D) that

~v = Ṙ~eR +Rφ̇~eφ + ż~ez = vR~eR + vφ~eφ + vz~ez

from which we obtain the acceleration vector

~a =
d~v

dt
= R̈~eR + Ṙ~̇eR + Ṙφ̇~eφ +Rφ̈~eφ +Rφ̇~̇eφ + z̈~ez + ż~̇ez

Using that ~̇eR = φ̇~eφ, ~̇eφ = −φ̇~eR, and ~̇ez = 0 we have that

~a =
[
R̈− Rφ̇2

]
~eR +

[
2Ṙφ̇+Rφ̈

]
~eφ + z̈~ez

200



Next we use that

vR = Ṙ ⇒ v̇R = R̈

vφ = Rφ̇ ⇒ v̇φ = Ṙφ̇+Rφ̈

vz = ż ⇒ v̇z = z̈

to write the acceleration vector as

~a =

[
v̇R −

v2φ
R

]
~eR +

[vRvφ
R

+ v̇φ

]
~eφ + v̇z ~ez

Newton’s equation of motion in vector form reads

~a = −∇Φ =
∂Φ

∂R
~eR +

1

R

∂Φ

∂φ
~eφ +

∂Φ

∂z
~ez

Combining this with the above we see that

v̇R = −∂Φ
∂R

+
v2φ
R

v̇φ = − 1

R

∂Φ

∂R
+
vRvφ
R

v̇z = −∂Φ
∂z

which allows us to the write the CBE in cylindrical coordinates as

∂f

∂t
+ vR

∂f

∂R
+
vφ
R

∂f

∂φ
+ vz

∂f

∂z
+

[
v2φ
R

− ∂Φ

∂R

]
∂f

∂vR
− 1

R

[
vRvφ +

∂Φ

∂φ

]
∂f

∂vφ
− ∂Φ

∂z

∂f

∂vz
= 0

The Jeans equations follow from multiplication with vR, vφ, and vz and integrat-
ing over velocity space. Note that the cylindrical symmetry requires that all
derivatives with respect to φ vanish. The remaining terms are:
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∫
vR
∂f

∂t
d3~v =

∂

∂t

∫
vRfd

3~v =
∂(ρ〈vR〉)

∂t∫
v2R
∂f

∂R
d3~v =

∂

∂R

∫
v2Rfd

3~v =
∂(ρ〈v2R〉)
∂R∫

vRvz
∂f

∂z
d3~v =

∂

∂z

∫
vRvzfd

3~v =
∂(ρ〈vRvz〉)

∂z∫
vRv

2
φ

R

∂f

∂vR
d3~v =

1

R

[∫
∂(vRv

2
φf)

∂vR
d3~v −

∫
∂(vRv

2
φ)

∂vR
fd3~v

]
= −ρ〈v

2
φ〉
R∫

vR
∂Φ

∂R

∂f

∂vR
d3~v =

∂Φ

∂R

[∫
∂(vRf)

∂vR
d3~v −

∫
∂vR
∂vR

fd3~v

]
= −ρ∂Φ

∂R∫
v2Rvφ
R

∂f

∂vφ
d3~v =

1

R

[∫
∂(v2Rvφf)

∂vφ
d3~v −

∫
∂(v2Rvφ)

∂vφ
fd3~v

]
= −ρ〈v

2
R〉
R∫

vR
∂Φ

∂z

∂f

∂vz
d3~v =

∂Φ

∂z

[∫
∂(vRf)

∂vz
d3~v −

∫
∂vz
∂vR

fd3~v

]
= 0

Working out the similar terms for the other Jeans equations we finally obtain the
Jeans Equations in Cylindrical Coordinates:

∂(ρ〈vR〉)
∂t

+
∂(ρ〈v2R〉)
∂R

+
∂(ρ〈vRvz〉)

∂z
+ ρ

[〈v2R〉 − 〈v2φ〉
R

+
∂Φ

∂R

]
= 0

∂(ρ〈vφ〉)
∂t

+
∂(ρ〈vRvφ〉)

∂R
+
∂(ρ〈vφvz〉)

∂z
+ 2ρ

〈vRvφ〉
R

= 0

∂(ρ〈vz〉)
∂t

+
∂(ρ〈vRvz〉)

∂R
+
∂(ρ〈v2z〉)
∂z

+ ρ

[〈vRvz〉
R

+
∂Φ

∂z

]
= 0

These are 3 equations with 9 unknowns, which can only be solved if we make addi-
tional assumptions. In particular, one often makes the following assumptions:

1 System is static ⇒ the ∂
∂t
-terms are zero and 〈vR〉 = 〈vz〉 = 0.

2 Velocity dispersion tensor is diagonal ⇒ 〈vivj〉 = 0 (if i 6= j).

3 Meridional isotropy ⇒ 〈v2R〉 = 〈v2z〉 = σ2
R = σ2

z ≡ σ2.
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Under these assumptions we have 3 unknowns left: 〈vφ〉, 〈v2φ〉, and σ2, and the Jeans
equations reduce to

∂(ρσ2)

∂R
+ ρ

[
σ2 − 〈v2φ〉

R
+
∂Φ

∂R

]
= 0

∂(ρσ2)

∂z
+ ρ

∂Φ

∂z
= 0

Since we now only have two equations left, the system is still not closed. If from
the surface brightness we can estimate the mass density, ρ(R, z), and hence (using
the Poisson equation) the potential Φ(R, z), we can solve the second of these Jeans
equations for the meridional velocity dispersion:

σ2(R, z) =
1

ρ

∞∫

z

ρ
∂Φ

∂z
dz

and the first Jeans equation then gives the mean square azimuthal velocity
〈v2φ〉 = 〈vφ〉2 + σ2

φ:

〈v2φ〉(R, z) = σ2(R, z) +R
∂Φ

∂R
+
R

ρ

∂(ρσ2)

∂R

Thus, although 〈v2φ〉 is uniquely specified by the Jeans equations, we don’t know how
it splits in the actual azimuthal streaming, 〈vφ〉, and the azimuthal dispersion,
σ2
φ. Additional assumptions are needed for this.

————————————————-
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A similar analysis, but for a spherically symmetric system, using the spherical coordi-
nate system (r, θ, φ), gives the following Jeans equations in Spherical Symmetry

∂(ρ〈vr〉)
∂t

+
∂(ρ〈v2r 〉)
∂r

+
ρ

r

[
2〈v2r〉 − 〈v2θ〉 − 〈v2φ〉

]
+ ρ

∂Φ

∂r
= 0

∂(ρ〈vθ〉)
∂t

+
∂(ρ〈vrvθ〉)

∂r
+
ρ

r

[
3〈vrvθ〉+

(
〈v2θ〉 − 〈v2φ〉

)
cotθ

]
= 0

∂(ρ〈vφ〉)
∂t

+
∂(ρ〈vrvφ〉)

∂r
+
ρ

r
[3〈vrvφ〉+ 2〈vθvφ〉cotθ] = 0

If we now make the additional assumptions that the system is static and that also
the kinematic properties of the system are spherically symmetric, then there can
be no streaming motions and all mixed second-order moments vanish. Consequently,
the velocity dispersion tensor is diagonal with σ2

θ = σ2
φ. Under these assumptions

only one of the three Jeans equations remains:

∂(ρσ2
r )

∂r
+

2ρ

r

[
σ2
r − σ2

θ

]
+ ρ

∂Φ

∂r
= 0

Notice that this single equation still constains two unknown, σ2
r (r) and σ

2
θ(r) (if we

assume that the density and potential are known), and can thus not be solved.
It is useful to define the anisotropy parameter

β(r) ≡ 1− σ2
θ(r) + σ2

φ(r)

2σ2
r(r)

= 1− σ2
θ(r)

σ2
r (r)

where the second equality only holds under the assumption that the kinematics are
spherically symmetric.

With β thus defined the (spherical) Jeans equation can be written as

1

ρ

∂(ρ〈v2r 〉)
∂r

+ 2
β〈v2r〉
r

= −dΦ

dr

If we now use that dΦ/dr = GM(r)/r, we can write the following expression for the
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enclosed (dynamical) mass:

M(r) = −r〈v
2
r〉
G

[
d ln ρ

d ln r
+

d ln〈v2r〉
d ln r

+ 2β

]

Hence, if we know ρ(r), 〈v2r〉(r), and β(r), we can use the spherical Jeans equation
to infer the mass profile M(r).

Consider an external, spherical galaxy. Observationally, we can measure the pro-
jected surface brightness profile, Σ(R), which is related to the 3D luminosity
density ν(r) = ρ(r)/Υ(r)

Σ(R) = 2

∞∫

R

ν r dr√
r2 −R2

with Υ(r) the mass-to-light ratio. Similarly, the line-of-sight velocity disper-
sion, σ2

p(R), which can be inferred from spectroscopy, is related to both 〈v2r〉(r) and
β(r) according to (see Figure 26)

Σ(R)σ2
p(R) = 2

∞∫

R

〈(vr cosα− vθ sinα)
2〉 ν r dr√

r2 − R2

= 2

∞∫

R

(
〈v2r〉 cos2 α + 〈v2θ〉 sin2 α

) ν r dr√
r2 − R2

= 2

∞∫

R

(
1− β

R2

r2

)
ν 〈v2r〉 r dr√
r2 − R2

The 3D luminosity density is trivially obtained from the observed Σ(R) using the
Abel transform

ν(r) = −1

π

∞∫

r

dΣ

dR

dR√
R2 − r2

In practice, one often uses forward modeling instead: assume a functional form for
ν(r), project and fit to the observed surface brightness profiles Σ(R) to constrain the
free parameters of the function that describes ν(r).
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Figure 26: Geometry related to projection

In general, we have three unknowns: M(r) [or equivalently ρ(r) or Υ(r)], 〈v2r〉(r) and
β(r). With our two observables Σ(R) and σ2

p(R), these can only be determined if we
make additional assumptions.

EXAMPLE 1: Assume isotropy: β(r) = 0. In this case we can use the Abel
transform to obtain

ν(r)〈v2r〉(r) = −1

π

∞∫

r

d(Σσ2
p)

dR

dR√
R2 − r2

and the enclosed mass follows from the Jeans equation

M(r) = −r〈v
2
r〉

G

[
d ln ν

d ln r
+

d ln〈v2r〉
d ln r

]

Note that the first term uses the luminosity density ν(r) rather than the mass density
ρ(r). This is because σ2

p is weighted by light rather than mass.
The mass-to-light ratio now follows from

Υ(r) =
M(r)

4π
∫ r

0
ν(r) r2 dr

which can be used to constrain the mass of a potential dark matter halo or central
supermassive black hole (but always under assumption that the system is isotropic).
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EXAMPLE 2: Assume a constant mass-to-light ratio: Υ(r) = Υ0. In this case the
luminosity density ν(r) immediately yields the enclosed mass:

M(r) = 4πΥ0

r∫

0

ν(r) r2 dr

We can now use the spherical Jeans Equation to write β(r) in terms of M(r),
ν(r) and 〈v2r〉(r). Substituting this in the equation for Σ(R)σ2

p(R) yields a solution
for 〈v2r〉(r), and thus for β(r). As long as β(r) ≤ 1 the model is said to be self-
consistent within the context of the Jeans equations.

Almost always, radically different models (based on radically different assumptions)
can be constructed, that are all consistent with the data and the Jeans equations.
This is often referred to as the mass-anisotropy degeneracy. Note, however, that
none of these models need to be physical: they can still have f < 0.

207



CHAPTER 21

The Jeans Theorem

Integrals of Motion: An integral of motion is a function I(~x,~v) of the phase-space
coordinates that is constant along all orbits, i.e.,

I[~x(t1), ~v(t1)] = I[~x(t2), ~v(t2)]

for any t1 and t2. The value of the integral of motion can be the same for different
orbits. Note that an integral of motion can not depend on time. Orbits can have
from zero to five integrals of motion. If the Hamiltonian does not depend on time,
then energy is always an integral of motion.

Integrals of motion come in two kinds:

• Isolating Integrals of Motion: these reduce the dimensionality of the particle’s
trajectory in 6-dimensional phase-space by one. Therefore, an orbit with n isolating
integrals of motion is restricted to a 6 − n dimensional manifold in 6-dimensional
phase-space. Energy is always an isolating integral of motion.

• Non-Isolating Integrals of Motion: these are integrals of motion that do not
reduce the dimensionality of the particle’s trajectory in phase-space. They are of
essentially no practical value for the dynamics of the system.

Orbits: If in a system with n degrees of freedom a particular orbit admits n in-
dependent isolating integrals of motion, the orbit is said to be regular, and its
corresponding trajectory Γ(t) is confined to a 2n − n = n dimensional manifold in
phase-space. Topologically this manifold is called an invariant torus (or torus for
short), and is uniquely specified by the n isolating integrals. A regular orbit has n
fundamental frequencies, ωi, with which it circulates or librates in its n-dimensional
manifold. If two or more of these frequencies are commensurable (i.e., lωi+mωj = 0
with l and m integers), then the orbit is a resonant orbit, and has a dimensionality
that is one lower than that of the non-resonant regular orbits (i.e., lωi +mωj is an
extra isolating integral of motion). Orbits with fewer than n isolating integrals of
motion are called irregular or stochastic.

Every spherical potential admits at least four isolating integrals of motion, namely
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energy, E, and the three components of the angular momentum vector ~L. Orbits in
a flattened, axisymmetric potential frequently (but not always) admit three isolating
integrals of motion: E, Lz (where the z-axis is the system’s symmetry axis), and a
non-classical third integral I3 (the integral is called non-classical since there is no
analytical expression of I3 as function of the phase-space variables).

Since an integral of motion, I(~x,~v) is constant along an orbit, we have that

dI

dt
=

∂I

∂xi

dxi
dt

+
∂I

∂vi

dvi
dt

= ~v · ∇I −∇Φ · ∂I
∂~v

= 0

Compare this to the CBE for a steady-state (static) system:

~v · ∇f −∇Φ · ∂f
∂~v

= 0

Thus the condition for I to be an integral of motion is identical with the condition
for I to be a steady-state solution of the CBE. This implies the following:

Jeans Theorem: Any steady-state solution of the CBE depends on the phase-
space coordinates only through integrals of motion. Any function of these integrals is
a steady-state solution of the CBE.

Strong Jeans Theorem: The DF of a steady-state system in which almost all
orbits are regular can be written as a function of the independent isolating integrals
of motion.

Hence, the DF of any steady-state spherical system can be expressed as f = f(E, ~L).
If the system is spherically symmetric in all its properties, then f = f(E,L2), i.e.,
the DF can only depend on the magnitude of the angular momentum vector, not on
its direction.
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An even simpler case to consider is the one in which f = f(E): Since E = Φ(~r) +
1
2
[v2r + v2θ + v2φ] we have that

〈v2r〉 =
1

ρ

∫
dvrdvθdvφ v

2
r f

(
Φ +

1

2
[v2r + v2θ + v2φ]

)

〈v2θ〉 =
1

ρ

∫
dvrdvθdvφ v

2
θ f

(
Φ +

1

2
[v2r + v2θ + v2φ]

)

〈v2φ〉 =
1

ρ

∫
dvrdvθdvφ v

2
φ f

(
Φ +

1

2
[v2r + v2θ + v2φ]

)

Since these equations differ only in the labelling of one of the variables of integration,
it is immediately evident that 〈v2r〉 = 〈v2θ〉 = 〈v2φ〉. Hence, assuming that f = f(E) is
identical to assuming that the system is isotropic (and thus β(r) = 0). And since

〈vi〉 =
1

ρ

∫
dvrdvθdvφ vi f

(
Φ +

1

2
[v2r + v2θ + v2φ]

)

it is also immediately evident that 〈vr〉 = 〈vθ〉 = 〈vφ〉 = 0. Thus, a system with
f = f(E) has no net sense of rotation.

The more general f(E,L2) models typically are anisotropic. Models with 0 < β ≤ 1
are radially anisotropic. In the extreme case of β = 1 all orbits are purely radial
and f = g(E) δ(L), with g(E) some function of energy. Tangentially anisotropic
models have β < 0, with β = −∞ corresponding to a model in which all orbits are
circular. In that case f = g(E) δ[L − Lmax(E)], where Lmax(E) is the maximum
angular momentum for energy E. Another special case is the one in which β(r) = β
is constant; such models have f = g(E)L−2β .

Next we consider axisymmetric systems. If we only consider systems for which
most orbits are regular, then the strong Jeans Theorem states that, in the most
general case, f = f(E,Lz, I3). For a static, axisymmetric system

〈vR〉 = 〈vz〉 = 0 〈vRvφ〉 = 〈vzvφ〉 = 0

but note that, in this general case, 〈vRvz〉 6= 0; Hence, in general, in a three-integral
model with f = f(E,Lz, I3) the velocity ellipsoid is not aligned with (R, φ, z), and
the velocity dispersion tensor contains four unknowns: 〈v2R〉, 〈v2φ〉, 〈v2z〉, and 〈vRvz〉.
In this case there are two non-trivial Jeans Equations:
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∂(ρ〈v2R〉)
∂R

+
∂(ρ〈vRvz〉)

∂z
+ ρ

[〈v2R〉 − 〈v2φ〉
R

+
∂Φ

∂R

]
= 0

∂(ρ〈vRvz〉)
∂R

+
∂(ρ〈v2z〉)
∂z

+ ρ

[〈vRvz〉
R

+
∂Φ

∂z

]
= 0

which clearly doesn’t suffice to solve for the four unknowns (modelling three-integral
axisymmetric systems is best done using the Schwarzschild orbit superposition tech-
nique). To make progress with Jeans modeling, one has to make additional assump-
tions. A typical assumption is that the DF has the two-integral form f = f(E,Lz).

In that case, 〈vRvz〉 = 0 [velocity ellipsoid now is aligned with (R, φ, z)] and 〈v2R〉 =
〈v2z〉 (see Binney & Tremaine 2008), so that the Jeans equations reduce to

∂(ρ〈v2R〉)
∂R

+ ρ

[〈v2R〉 − 〈v2φ〉
R

+
∂Φ

∂R

]
= 0

∂(ρ〈v2z〉)
∂z

+ ρ
∂Φ

∂z
= 0

which is a closed set for the two unknowns 〈v2R〉 (= 〈v2z〉) and 〈v2φ〉. Note, however,
that the Jeans equations provide no information about how 〈v2φ〉 splits in streaming
and random motions. In practice one often writes that

〈vφ〉2 = k
[
〈v2φ〉 − 〈v2R〉

]

with k a free parameter. When k = 1 the azimuthal dispersion is σ2
φ ≡ 〈v2φ〉−〈vφ〉2 =

σ2
R = σ2

z everywhere. Such models are called oblate isotropic rotators.
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CHAPTER 22

Virial Theorem & Gravothermal Catastrophe

Consider a gravitational system consisting of N particles (e.g., stars, fluid elements).
The total energy of the system is E = K +W , where

Total Kinetic Energy: K =
N∑
i=1

1
2
mi v

2
i

Total Potential Energy: W = −1
2

N∑
i=1

∑
j 6=i

Gmimj

|~ri−~rj |

The latter follows from the fact that gravitational binding energy between a pair
of masses is proportional to the product of their masses, and inversely proportional
to their separation. The factor 1/2 corrects for double counting the number of pairs.

Potential Energy in Continuum Limit: To infer an expression for the gravi-
tational potential energy in the continuum limit, it is useful to rewrite the above
expression as

W =
1

2

N∑

i=1

mi Φi

where

Φi = −
∑

j 6=i

Gmj

rij

where rij = |~ri − ~rj |. In the continuum limit this simply becomes

W =
1

2

∫
ρ(~x) Φ(~x) d3~x

One can show (see e.g., Binney & Tremaine 2008) that this is equal to the trace of
the Chandrasekhar Potential Energy Tensor

Wij ≡ −
∫
ρ(~x) xi

∂Φ

∂xj
d3~x
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In particular,

W = Tr(Wij) =

3∑

i=1

Wii = −
∫
ρ(~x) ~x · ∇Φd3~x

which is another, equally valid, expression for the gravitational potential energy in
the continuum limit.

Virial Theorem: A stationary, gravitational system obeys

2K +W = 0

Actually, the correct virial equation is 2K +W + Σ = 0, where Σ is the surface pressure.

In many, but certainly not all, applications in astrophysics this term can be ignored. Many

textbooks don’t even mention the surface pressure term.

Combining the virial equation with the expression for the total energy, E = K+W ,
we see that for a system that obeys the virial theorem

E = −K = W/2

Example: Consider a cluster consisting of N galaxies. If the cluster is in virial
equilibrium then

2

N∑

i=1

1

2
mv2i −

1

2

N∑

i=1

∑

j 6=i

Gmimj

rij
= 0

If we assume, for simplicity, that all galaxies have equal mass then we can rewrite
this as

N m
1

N

N∑

i=1

v2i −
G (Nm)2

2

1

N2

N∑

i=1

∑

j 6=i

1

rij
= 0
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Using that M = N m and N(N − 1) ≃ N2 for large N , this yields

M =
2 〈v2〉
G 〈1/r〉

with

〈1/r〉 = 1

N(N − 1)

N∑

i=1

∑

j 6=i

1

rij

It is useful to define the gravitational radius rg such that

W = −GM
2

rg

Using the relations above, it is clear that rg = 2/〈1/r〉. We can now rewrite the
above equation for M in the form

M =
rg〈v2〉
G

Hence, one can infer the mass of our cluster of galaxies from its velocity dispersion
and its gravitation radius. In general, though, neither of these is observable, and one
uses instead

M = α
Reff〈v2los〉

G

where vlos is the line-of-sight velocity, Reff is some measure for the ‘effective’ radius
of the system in question, and α is a parameter of order unity that depends on the
radial distribution of the galaxies. Note that, under the assumption of isotropy,
〈v2los〉 = 〈v2〉/3 and one can also infer the mean reciprocal pair separation from the
projected pair separations; in other words under the assumption of isotropy one can
infer α, and thus use the above equation to compute the total, gravitational mass of
the cluster. This method was applied by Fritz Zwicky in 1933, who inferred that
the total dynamical mass in the Coma cluster is much larger than the sum of the
masses of its galaxies. This was the first observational evidence for dark matter,
although it took the astronomical community until the late 70’s to generally accept
this notion.
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For a self-gravitating fluid

K =
N∑

i=1

1

2
mi v

2
i =

1

2
N m 〈v2〉 = 3

2
N kB T

where the last step follows from the kinetic theory of ideal gases of monoatomic
particles. In fact, we can use the above equation for any fluid (including a collisionless
one), if we interpret T as an effective temperature that measures the rms velocity
of the constituent particles. If the system is in virial equilibrium, then

E = −K = −3

2
N kB T

which, as we show next, has some important implications...

Heat Capacity: the amount of heat required to increase the temperature by one
degree Kelvin (or Celsius). For a self-gravitating fluid this is

C ≡ dE

dT
= −3

2
N kB

which is negative! This implies that by losing energy, a gravitational system
gets hotter!! This is a very counter-intuitive result, that often leads to confusion and
wrong expectations. Below we give three examples of implications of the negative
heat capacity of gravitating systems,

Example 1: Drag on satellites Consider a satellite orbiting Earth. When it expe-
riences friction against the (outer) atmosphere, it loses energy. This causes the system
to become more strongly bound, and the orbital radius to shrink. Consequently, the
energy loss results in the gravitational potential energy, W , becoming more negative.
In order for the satellite to re-establish virial equilibrium (2K +W = 0), its kinetic
energy needs to increase. Hence, contrary to common intuition, friction causes
the satellite to speed up, as it moves to a lower orbit (where the circular velocity is
higher).

Example 2: Stellar Evolution A star is a gaseous, self-gravitating sphere that
radiates energy from its surface at a luminosity L. Unless this energy is replenished
(i.e., via some energy production mechanism in the star’s interior), the star will react
by shrinking (i.e., the energy loss implies an increase in binding energy, and thus a
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potential energy that becomes more negative). In order for the star to remain in
virial equilibrium its kinetic energy, which is proportional to temperature, has to
increase; the star’s energy loss results in an increase of its temperature.

In the Sun, hydrogen burning produces energy that replenishes the energy loss from
the surface. As a consequence, the system is in equilibrium, and will not contract.
However, once the Sun has used up all its hydrogren, it will start to contract and heat
up, because of the negative heat capacity. This continues until the temperature in
the core becomes sufficiently high that helium can start to fuse into heavier elements,
and the Sun settles in a new equilibrium.

Example 3: Core Collapse a system with negative heat capacity in contact with
a heat bath is thermodynamically unstable. Consider a self-gravitating fluid of ‘tem-
perature’ T1, which is in contact with a heat bath of temperature T2. Suppose the
system is in thermal equilibrium, so that T1 = T2. If, due to some small disturbance,
a small amount of heat is tranferred from the system to the heat bath, the negative
heat capacity implies that this results in T1 > T2. Since heat always flows from hot
to cold, more heat will now flow from the system to the heat bath, further increasing
the temperature difference, and T1 will continue to rise without limit. This run-away
instability is called the gravothermal catastrophe. An example of this instability
is the core collapse of globular clusters: Suppose the formation of a gravitational
system results in the system having a declining velocity dispersion profile, σ2(r) (i.e.,
σ decreases with increasing radius). This implies that the central region is (dynami-
cally) hotter than the outskirts. IF heat can flow from the center to those outskirts,
the gravothermal catastrophe kicks in, and σ in the central regions will grow with-
out limits. Since σ2 = GM(r)/r, the central mass therefore gets compressed into
a smaller and smaller region, while the outer regions expand. This is called core
collapse. Note that this does NOT lead to the formation of a supermassive black
hole, because regions at smaller r always shrink faster than regions at somewhat
larger r. In dark matter halos, and elliptical galaxies, the velocity dispersion profile
is often declining with radius. However, in those systems the two-body relaxation
time is soo long that there is basically no heat flow (which requires two-body in-
teractions). However, globular clusters, which consist of N ∼ 104 stars, and have
a crossing time of only tcross ∼ 5 × 106yr, have a two-body relaxation time of only
∼ 5 × 108yr. Hence, heat flow in globular clusters is not negligible, and they can
(and do) undergo core collapse. The collapse does not proceed indefinitely, because
of binaries (see Galactic Dynamics by Binney & Tremaine for more details).
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CHAPTER 23

Collisions & Encounters of Collisionless Systems

Consider an encounter between two collisionless N-body systems (i.e., dark matter
halos or galaxies): a perturber P and a system S. Let q denote a particle of S and
let b be the impact parameter, v∞ the initial speed of the encounter, and R0 the
distance of closest approach (see Fig. 27).

Typically what happens in an encounter is that orbital energy (of P wrt S) is
converted into random motion energy of the constituent particles of P and S
(i.e., q gains kinetic energy wrt S).

The velocity impulse ∆~vq =
∫
~g(t) dt of q due to the gravitational field ~g(t) from

P decreases with increasing v∞ (simply because ∆t will be shorter). Consequently,
when v∞ increases, less and less orbital energy is transferred to random motion, and
there is a critical velocity, vcrit, such that

v∞ > vcrit ⇒ S and P escape from each other
v∞ < vcrit ⇒ S and P merge together

There are only two cases in which we can calculate the outcome of the encounter
analytically:

• high speed encounter (v∞ ≫ vcrit). In this case the encounter is said to
be impulsive and one can use the impulsive approximation to compute its
outcome.

• large mass ratio (MP ≪ MS). In this case one can use the treatment of
dynamical friction to describe how P loses orbital energy and angular mo-
mentum to S.

In all other cases, one basically has to resort to numerical simulations to study the
outcome of the encounter. In what follows we present treatments of first the impulse
approximation and then dynamical friction.
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Figure 27: Schematic illustration of an encounter with impact parameter b between
a perturber P and a subject S.

Impulse Approximation: In the limit where the encounter velocity v∞ is much
larger than the internal velocity dispersion of S, the change in the internal energy of
S can be approximated analytically. The reason is that, in a high-speed encounter,
the time-scale over which the tidal forces from P act on q is much shorter than the
dynamical time of S (or q). Hence, we may consider q to be stationary (fixed wrt
S) during the encounter. Consequently, q only experiences a change in its kinetic
energy, while its potential energy remains unchanged:

∆Eq =
1

2
(~v +∆~v)2 − 1

2
~v2 = ~v ·∆~v + 1

2
|∆~v|2

We are interested in ∆ES =
∑

q ∆Eq, where the summation is over all its constituent
particles:

∆ES =

∫
∆Eq(~r) ρ(r) d

3~r ≃ 1

2

∫
|∆~v|2 ρ(r)d3~r

where we have used that, because of symmetry, the integral

∫
~v ·∆~v ρ(r) d3~r ≃ 0

In the large v∞ limit, we have that the distance of closest approach R0 → b, and the
velocity of P wrt S is vP(t) ≃ v∞~ey ≡ vP~ey. Consequently, we have that

~R(t) = (b, vPt, 0)
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Let ~r be the position vector of q wrt S and adopt the distant encounter approx-
imation, which means that b ≫ max[RS, RP], where RS and RP are the sizes of S
and P , respectively. This means that we may treat P as a point mass MP, so that

ΦP(~r) = − GMP

|~r − ~R|
Using geometry, and defining φ as the angle between ~r and ~R, we we have that

|~r − ~R|2 = (R− r cosφ)2 + (r sinφ)2

so that

|~r − ~R| =
√
R2 − 2rR cosφ+ r2

Next we use the series expansion

1√
1 + x

= 1− 1

2
x+

1

2

3

4
x2 − 1

2

3

4

5

6
x3 + ....

to write

1

|~r − ~R|
=

1

R

[
1− 1

2

(
−2

r

R
cosφ+

r2

R2

)
+

3

8

(
−2

r

R
cosφ+

r2

R2

)2

+ ...

]

Substitution in the expression for the potential of P yields

ΦP(~r) = −GMP

R
− GMPr

R2
cosφ− GMPr

2

R3

(
3

2
cos2 φ− 1

2

)
+O[(r/R)3]

• The first term on rhs is a constant, not yielding any force (i.e., ∇rΦP = 0).
• The second term on the rhs describes how the center of mass of S changes its

velocity due to the encounter with P .
• The third term on the rhs corresponds to the tidal force per unit mass and is

the term of interest to us.

It is useful to work in a rotating coordinate frame (x′, y′, z′) centered on S and with
the x′-axis pointing towards the instantaneous location of P , i.e., x′ points along
~R(t). Hence, we have that x′ = r′ cosφ, where r′ 2 = x′ 2 + y′ 2 + z′ 2. In this new
coordinate frame, we can express the third term of ΦP(~r) as
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Φ3(~r) = −GMP

R3

(
3

2
r′ 2 cos2 φ− 1

2
r′ 2
)

= −GMP

R3

(
x′ 2 − 1

2
y′ 2 − 1

2
z′ 2
)

Hence, the tidal force is given by

~F ′
tid(~r) ≡ −∇Φ3 =

GMP

R3
(2x′,−y′,−z′)

We can relate the components of ~F ′
tid to those of the corresponding tidal force, ~Ftid

in the (x, y, z)-coordinate system using

x′ = x cos θ − y sin θ Fx = Fx′ cos θ + Fy′ sin θ
y′ = x sin θ + y cos θ Fy = −Fx′ sin θ + Fy′ cos θ
z′ = z Fz = Fz′

where θ is the angle between the x and x′ axes, with cos θ = b/R and sin θ = vP t/R.
After some algebra one finds that

Fx =
GMP

R3

[
x(2− 3 sin2 θ)− 3y sin θ cos θ

]

Fy =
GMP

R3

[
y(2− 3 cos2 θ)− 3x sin θ cos θ

]

Fz = −GMP

R3
z

Using these, we have that

∆vx =

∫
dvx
dt

dt =

∫
Fx dt =

∫ π/2

−π/2

Fx
dt

dθ
dθ

with similar expressions for ∆vy and ∆vz . Using that θ = tan−1(vPt/b) one has that
dt/dθ = b/(vP cos

2 θ). Substituting the above expressions for the tidal force, and
using that R = b/ cos θ, one finds, after some algebra, that

∆~v = (∆vx,∆vy,∆vz) =
2GMP

vPb2
(x, 0,−z)

Substitution in the expression for ∆ES yields
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∆ES =
1

2

∫
|∆~v|2 ρ(r) d3~r =

2G2M2
P

v2P b
4

MS 〈x2 + z2〉

Under the assumption that S is spherically symmetric we have that 〈x2 + z2〉 =
2
3
〈x2 + y2 + z2〉 = 2

3
〈r2〉 and we obtain the final expression for the energy increase of

S as a consequence of the impulsive encounter with P :

∆ES =
4

3
G2MS

(
MP

vP

)2 〈r2〉
b4

This derivation, which is originally due to Spitzer (1958), is surprisingly accurate for
encounters with b > 5max[RP, RS], even for relatively slow encounters with v∞ ∼ σS.
For smaller impact parameters one has to make a correction (see Galaxy Formation

and Evolution by Mo, van den Bosch & White 2010 for details).

The impulse approximation shows that high-speed encounters can pump energy
into the systems involved. This energy is tapped from the orbital energy of the two
systems wrt each other. Note that ∆ES ∝ b−4, so that close encounters are far more
important than distant encounters.

Let Eb ∝ GMS/RS be the binding energy of S. Then, it is tempting to postulate
that if ∆ES > Eb the impulsive encounter will lead to the tidal disruption of S.
However, this is not at all guaranteed. What is important for disruption is how that
energy ∆ES is distributed over the consistituent particles of S. Since ∆E ∝ r2,
particles in the outskirts of S typically gain much more energy than those in the
center. However, particles in the outskirts are least bound, and thus require the
least amount of energy to become unbound. Particles that are strongly bound (with
small r) typically gain very little energy. As a consequence, a significant fraction
of the mass can remain bound even if ∆ES ≫ Eb (see van den Bosch et al., 2019,
MNRAS, 474, 3043 for details).

After the encounter, S has gained kinetic energy (in the amount of ∆ES), but
its potential energy has remained unchanged (recall, this is the assumption that
underlies the impulse approximation). As a consequence, after the encounter S will
no longer be in virial equilibrium; S will have to readjust itself to re-establish
virial equilibrium.
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Let K0 and E0 be the initial (pre-encounter) kinetic and total energy of S. The
virial theorem ensures that E0 = −K0. The encounter causes an increase of
(kinetic) energy, so that K0 → K0 + ∆ES and E0 → E0 + ∆ES. After S has re-
established virial equilibrium, we have that K1 = −E1 = −(E0+∆ES) = K0−∆ES.
Thus, we see that virialization after the encounter changes the kinetic energy of
S from K0 + ∆ES to K0 − ∆ES! The gravitational energy after the encounter
is W1 = 2E1 = 2E0 + 2∆ES = W0 + 2∆ES, which is less negative than before
the encounter. Using the definition of the gravitational radius (see Chapter 12),
rg = GM2

S/|W |, from which it is clear that the (gravitational) radius of S increases
due to the impulsive encounter. Note that here we have ignored the complication
coming from the fact that the injection of energy ∆ES may result in unbinding some
of the mass of S.

Dynamical Friction: Consider the motion of a subject massMS through a medium
of individual particles of mass m ≪ MS. The subject mass MS experiences a ”drag
force”, called dynamical friction, which transfers orbital energy and angular momen-
tum from MS to the sea of particles of mass m.

There are three different ”views” of dynamical friction:

1. Dynamical friction arises from two-body encounters between the subject
mass and the particles of mass m, which drives the system twowards equipar-
tition. i.e., towards 1

2
MSv

2
S = 1

2
m〈v2m〉. Since MS ≫ m, the system thus

evolves towards vS ≪ vm (i.e., MS slows down).

2. Due to gravitational focussing the subject mass MS creates an overdensity
of particles behind its path (the ”wake”). The gravitational back-reaction of
this wake on MS is what gives rise to dynamical friction and causes the subject
mass to slow down.

3. The subject massMS causes a perturbation δΦ in the potential of the collection
of particles of mass m. The gravitational interaction between the response
density (the density distribution that corresponds to δΦ according to the
Poisson equation) and the subject mass is what gives rise to dynamical friction
(see Fig. 28).

Although these views are similar, there are some subtle differences. For example,
according to the first two descriptions dynamical friction is a local effect. The
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third description, on the other hand, treats dynamical friction more as a global
effect. As we will see, there are circumstances under which these views make different
predictions, and if that is the case, the third and latter view presents itself as the
better one.

Chandrasekhar derived an expression for the dynamical friction force which, although
it is based on a number of questionable assumptions, yields results in reasonable
agreement with simulations. This so-called Chandrasekhar dynamical friction
force is given by

~Fdf =MS
d~vS
dt

= −4π G 2M 2
S

v2S
ln Λ ρ(< vS)

~vS
vS

Here ρ(< vS) is the density of particles of massm that have a speed vm < vS, and lnΛ
is called the Coulomb logarithm. It’s value is uncertain (typically 3 <∼ ln Λ <∼ 30).
One often approximates it as ln Λ ∼ ln(Mh/MS), where Mh is the total mass of
the system of particles of mass m, but this should only be considered a very rough
estimate at best. The uncertainties for the Coulomb logarithm derive from the
oversimplified assumptions made by Chandrasekhar, which include that the medium
through which the subject mass is moving is infinite, uniform and with an isotropic
velocity distribution f(vm) for the sea of particles.

Similar to frictional drag in fluid mechanics, ~Fdf is always pointing in the direction
opposite of vS.

Contrary to frictional drag in fluid mechanics, which always increases in strength
when vS increases, dynamical friction has a more complicated behavior: In the low-vS
limit, Fdf ∝ vS (similar to hydrodynamical drag). However, in the high-vS limit one
has that Fdf ∝ v−2

S (which arises from the fact that the factor ρ(< vS) saturates).

Note that ~Fdf is independent of the mass m of the constituent particles, and pro-
portional to M 2

S . The latter arises, within the second or third view depicted above,
from the fact that the wake or response density has a mass that is proportional to
MS, and the gravitational force between the subject mass and the wake/response
density therefore scales as M 2

S .

One shortcoming of Chandrasekhar’s dynamical friction description is that it treats
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Figure 28: Examples of the response density in a host system due to a perturber
orbiting inside it. The back-reaction of this response density on the perturber causes
the latter to experience dynamical friction. The position of the perturber is indicated
by an asterisk. [Source: Weinberg, 1989, MNRAS, 239, 549]

dynamical friction as a purely local phenomenon; it is treated as the cumulative
effect of many uncorrelated two-body encounters between the subject masss and
the individual field particles. That this local treatment is incomplete is evident from
the fact that an object A orbiting outside of an N -body system B still experiences
dynamical friction. This can be understood with the picture sketched under view 3
above, but not in a view that treats dynamical friction as a local phenomenon.

Orbital decay: As a consequence of dynamical friction, a subject mass MS orbiting
inside (or just outside) of a larger N -body system of mass Mh > MS, will transfer
its orbital energy and angular momentum to the constituent particles of the ‘host’
mass. As a consequence it experiences orbital decay.

Let us assume that the host mass is a singular isothermal sphere with density
and potential given by

ρ(r) =
V 2
c

4πGr2
Φ(r) = V 2

c ln r

where V 2
c = GMh/rh with rh the radius of the host mass. If we further assume

that this host mass has, at each point, an isotropic and Maxwellian velocity
distrubution, then
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f(vm) =
ρ(r)

(2πσ2)3/2
exp

[
− v2m
2σ2

]

with σ = Vc/
√
2.

NOTE: the assumption of a singular isothermal sphere with an isotropic, Maxwellian
velocity distribution is unrealistic, but it serves the purpose of the order-of-magnitude
estimate for the orbital decay rate presented below.

Now consider a subject of mass MS moving on a circular orbit (vS = Vc) through
this host system of mass Mh. The Chandrasekhar dynamical friction that this
subject mass experiences is

Fdf = −4π ln ΛG 2M 2
S ρ(r)

V 2
c

[
erf(1)− 2√

π
e−1

]
≃ −0.428 lnΛ

GM2
S

r2

The subject mass has specific angular momentum L = rvS, which it loses due to
dynamical friction at a rate

dL

dt
= r

dvS
dt

= r
Fdf

MS
≃ −0.428 lnΛ

GMS

r

Due to this angular momentum loss, the subject mass moves to a smaller radius,
while it continues to move on a circular orbit with vS = Vc. Hence, the rate at which
the orbital radius changes obeys

Vc
dr

dt
=

dL

dt
= −0.428 lnΛ

GMS

r

Solving this differential equation subject to the initial condition that r(0) = ri, one
finds that the subject mass MS reaches the center of the host after a time

tdf =
1.17

lnΛ

r2i Vc
GMS

=
1.17

lnΛ

(
ri
rh

)2
Mh

MS

rh
Vc

In the case where the host system is a virialized dark matter halo we have that

rh
Vc

≃ 1

10H(z)
= 0.1tH

where tH is called the Hubble time, and is approximately equal to the age of
the Universe corresponding to redshift z (the above relation derives from the fact
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that virialized dark matter halos all have the same average density). Using that
ln Λ ∼ ln(Mh/MS) and assuming that the subject mass starts out from an initial
radius ri = rh, we obtain a dynamical friction time

tdf = 0.12
Mh/MS

ln(Mh/MS)
tH

Hence, the time tdf on which dynamical friction brings an object of mass MS moving
in a host of mass Mh from an initial radius of ri = rh to r = 0 is shorter than the
Hubble time as long as MS

>∼ Mh/30. Hence, dynamical friction is only effective for
fairly massive objects, relative to the mass of the host. In fact, if you take into
account that the subject mass experiences mass stripping as well (due to the tidal
interactions with the host), the dynamical friction time increases by a factor 2 to 3,
and tdf < tH actually requires that MS

>∼ Mh/10.

For a more detailed treatment of collisions and encounters of collisionless systems, see
Chapter 12 of Galaxy Formation and Evolution by Mo, van den Bosch & White.
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CHAPTER 24

Integrability & Relaxation

NOTE: This chapter often refers to ‘galaxy’ as shorthand for ‘a gravitational, col-
lisionless N -body system’. It is to be understood that what holds for a galaxy will
also hold for any other gravitational, collisionless N -body system.

Our treatment of the dynamics of collisionless systems has thus far focussed on the
(Jeans) modeling of equilibrium systems that satisfy the Virial theorem, and on
collisions and encounters of such systems. This leaves a few open questions:

• Our discussion of Hamiltonians, action-angle variables and the Jeans theorem
all relied heavily on the notion of integrable Hamiltonians. However, most
realistic galactic potentials are not fully integrable. What are the implications
of this non-integrability? How is this accounted for in the modeling? This is
(partially) addressed by KAM theory.

• How do galaxies virialize or relax, i.e., how do they reach a steady state? In a
collisional gas this is achieved through the collisions, which establish equipar-
tition of energy and momentum; the system settles in hydrostatic equilibrium
and given enough time will establish thermal equilibrium through conduction.
In a collisionless system, though, two-body relaxation is extremely inefficient,
yet galaxies are (or at least appear) to be fairly ‘relaxed’? How is this achieved?
This is the topic of collisionless relaxation.

Integrability and KAM theory:

If the Hamiltonian of a galaxy is integrable, all its orbits are regular, which means
that they admit three isolating integrals of motion (three actions). As a consequence
the orbit is confined to a 6-3=3 dimensional manifold in phase-space, the 3-torus. In
other words, a canonical transformation (~x,~v) → (~I, ~θ) can be found such that

İi = 0 , θ̇i = ωi

with ωi the natural frequencies of the orbit (see Chapter 5). The three actions define
the shape of the torus, while the corresponding angles define the location on the torus.
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Associated with each action, Ii, is a fundamental frequency ωi = ∂H/∂Ii, which
is the frequency with which the corresponding angle, θ, increases from 0 to 2π. In
general, the three fundamental frequencies of a regular orbit are incommensurable,
which means that their ratios cannot be expressed as ratios of integers. Such orbits,
over time, cover every point along their 3-torus (we say, they are ergodic on their
torus). For certain orbits, though, a resonance between the fundamental frequencies
occurs: i.e., nω1 + lω2 + mω3 = 0, with n, l, and m integers. These orbits do not
densely fill the torus, but rather they densely fill a manifold on the torus that has
a dimensionality one less than that of the full surface of the 3 torus. If the orbit
obeys two independent commensurability conditions, the orbit is a closed loops on
the 3-torus. Tori for which the fundamental frequencies are resonant with each other
are called resonant tori: they comprise a set of measure zero, although they are
dense in phase-space (in the same way that rational numbers are rare compared
to irrational numbers). In integrable Hamiltonians, all orbits lie on tori, and the

Hamiltonian can be written as H = H(~I); and according to the Jeans theorem the

same holds for the distribution function, i.e., f = f(~I).

However, (fully) integrable Hamiltonians are rare. First of all, after it was discovered
in the mid 70’s that most ellipticals rotate more slowly than needed in order to
explain their flattening, it became clear that their most likely shape is triaxial (the
flattening must be due to anisotropic ‘pressure’, i.e., velocity dispersion, and there
is no reason to assume that it is identical along 2 directions, but different along the
third). Triaxial galaxies have many box-orbits, which are orbits without a definite
sense of rotation, which over time pass arbitrarily close to the center. In the late 90s,
with the advent of the Hubble Space Telescope, it became clear that most ellipticals
have steep, central cusps (an exception are the most massive ellipticals, which seem
to have a central core), and it is believed that they all contain a supermassive
black hole (SMBH) in their center. It was shown, though, that in such systems
many of the box orbits are chaotic (aka irregular or stochastic). Such orbits have
fewer isolating integrals of motion than there are degrees of freedom, and they are
not confined to a 3-torus. Hence, the Hamiltonian of these systems cannot be fully
integrable! As a general rule of thumb, triaxial systems are far more likely to be
non-integrable than axisymmetric systems, which in turn are far more likely to be
non-integrable than spherical systems.

Let’s assume that we can write the Hamilonian of a non-integrable system as

H = H0(~I) + εH1(~I, ~θ)

where H0 is integrable and ε is a (hopefully small) perturbation parameter. Ac-
cording to the Kolmogorov-Arnold-Moser (KAM) theorem, the tori of regular
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orbits with fundamental frequencies that are sufficiently incommensurable are stable
to such small perturbations, which means that they remain confined to a (slightly
modified) 3-torus. Resonant tori, however, can be strongly deformed even by a very
small perturbation, and often will ‘break apart’: the resonant orbit when perturbed
becomes a chaotic orbit. Hence, according to the KAM theorem, a Hamiltonian that
is near-integrable (i.e., can be written as above with ε small) has a phase-space
that is interleaved with regions occupied by nested tori and chaotic regions. In the
‘regular’ regions, where the tori exist, there exists a canonical transformation to
some action-angle variables such that the Hamiltonian is independent of the angles.
However, this canonical transformation is only local: it does not apply to the entire
system.

When the perturbation parameter ε is small, the chaotic regions are narrow and the
stochastic motion of the corresponding orbits is ‘bounded’ by nearby regular orbits
(i.e., two phase-space trajectories cannot intersect) to the extent that the stochastic
orbit can mimic regular motion for a long time (i.e., it is restricted in ‘executing’ its
stochasticity). As ε increases, the chaotic regions increase in volume and at some
point chaotic zones associated with different resonant tori start to overlap. This
produces large regions of interconnected phase-space in which the motion is fully
stochastic.

Since stochastic orbits typically only admit one isolating integral of motion (en-
ergy), they will, over time, densely fill their energy surface (i.e., these orbits are
restricted only to move on a 6-1=5 dimensional manifold in 6D phase-space). And
since potential (=energy) surfaces are always rounder than density surfaces, it be-
comes difficult, if not impossible, to construct a self-consistent triaxial system that
is globally stochastic’. In other words, triaxial galaxies can’t be globally stochas-
tic. It is interesting, then, to ask under what conditions a triaxial system becomes
globally stochastic. Valluri & Merritt (1998) investigated this is some detail, and
found that triaxial systems with a central SMBH become globally stochastic when
MBH/Mgal

>∼ 0.02, close to the maximum observed value in real ellipticals. In models
without a SMBH, but with a central cusp, the system was found to become stochas-
tic when the central cusp slope d ln ρ/d ln r < −2. Once again, this is close to the
steepest cusp slope seen in real ellipticals. This stongly suggests that the structure
of galaxies, under certain circumstances, is regulated by the onset of stochasticity.

Collisionless relaxation:

A steady-state gravitational system obeys the Virial Theorem, E = −K = W/2.
If it is significantly perturbed, then it will be out of virial equilibrium. For exam-
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ple, immediately following an impulsive encounter, the kinetic energy of the system
has increased, but its potential energy has remained fixed. The system will start
to oscillate, converting kinetic energy into potential energy, and vice versa. Relax-
ation is the process by which such oscillations die out, and by which the system
re-establishes virial equilibrium. In addition to collisional (two-body) relaxation,
which is typically insignificant, there are four collisionless relaxation mechanisms
that are responsible for this re-equilibration:

• phase mixing: the loss of coherence in the response due to the fact that stars
have different orbital frequencies

• chaotic mixing: the loss of coherence in the response due to the fact that
stars on stochastic orbits diverge exponentially over time

• violent relaxation: the loss of coherence due to scrambling of orbital energies
in a time-varying potential

• Landau damping: the loss of coherence due to non-dissipative damping of
waves due to wave-particle interactions

Note that all these mechanisms have one thing in common: ‘loss of coherence’.
Oscillations in a collisionless system are manifestations of coherence in the response
to the perturbation that triggered the oscillations. For example, after an impulsive
encounter all stars at a given position receive the same velocity impuls, independent
of their actions (i.e., their orbital energy or angular momentum). This means that
the response starts out extremely coherent (all stars change their velocity vector by
the same amount). Relaxation is the loss of this coherence! Hence, any mechanism
that acts to reduce the coherence in the response is a relaxation mechanism.

There is one other relaxation mechanism that is worth mentioning, which is reso-
nant relaxation. It is relaxation that arises from the efficient exchange of angular
momentum or orbital energy between particles (or particles and a perturber) that
are in resonance with each other. Resonant relaxation is a specific example of col-
lisional two-body relaxation in which the impact of two-body interactions is
‘magnified’ due to a specific form of coherence between the particles involved (i.e.,
commensurability of frequencies). An example is dynamical friction, which can be
thought of as a resonant-driven effect; only those stars that are in resonance with the
perturber (the massive object orbiting the stellar body) can efficiently exchange an-
gular momentum with the perturber. The other particles are ‘out-of-phase‘ with the
perturber and phase-mixing assures that their net effect on the perturber vanishes.
Hence, dynamical friction only arises from orbits that are in (near)-resonance with
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the perturber (see Tremaine & Weinberg 1991 and Banik & van den Bosch 2021).
Because of its different nature (and a fairly involved mathematical treatment), we
will not discuss resonant relaxation in what follows.

Phase mixing:

Phase mixing is the simplest mechanism that causes collisionless relaxation in
gravitational N -body systems. The mechanism of phase-mixing is best understood
by considering a large collection of pendulums, each with a slightly different length,
and hence a slightly different frequency. Imagine one initially displaces all these pen-
dulums by the same amount (the same phase), and then let them go. Initially, they
all start to swing towards their equilibrium state together; i.e., the initial response to
the displacement is highly coherent. However, after a few swings back and forth, this
coherence is gone due to the fact that the differences in natural frequencies imply
that the pendulums cannot remain in phase with one another. After a sufficiently
long time the system is ‘relaxed‘ to the point that at each instant in time there are
(roughly) equal numbers of pendulums in each equal-size phase-interval.

In galaxies, phase mixing arises from the fact that the frequencies of regular motion
on adjacent tori are generally similar but different. Hence, two points on adjacent
tori that are initially close together in phase-space (i.e., that initially have similar
phases), will seperate linearly with time. However, two points on the same torus do
not phase-mix; their separation remains invariant.

Note that phase-mixing decreases the coarse-grained DF around a point, by mixing
in ‘vacuum’ (i.e., unpopulated regions of phase-space). Nevertheless, as assured by
the CBE, the flow in phase-space of a collisionless system is perfectly incompressible:
unlike the coarse-grained DF, the fine-grained DF is not influenced by phase-
mixing and is perfectly conserved.

Although phase-mixing is a relaxation mechanism, in that it drives the system to-
wards a state in which the phase-space density is more and more uniform, it does
not cause any loss of information: the system preserves all knowledge of the initial
conditions. In other words, in an integrable Hamiltonian system, phase mixing is a
time-reversible relaxation mechanism!

Chaotic mixing:

In the parts of phase-space that are not filled with regular, but with stochastic
orbits, mixing occurs naturally due to the chaotic behavior of the orbits. Chaos
implies extreme sensitivity to initial conditions: two stars intially close together
separate exponentially with time.
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After a sufficiently long time, a group of stars on stochastic orbits that were initially
close together will have spread over their entire accessible phase-space (sometimes
referred to as the Arnold web). As for phase-mixing, chaotic mixing thus smooths
out (i.e., relaxes) the coarse-grained DF (it destroyes coherence in a response),
but leaves the fine-grained DF invariant.

Unlike phase-mixing, though, chaotic mixing is irreversible, in the sense that an
infinitely precise fine-tuning of the phase-space coordinates is required to undo its
effects.

An important quantity to characterize chaotic behavior is the Lyapunov timescale,
which is a measure that determines, for a given point in phase space, how quickly
trajectories that begin near this point diverge over time. Actually, for each point
in phase-space there are 6 Lyaponov exponents, λi, one for each direction in phase-
space. It is common, though to just refer to the largest one. Consider a small
6-dimensional sphere with radius r centered on a phase-space point (~x,~v). Different
points on the sphere’s surface evolve differently with time, causing the sphere to
deform into a 6-dimensional ellipsoid with principal axes Li(t).
The Lyapunov exponents at (~x,~v) are defined as

λi = lim
t→∞

1

t
ln

∣∣∣∣
Li(t)

Li(0)

∣∣∣∣

In a collisionless system
2N∑

i=1

λi = 0

which expresses the incompressibility of the flow (conservation of volume), as
dictated by the CBE. If the phase-space trajectory Γ(t) through (~x,~v) corresponds to
a regular orbit, then λi = 0 for i = 1, ..., 2N . On the other hand, if Γ(t) corresponds
to a stochastic orbit then λ ≡ maxλi > 0. Such a positive Lyapunov exponent
implies that the neighboring trajectories diverge exponentially:

δΓ(t) ∝ eλt .

The inverse of the largest Lyapunov exponent is called the Lyapunov time, τL, and
defines the characteristic e-folding time on which neighboring trajectories diverge.
Note that τL = ∞ for a regular orbit.
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Violent relaxation:

Since E = 1
2
v2 + Φ and Φ = Φ(~x, t) we have that

dE

dt
=

∂E

∂~v
· d~v
dt

+
∂E

∂Φ

dΦ

dt

= −~v · ∇Φ +
dΦ

dt

= −~v · ∇Φ +
∂Φ

∂t
+
∂Φ

∂~x
· d~x
dt

= −~v · ∇Φ +
∂Φ

∂t
+ ~v · ∇Φ

=
∂Φ

∂t

Thus we see that the only way in which a particle’s energy can change in a collisionless
system, is by having a time-dependent potential.

An interesting case to consider is the collapse of a dark matter halo, or that of a
galaxy. In this case the potential will vary as function of time, and the particles thus
change their energy. Exactly how a particle’s energy changes depends in a complex
way on the particle’s initial position and energy: particles can both gain or lose
energy (see Fig. 29). Overall, however, the effect is to widen the range of energies.

The time-scale for violent relaxation is

τvr =

〈
(dE/dt)2

E2

〉−1/2

=

〈
(∂Φ/∂t)2

E2

〉−1/2

=
3

4
〈Φ̇2/Φ2〉−1/2

where the last step follows from the time-dependent virial theorem (see Lynden-Bell
1967). Hence, tvr is of the order of the time-scale on which the potential changes by
its own amount, which is basically the collapse time. Thus, violent relaxation is very
fast, which explains its name.

Note that during the collapse of a collisionless system the CBE is still valid, i.e., the
flow in phase-space remains incompressible and df/dt = 0. However, unlike for a
‘steady-state’ system, ∂f/∂t 6= 0. Violent relaxation leads to efficient fine-grained
mixing of the DF, and erases the system’s memory of its initial conditions. For
comparison: phase-mixing and chaotic mixing only lead to a relaxation of the coarse-
grained DF and phase-mixing is even reversible. Note, though, that this erasure of
the initial conditions will not be complete (i.e., some correlation between the initial
and final energies of the particles will remain). The reason is that violent relaxation
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Figure 29: Illustration of violent relaxation. Depending on the orbital phase compared
to the phase of potential fluctuation, a particle can either gain or loose energy.

is self-limiting. After all, it destroys the coherence in the oscillations of the potential
that are responsible for the scrambling of the particle energies. Once the coherence
disappears, the oscillations damp out and violent relaxation no longer operates.

Finally, an important aspect of violent relaxation is the fact that it changes a par-
ticle’s energy in a way that is independent of the particle’s mass. Thus violent
relaxation drives the system to a relaxed state that is very different from the one
promoted by collisional relaxation, which drives the system towards equipartition of
energy and momentum (which results, among others, in mass segregation).

Landau damping:

In 1946 Landau showed that waves in a collsionless plasma can be damped, despite
the fact that there is no dissipation. In 1962 Lynden-Bell showed that this damping
mechanism, called Landau damping, also operates in gravitational, collisionless
systems. This collisionless damping arises from the way the wave interacts with the
particles that make up the medium through which the wave travels (i.e., particle-wave
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interactions).

To gain insight, it is useful to start by considering a fluid. Perturbation analysis of
the fluid shows that if the perturbation has a wavelength λ < λJ, with λJ the Jeans
length, then the perturbation is stable (see Chapter 19). The wave propagates
with a phase velocity vp = ω/k (which can be different from the group velocity
vg = ∂ω/∂k). Using that the dispersion relation is given by

ω2 = c2s (k
2 − k2J)

(see Chapter 19), we obtain that

vp = cs

√
1− λ2/λ2J

with cs the sound speed. Note that larger waves move slower, which owes to the
fact that self-gravity becomes more and more important. When λ = λJ the wave no
longer propagates. Rather, the perturbation is unstable: self-gravity overpowers the
pressure, causing the perturbation to grow.

One can apply a similar perturbation analysis to collisionless, gravitational systems.
This yields a similar Jeans criterion, but with the velocity dispersion of the stars,
σ, playing the role of the sound speed. Once again, perturbations with λ > λJ are
unstable and cause the perturbation to grow. For λ < λJ, however, the situation is
somewhat different. While the fluid supports (gravity-modified) sound waves that are
stable, the equivalent waves in gravitational systems experience Landau Damping.

Consider a density wave with λ < λJ. While for a fluid the phase velocity vp < cs,
in a gravitational system we have that vp < σ. As explained below, stars that move
faster than the wave (i.e., with v > vp) lose energy to the wave, while stars with
v < vp gain energy. If, for simplicity, we assume a Gaussian distribution of velocities,
centered on v = 0 and with a velocity dispersion σ, we see immediately that there
will be more stars with v < vp than with v > vp. Consequently, the net effect is
that the wave will lose energy to the background particles, and thus damp.

Understanding why particles with v < vp (v > vp) gain (lose) energy to the wave,
consider a surfer on the ocean. A (good) surfer sets his board such that the downhill
direction of the wave that he is riding is the direction of motion of the wave. Under
these conditions the wave is doing work on the surfer, propelling him forward (the
force is the horizontal component of the buoyancy force that the water exerts on
the surfboard).The surfer then adjusts his speed parallel to the wave crest such that
this work is balanced by the friction that his board experiences moving through the
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water. If the wave crest would overtake the surfer, he now finds himself pushing
(doing work) on the wave, and he will slow down.

Note that Landau damping is dominated by the stars that are in near-resonance with
the wave (i.e., the stars for which |v−vp| is small). Stars that are far from resonance
will pass the wave, or be overtaken by the wave, quickly, and they hence go from
gaining to losing energy to the wave (or vice versa) in quick succession, the net effect
of which is zero. In the other hand, stars that are only slightly slower than the wave
will spend a long time ‘riding the wave’, draining energy from it, while the (slightly
fewer) stars that are somewhat faster than the wave spend a long time pushing the
wave, transferring their kinetic energy to the wave.

We end our discussion on collisionless relaxation by contrasting Landau damping
and phase mixing. Both can damp waves/oscillations in a collisionless system, but
do so in a different way. Phase mixing is purely a kinematic process that occurs in
all systems, even those without self-gravity. Landau damping, on the other hand, is
a collective effect that arise because of self-gravity. In addition, in phase-mixing
the amplitude of the fluctuations in the DF do not decay. Rather, the fluctuations
become more and more tightly wound in phase-space, and relaxation only affects
the coarse-grained DF. In contract, Landau damping actually changes the energies
(actions) of the particles, and thus changes the DF at the fine-grained level; it actually
washes away the fluctuations in the DF.
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Part IV: Plasma Physics

The following chapters give an elementary introduction into the rich topic of plasma
physics. The main goal is to highlight how plasma physics differs from that the
physics of neutral fluids. After introducing some characteristic time and length
scales, we discuss plasma orbit theory and plasma kinetic theory before considering
the dynamics of collisionless plasmas, described by the Vlasov equations, and that
of collisional plasma, described (under certain circumstances) by the equations of
magnetohydrodynamics.

Plasma is a rich topic, and one could easily devote an entire course to it. The follow-
ing chapters therefore only scratch the surface of this rich topic. Readers who want
to get more indepth information are referred to the following excellent textbooks
- Introduction to Plasma Theory by D.R. Nicholson
- The Physics of Plasma by T.J.M. Boyd & J.J. Sandweson
- Plasma Physics for Astrophysics by R.M. Kulsrud
- The Physics of Fluids and Plasmas by A.R. Choudhuri
- Introduction to Modern Magnetohydrodynamics by S. Galtier

237



CHAPTER 25

Plasma Characteristics

A plasma is a quasi-neutral gas of charged and neutral particles which exhibits
collective behavior. The clause that a plasma needs to exhibit collective behavior
implies that the number of particles inside a Debye volume is large.

In a plasma the motion of the charged particles is governed by the Lorentz force
which depends on the electric and magnetic fields, which in turn are sourced, via
the Maxwell equations, by the density distribution of the charges and their cor-
responding currents. This ‘feedback loop’ (the dynamics of the particles depends on
the EM fields, which in turn are generated by the motion of the particles) is what
makes plasma physics such a difficult topic.

Note though that it is not that different from a gravitational N -body systems, in
which the motion of the particles is governed by the gravitational force which
depends on the gravitational potential, which in turn is sourced, via the Poisson
equation, by the density distribution of the particles.

NOTE ABOUT UNITS: in this and the following chapters on plasma physics we
adopt the Gaussian system of units (see Chapter 0). This implies that the Coulomb
force between two charges q1 and q2 is given by

F =
q1q2
r2

By contrast, the same Coulomb law in the alternative SI unit system is given by

F =
1

4πε0

q1q2
r2

with ε0 the vacuum permittivity. Using Gaussian units also implies that the electric
and magnetic fields have the same dimensions, and that the Lorentz force on a
particles of charge q is given by

~F = q

[
~E +

~v

c
× ~B

]

See any textbook on electromagnetism for details.
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If the plasma is weakly ionized, then a charged particle is more likely to have a
collision with a neutral particle. Such collisions take place when the particles are
very close to each other and usually produce large deflections, similar to collisions
between two neutral particles. Hence, a weakly ionized plasma can be described
using the Boltzmann equation.

If the plasma is highly ionized, Coulomb interactions among the charged particles
dominate. These are long-range interactions, and typically result in small deflec-
tions (see below). In addition, a particle typically has interactions with many other
particles simultaneously. Hence, the collisions are not instantaneous, well-separated,
and localized (i.e., short-range). Consequently, the Boltzmann equation does not
apply, and we need to derive an alternative dynamical model. Unfortunately, this is
a formidable problem that is not completely solved for an arbitrary, inhomogeneous
magnetized plasma. Consequently, what we have are several different plasma mod-
els, each with their own ranch of validity and applicability (see Fig. 30 for a cursory
overview). These include, among others, Particle-in-Cell (PIC) simulations in
which the ‘orbits’ of individually charged particles, are integrated forward in time
subjected to the Lorentz force resulting from the electromagnetic field due to all
other particles, the two-fluid model that is (mainly) used to treat phenomena on
small length and/or time scales for which the plasma can be treated as collisionless,
and the one-fluid model known as MagnetoHydroDynamics (MHD).

In our discussion of neutral fluids we have seen that a system of particles can be
treated like a continuum fluid iff frequent collisions keep the distribution function
in local regions close to a Maxwellian. Although not easy to proof, there is ample
experimental evidence that shows that the collisions in a plasmas also relax to a
Maxwellian. We therefore will seek to develop some continuum fluid model to
describe our plasma. However, we need to keep in mind that such a model can only
be used to describe plasma dynamics on large scales and long time scales (see below).

Characteristic Length and Time Scales:
We now describe a number of important length scales and time scales relevant for
plasmas. Let ne and ni refer to the number densities of electrons and ions, respec-
tively. Unless specified otherwise, we shall assume that ions are singly ionized. Since
most of the matter in the Universe is hydrogen, this is a reasonable assumption to
make in astrophysics (i.e., ni is then basically the number density of free protons). In
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Figure 30: Overview of the various models that are used to describe plasmas.

astrophysics these number densities can span many orders of magnitudes. For exam-
ple, the ISM has ne ∼ 1 cm−3, while stellar interiors have densities ne ∼ 1025 cm−3.

The charge density of a plasma is defined as

ρ = e(np − ne)

with e the charge of an electron. In a plasma, the strong electrostatic interactions
among positively and negatively charged particles ensure that volumes with statis-
tically large numbers of particles are nearly neutral (i.e., ρ ≃ 0). Hence, plasmas
have some characteristics in common with neutral fluids. However, on small enough
scales, particles feel the strong, electromagnetic forces from individual particles. Al-
though a charged particle in a plasma in principle produces a long-range EM field,
its effect is usually screened off by particles of the opposite charge within a distance
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called the Debye length. The Debye lengths for electrons and ions are given by

λe,i =

(
kB Te,i
4πne2

)1/2

∼ 740 cm

(
T [ eV]

n [ cm−3]

)1/2

(for a derivation, see any good textbook on Plasma Physics), while the total Debye
length, λD, is defined by

λ−2
D = λ−2

e + λ−2
i

Because of Debye shielding, the net electrical potential around a charge q is given by

φ =
q

r
exp(−r/λD)

Debye shielding is a prime example of collective behavior in a plasma; it indicates
that each charged particle in a plasma, as it moves, basically carries, or better, tries
to carry, a cloud of shielding electrons and ions with it.

• On scales λ ≫ λD, a plasma can be considered charge-neutral: any charge imbal-
ance produces strong electrostatic forces which quickly restore charge-neutrality.

• On scales λ≪ λD particles experience strong Coulomb interactions.

The average number of particles on which a charged particle excerts an influence is
roughly nλ3D, with n the average number density of particles. Associated with this
is the Plasma Parameter

Λ ≡ 4π nλ3D

BEWARE: here is inconsistency in the literature regarding this definition; some
texts define the plasma parameter as nλ3D (i.e., without the factor 4π, while, more
annoyingly, other texts sometimes define the plasma parameter as (nλ3D)

−1. And to
complete the confusion, different texts also often use different symbols to denote the
plasma parameter.

• When Λ ≪ 1, the number of particles on which a charged particle exerts an
influence is less than unity, and collisions are therefore typically well-separated in
space and time (there are no collective effects). Hence, the system behaves pretty
much like a neutral fluid. Such a fluid is generally not considered a plasma!
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• When Λ ≫ 1, many particles undergo simultaneous interactions, and as a con-
sequence, the fluid manifests collective behavior (see Chapter 1 for a definition).
This is known as the plasma limit.

NOTE: The plasma parameter Λ ∝ n−1/2. Hence, low density plasma’s are more
‘plasma-like’ (display more collective phenomenology). Even though the number of
particles per volume is smaller, the total number of particles within a Debye volume,
λ3D, is larger.

The average distance between particles is of the order n−1/3. Hence, the average
potential energy of electrostatic interactions is of the order e2 n1/3. We thus see that

〈K.E.〉
〈P.E.〉 ∝ kB T

e2 n1/3
∝ Λ2/3

In other words, the plasma parameter is a measure for the ratio between the average
kinetic energy of the particles and the average potential energy associated with their
mutual interaction.

• When Λ ≫ 1, interactions among the particles are weak, but a large number of
particles interact simultaneously, giving rise to plasma behavior.

•When Λ ≪ 1, interactions among the particles are strong, but few particles interact
collectively, and the fluid behaves like a neutral fluid. In fact, if Λ < 1 then the
typical kinetic energy of the electrons is smaller then the potential energy due its
nearest neighbor, and there would be a strong tendency for the electrons and ions
to recombine, thus destroying the plasma. The need to keep the fluid ionized means
that most plasmas have temperatures in excess of ∼ 1 eV (= 11606K ≃ 104K).
Alternatively, one can create plasmas at lower temperature by exposing them to
strong ionizing radiation. An example of the latter is the Earth’s ionosphere, which
has temperatures in the range from 200 K to 500 K.

The plasma parameter is a measure of the dominance of collective interactions over
individual collisions. The most fundamental of these collective interactions are the
plasma oscillations that are set up in response to a charge imbalance. Consider a
uniform, unmagnetized plasma in which the number density of electrons is balanced
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Figure 31: Displacing electrons and ions in a plasma creates an electric field (dotted
arrows in right-hand panel) that aims to restore charge neutrality, thereby causing plasma
oscillations at the plasma frequency.

by that of protons, as depicted in the left-hand panel of Fig. 31. Now let us displace
the electrons by x along the x-direction, as depicted in the right hand panel. This
displacement creates an electric field that is similar to that between two uniformly
charged plates, which, as you hopefully recall from you EM class, is uniform and
equal to the E = 4πσ (in our Gaussian units), with σ the charge per unit area on
the plates. In our case σ = enex, and we thus have established an electric field
E = 4πenex (depicted by the dashed arrows in the right-hand panel of Fig. 31).
This electric field exerts a force that pulls the electrons back towards their original
position. Due to their inertia, the electrons will overshoot and start to oscillate
around their equilibrium position. Here we ignore the motion of the protons which
is justified by the fact that their acceleration will be a factor mp/me = 1836 smaller.

The equation of motion for a unit volume of electron gas is given by

neme
d2x

dt2
= −neeE = −4πn2

ee
2x

which can be written as the equation for a harmonic oscillator

d2x

dt2
+ ω2

p x = 0

with ωp the plasma frequency given by

ωp =

(
4πnee

2

me

)1/2

≃ 56.5 kHz (ne [ cm
−3])1/2
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Note that, if we define the thermal speed of the electrons to be ve = (kBT/me)
1/2,

then ωp = ve/λD (see also Chapter 2). Hence, a thermal electron travels roughly a
Debye length in a plasma oscillation period.

Because of the plasma frequency, sending EM waves (i.e., light) through a plasma is
similar to how a harmonic oscillator responds to periodic forcing (see Appendix M for
a refresher); if you try to force an harmonic oscillator with a frequency that is higher
than its eigenfrequency, it won’t respond. Similarly, EM waves with a frequency
higher than the plasma frequency can traverse the plasma virtually uninhibited.
However, the plasma is opaque to EM radiation of frequency ω < ωp, as the plasma
is able to respond fast enough to short the EM oscillations. This is the reason
why long wavelength cyclotron radiation (the non-relativistic version of synchrotron
radiation) is unable to travel through a plasma with conditions similar to the ISM.
In other words, the ISM is opaque to cyclotron radiation.

Indicidently, a conducting metal is somewhat similar to a plasma, in that the elec-
trons are moving freely relative to ions that are locked in place. However, because
the electron density of such a metal is many order of magnitude higher than that
of the ISM, its plasma frequency is also much higher. Hence, conducting metals are
opaque to optical light; however, in many case they are transparent to UV light. This
also explains why metal conductors, such as aluminium foil, do not block X-rays.

Collisions We now turn our attention to the collisions in a plasma. Our goal is two-
fold: to derive under what conditions collisions are important, and (ii) to demonstrate
that in a plasma weak collisions (causing small deflections) are more important than
strong collisions (causing large angle deflections).

As we have seen above, a particle in a plasma is feeling the Coulomb force from all Λ
particles inside its Debye volume. Hence, unlike in a neutral gas, where particles have
individual short-range interactions, moving freely in between, in a plasma the particle
have many simultaneous, long-range (i.e., of order the Debye length) interactions.

From our definition of a plasma (i.e., Λ ≫ 1) we know that the potential energy of
the ‘average’ interaction of particles with their nearest neighbor is small. This means
that the strongest of all its Λ simultaneous interactions (i.e., that with its nearest
neighbor) is, on average, weak. Thus, it is safe to conclude that a charged particle
in a plasma simultaneously undergoes of order Λ weak interactions (aka ‘collisions’).
In fact, as we shall see shortly, even the combined effect of all these Λ simultanous
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collisions is still relatively weak.

The importance of collisions is most meaningfully expressed by the collision fre-
quency (which is the inverse of the two-body relaxation time), which we now
proceed to calculate.

Consider a charged particle of charge q and mass m having an encounter with impact
parameter b with another particle with charge q′ and mass m′. Let v0 be the speed of
the encounter when the charges are still widely separated. In what follows we assume
that m′ = ∞, and we treat the encounter from the rest-frame of m′, which coincides
with the center-of-mass. This is a reasonable approximation for an encounter between
an electron and a much heavier ion. It makes the calculation somewhat easier, and
is anyways accurate to a factor of two or so. Let x = v0t describe the trajectory of
m in the case where it would not be deflected by m′. If the scattering angle is small,
then the final speed in the x-direction (i.e., the original direction of m) will be close
to v0 again. However, the particle will have gained a perpendicular momentum

mv⊥ =

∫ ∞

−∞
F⊥(t)dt

where F⊥(t) is the perpendicular force experienced by the particle along its trajectory.
As long as the deflection angle is small, we may approximate that trajectory as the
unperturbed one (i.e., x = v0t). Note that this is exactly the same approximation as
we made in our treatment of the impulse approximation in Chapter 23.

Next we use that

F⊥ =
q q′

r2
sin θ

where sin θ = b/r. Using this to substitute for r in the above expression, we obtain
that

v⊥ =
q q′

mb2

∫ ∞

−∞
sin θ3(t) dt

Using that

x = −r cos θ = −b cos θ
sin θ

= v0t

we see that

dt =
b

v0

dθ

sin2 θ
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Substituting this in the integral expression we obtain

v⊥ =
q q′

mv0 b

∫ π

0

sin θ dθ =
2q q′

mv0 b

Our approximation that the collision must be weak (small deflection angle) breaks
down when v⊥ ≃ v0. In that case all the forward momentum is transformed into
perpendicular momentum, and the deflection angle is 90o. This happens for an
impact parameter

b90 =
2q q′

mv20

In some textbooks on plasma physics, this length scale is called the Landau length.
Using this expression we have that

v⊥
v0

=
b90
b

NOTE: although the above derivation is strictly only valid when b ≫ b90 (i.e., v⊥ ≪
v0), we shall consider b90 the border between weak and strong collisions, and compute
the combined impact of all ‘weak’ collisions (i.e., those with b > b90).

But first, let us compute the collision frequency for strong collisions. Let n be the
number density of targets with which our particle of interest can have a collision.
The cross section for each target for a strong interaction is πb290. In a time t the
particle of interest traverses a distance v0t, which implies that the expectation value
for the number of strong interactions during that time is given by

〈NL〉 = nπb290 v0 t

where the subscript ‘L’ refers to Large (deflection angle). Using that the correspond-
ing collision frequency is the inverse of the time it takes for 〈NL〉 = 1, we obtain
that

νL = nπb290 v0 =
4πnq2q′ 2

m2v30
=

4πne4

m2v30

where the last step only holds if, as assumed here, all ions have Z = 1.

Recall that a typical charged particle is simultaneously undergoing Λ ≫ 1 collisions.
Only very few of these will be large angle deflections (strong collisions). To see
this, we can use that the potential energy between the two colliding particles at
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a separation b90 is e2/b90. Substituting the expression for b90 we see that this is
equal to 1

2
mv20 , which is the kinetic energy. Thus, when qq′ < 0 and b < b90 we

are basically in the regime of recombination. Furthermore, as we have seen above
〈K.E.〉/〈P.E.〉 ∝ Λ2/3, which for a plasma is much smaller than unity. Hence, a
particle will undergo many more small angle collisions than large angle collisions.

We now proceed to compute the combined effect of all these many small angle col-
lisions. Since the perpendicular direction in which the particle is deflected by each
individual collision is random, we have that 〈v⊥〉 = 0. However, the second moment,
〈v2⊥〉 will not be zero. As before, in a time t the number of collisions that our subject
particle will experience with impact parameters in the range [b, b+ db] is given by

〈Ncoll〉 = n 2πb db v0 t

Hence, using that each collision causes a v⊥ = v0(b90/b), we can calculate the total
change in v2⊥ by integrating over all impact parameters

〈v2⊥〉 =
∫ bmax

bmin

db n 2π b v0 t
v20b

2
90

b2
= 2π n v30 t b

2
90 ln

(
bmax

bmin

)

Substituting the expression for b90 and using that bmax ≃ λD (i.e., a charged particle
only experiences collisions with particles inside the Debye length) and bmin = b90
(i.e., collisions with b < b90 are strong collisions), we find that

〈v2⊥〉 =
8π n e4 t

m2v0
ln

(
λD
b90

)

Next we use that the typical velocity of charges is the thermal speed, so that v20 ≃
kBT/m, to write that

λD
b90

=
λDmv

2
0

2e2
= 2π nλ3D =

Λ

2

where in the third step we have used the definition of the Debye length. Since for a
plasma Λ ≫ 1 we have that ln(λD/b90) ≃ ln Λ. The quantity ln Λ is known as the
Coulomb logarithm.

If we now define the collision frequency νc due to small-angle collisions as the
inverse of the time it takes for 〈v2⊥〉 to become of the order of v20, then we obtain

νc =
8π n e4

m2v30
ln Λ

247



Upon comparing this with the collision frequency of large-angle collisions, we see
that

νc
νL

= 2 lnΛ

This is a substantial factor, given that Λ is typically very large: i.e., for Λ = 1010

we have the νc ∼ 46νL indicating that small-angle collisions are indeed much more
important than large-angle collisions.

Let us now compare this collision frequency to the plasma frequency. By once again
using that v0 is of order the thermal velocity, and ignoring the small difference
between λD and λe, we find that

ωc

ωp
=

2π νc
ωp

=
lnΛ

nλ3D
= 4π

ln Λ

Λ
≪ 1

Hence, we see that the collision frequency is much, much smaller than the plasma
frequency, which basically indicates that, in a plasma, particle collisions are far
less important than collective effects: a plasma wave with frequency near ωp will
oscillate many times before experiencing significant damping due to collisions. Put
differently, collisional relaxation mechanisms in a plasma are far less important
than collective relaxation mechanisms, such as, for example, Landau damping
(to be discussed in a later chapter).

Finally, we point out that, since both the Coulomb force and the gravitational force
scale as r−2, the above derivation also applies to gravitational systems. All that is
required is to replace q q′ = e2 → Gm2, and the derivation of the collision frequencies
now apply to gravitational N -body systems. This is the calculation that is famously
used to derive the relaxation time of a gravitational system. The only non-trivial
part in that case is what to use for bmax; since there is no equivalent to Debye shielding
for gravity, there is no Debye length. It is common practice (though contentious)
to therefore adopt bmax ≃ R with R a characteristic length or maximum extent of
the gravitational system under consideration. In a gravitational system, we also
find that the two-body, collisional relaxation time is very long, which is why we
approximate such systems as ‘collisionless’. Similar to a plasma, in a gravitational
system relaxation is not due to two-particle collisions, but due to collective effects
(i.e., violent relaxation) and to more subtle relaxation mechanisms such as phase
mixing.
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Let’s take a closer look at this comparison. If we define the two-body relaxation
time as the inverse of the collision frequency, we see that for a plasma

τplasma
relax =

1

4π

Λ

lnΛ
τp ≃ Λ

lnΛ
ω−1
p ≃ Λ

lnΛ
10−4s

( ne

cm−3

)−1/2

(see also Chapter 1). Here we have used the ratio between the collision frequency
and plasma frequency derived above, and we have used the expression for ωp ≡ 2π/τp
in terms of the electron density. We thus see that the two-body relaxation time for
a plasma is very short. Even for a plasma with Λ = 4πnλ3D = 1010, the relaxation
time for a plasma at ISM densities (∼ 1 cm−3) is only about 12 hours, which is much
shorter than any hydrodynamical time scale in the plasma (but much longer than
the characteristic time scale on which the plasma responds to a charge-imbalance,
which is τp = 2π/ωp ≃ 0.1ms). Hence, although a plasma can often be considered
collisionless (in which case its dynamics are described by the Vlasov equation,
see Chapter 28), on astrophysical time scales, plasmas are collisionally relaxed, and
thus well described by a Maxwell-Boltzmann distribution.

In the case of a gravitational N -body system, the two-body relaxation time is given
by

τNbody
relax ≃ Λ

lnΛ

τc
10

with the crossing time τc ≃ R/V ≃ (2/π)τdyn (for a detailed derivation, see Binney
& Tremaine 2008). If, as discussed above, we set Λ = bmax/b90 with bmax ≃ R the
size of the gravitational system and b90 = 2Gm/σ2, with σ the characteristic velocity
dispersion, then it is easy to see that Λ = [NRσ2]/[2G(Nm)] ∼ N , where we have
used the virial relation σ2 = GM/R with M = Nm (see Chapter 22). Hence, we
obtain the well-known expression for the two-body relaxation time of a gravitational
N -body system

τNbody
relax ≃ N

10 lnN
τc

And since τc can easily be of order a Gyr or larger in astrophysical systems like dark
matter halos or galaxies, while N ≫ 1, we see that τNbody

relax is typically much larger
than the Hubble time. Hence, gravitational N -body systems are much better approx-
imations of truly collisionless systems than plasmas, and their velocity distributions
can thus not be assumed to be Maxwellian.
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As a final discussion of our comparison of plasmas and gravitational systems, let’s
consider the force fields. In the latter case, the forces are gravitational forces which
are gradients of the gravitational potential: ~F ∝ ∇Φ. Note that Φ is the sum of N
point-mass potentials. When N is sufficiently large, this total Φ is sufficiently smooth
that a test-particle only feels the combined (collective) force of all N particles; it only
notices the coarsiness of the potential when it comes sufficiently close to an individual
particle (i.e., with b90) to experience a large angle deflection, which is very rare. In
fact, it is more likely to feel the coarsiness in terms of the cumulative effect of many
small-angle deflections. When N becomes smaller the potential becomes coarser
(larger small-scale fluctuations) and the system becomes more collisional in nature.

In a plasma the forces are Lorentz forces ~F = q
[
~E + ~v

c
× ~B

]
. The E and B fields

are due to the positions and motions of the individual charges. On large scales
(λ > λD), the electromagnetic (EM) fields, and hence the resulting Lorentz forces,
are always smooth (no manifestation of coarsiness). However, on sufficiently small
scales (λ < λD), the level of coarsiness of the EM fields depends on the number of
particles inside the Debye volume, which is basically equal to the plasma parameter.
If Λ is sufficiently small, individual charged particles feel the microscopic E and B
fields due to individual charges within the Debye volume, giving rise to coarsiness
and thus collisionality. Only if Λ is sufficiently large, will the impact of coarsiness
be negligible (that is, will the corresponding two-body relaxation time be sufficiently
long).
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CHAPTER 26

Plasma Orbit Theory

In describing a fluid, and plasmas are no exception, we are typically not interested in
the trajectories of individual particles, but rather in the behaviour of the statistical
ensemble. Nevertheless, one can obtain some valuable insight as to the behavior of
a plasma if one has some understanding of the typical orbits that charged particles
take. In this chapter we therefore focus on plasma orbit theory, which is the study
of the motion of individual particles in a plasma.

A particle of mass m and charge q moving in an EM field is subject to the Lorentz
force and therefore satisfies the following equation of motion:

m
d~v

dt
= q

(
~E +

~v

c
× ~B

)

Each particle is subjected to the EM field produced by the other particles. In addi-
tion, there may be an external magnetic field imposed on the plasma. The interior
of a plasma is usually shielded from external electric fields.

A charged particle moving in a uniform, magnetic field, ~B, has a motion that can
be decomposed into

1. a circular motion with gyrofrequency ωc = |q|B/mc and gyroradius rL =
mv⊥c/|q|B around a central point called the guiding center. Here v⊥ is the
component of velocity perpendicular to the magnetic field lines.

2. a translatory motion of the guiding center.

This combination gives rise to a helical motion along the magnetic field lines.

NOTE: The gyroradius is also known as the Larmor radius or the cyclotron
radius.

What about the motion in a non-uniform, magnetic field, ~B(~x)? As long

as the non-uniformities in ~B(~x) are small over the scale of the gyroradius, i.e.,
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| ~B/(d ~B/dr)| < rL, one can still meaningfully decompose the motion into a cir-
cular motion around the guiding center and the motion of the guiding center itself.
The latter can be quite complicated, though. The aim of plasma orbit theory is to
find equations describing the motion of the guiding center. Unfortnately, there is no
general equation of motion for the guiding center in an arbitrary EM field. Rather,
plasma orbit theory provides a ‘bag of tricks’ to roughly describe what happens under
certain circumstances. In what follows we discuss five examples: four circumstances
under which the guiding center experiences a drift, and one in which the guiding
center is reflected.

In what follows we shall discuss four cases in which the guiding center experiences a
‘drift’:

(A) drift due to the effect of a perpendicular force
(B) drift due to a gradient in the magnetic field
(C) drift due to curvature in the magnetic field
(D) drift due to temporal oscillations in the electric field

We now discuss these in turn.

(A) The effect of a perpendicular force:

Consider the case of an external force, ~F (e.g., gravity), acting on a charged
particle in a direction perpendicular to a uniform magnetic field. The equation
of motion then is

m
d~v

dt
= ~F +

q

c
~v × ~B

In the limit where ~B vanishes, the particle simply moves in the direction of ~F . In the
limit where ~F vanishes, the particle makes a circular motion around the magnetic
field line. When both ~F and ~B are present, the guiding center of the circular motion
will drift in a direction perpendicular to both ~F and ~B. To understand where this
comes from, consider the ion’s trajectory depicted in Fig. 32. When the ion is moving
in the direction of ~F , it is accelerated by the external force, which causes an increase
of v⊥ (afterall ~F ⊥ ~B). As a consequence, the Larmor radius, rL will also increase
causing a reduced curvature in the circular motion. Conversely, when the particle is
moving opposite to the direction of ~F , its v⊥ decrease, rL decreases, and the curvature
of gyration becomes larger (more strongly bent). The net outcome of this is a drift
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Figure 32: Drift of a gyrating particle in crossed gravitational and magnetic fields.
The magnetic field is pointing out of the page, while the gravitational force is pointing
upward. Note that the positively and negatively charged particles drift in opposite
directions, giving rise to a non-zero current in the plasma.

of the guiding center (as depicted in Fig. 32) with a velocity

~vGC =
c

q

~F × ~B

B2

Note that positively and negatively charged particles will drift in opposite directions,
thereby giving rise to a non-zero current in the plasma. In the case where the
external force is gravity, such that ~F = m~g, this drift current is give by

~j = n q (vi − ve) = n (mi +me) c
~g × ~B

B2

where we have assumed that all ions are protons.

Note that no current will arise if the external force is the electrical force, i.e., if
~F = q ~E. In that case

~vGC = c
~E × ~B

B2

which does not depend on the charge; hence, all particles drift in the same direction
and no current arises.

(B) Gradient Drift:

If the magnetic field has a gradient ∇B in the direction perpendicular to ~B, there
will also be a drift of the guiding center. The origin is very similar to that of the drift
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in the presence of an external force discussed above. Assume the same geometry as
in Fig. 32, but now imagine there being a gradient ∇B in the same direction as ~F ,
but with F = 0. If an electron moves in the direction of increasing (decreasing) ~B,
its Larmor radius will decrease (increase), and the curvature of its gyration increases
(decreases). Hence, the curvature is different at the top and bottom of the gyration,
resulting in a net drift.

It can be shown that the resulting drift of the guiding center is given by:

~vGC = ±1

2
v⊥rL

~B ×∇B
B2

where, as throughout this chapter, v⊥ is the component of velocity perpendicular to
the magnetic field lines, rL is the Larmor radius, and the + and − signs correspond
to positive and negative charges. Hence, particles of opposite charge drift in opposite
directions, once again giving rise to a non-zero current in the plasma.

(C) Curvature Drift:
If the magnetic field is curved, with a radius of curvature Rc, once again the guiding
center experiences a drift. Physically this arises because as a charged particle gyrates
around a curved field, a centrifugal force arises given by

~Fc = −mv2‖
~Rc

R2
c

where v‖ is the velocity component parallel to ~B, and ~Rc is the curvature vector
directed towards the curvature center. Substituting this as the external force in the
expression for the drift under (A) yields a curvature drift velocity

~vGC = −
cm v2‖
qR2

c

~Rc × ~B

B2

Like the gradient drift, the curvature drift is also in opposite directions for positively
and negatively charged particles, and can thus give rise to a non-zero current. As an
interesting aside, because of unavoidable curvature drift, bending a magnetic field
into a torus for the purpose of confining a (thermonuclear) plasma, always results in
losses (leaky confinement). This is the reason why tokamaks make use of twisted,
helical magnetic field lines that wrap around the torus. Understanding why this
prevents losses is a bit too involved to address here.
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Figure 33: Illustration of Lorentz force (red arrows) acting on a gyrating particle
(indicated by ellipse) in two magnetic field configurations. In panel (a) the field
lines are parallel, and the Lorentz force has no component along the z-direction.
In the configuration shown in panel (b), though, the Lorentz force, which is always
perpendicular to the local magnetic field, now has a component in the z-direction,
pointing away from where the magnetic field is stronger.

(D) Polarization Drift:
The final drift that we discuss here arises due to a time-varying electric field. Assume
that both ~E and ~B are uniform in space, but let the electric field vary periodically
with time according to ~E = E0 exp[iωt]~ex. We shall assume that the oscillation is
slow compared to the cyclotron frequency (the frequency of gyration, see Chapter 2),
i.e., ω ≪ ωc. As before, we assume that the magnetic field points in the z-direction.
It can be shown (see most books on plasma physics) that this results in a drift of the
guiding center that consists of two components. Along the y-direction, perpendicular
to both the electric and magnetic fields, the particles experience the usual ~E× ~B drift
discussed under (A). Note, though, that here the drift velocity vGC = c( ~E × ~B)/B2

will oscillate slowly at frequency ω. Along the x-direction a new drift now appears,
which is called the polarization drift given by

vp =
mc

qB2

d ~E

dt

Hence, we see that the polarization drift is in opposite directions for the electrons
and ions, thus giving rise to a polarization current. If the ions are protons, this
current is

~jp = n e (~vi − ~ve) =
ne

eB2
(mi +me)

d ~E

dt
=

ρ

B2

d ~E

dt
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with ρ the mass density. Note that vp ∝ m, indicating that the polarization drift of
the electrons is negligible compared to that for the much heavier protons (which is
why polarization drift is sometimes called inertia drift).

The name polarization drift comes from the fact that the electric field inside most
plasmas derives not from an externally applied source (such an electric field is easily
shorted) but from the polarization of the plasma due to charge separation, which in
this case is driven by the time-variable electric field. To see this, consider an ion at
rest in a magnetic field pointing in the z direction. Since it is a rest, and there is
no electric field, there is no force acting on the ion. Now turn on an electric field
~E in the x-direction (increase the field strength from 0 to some constant value E).
Initially, the ion now reacts by accelerating in the x-direction due to the electric
force ~F = q ~E. Due to the fact that it now develops a non-zero velocity, the force
it experiences shifts from being purely electric to being electromagnetic; i.e., ~F =
q ~E → q( ~E + ~v × ~B). Once E becomes constant the Lorentz force is fixed and the

particle now experiences the regular ~E × ~B drift discussed under (A) which is in the
y-direction; the polarization drift has disappeared. But if E oscillates back and forth,
the ion experiences opposing accelerations in the +x and −x directions, causing an
oscillatory polarization drift. Due to the large inertia of the ions, they overshoot,
and one typically finds that the oscillations in the electric field (if sufficiently slow)
result in a polarization drift oscillating 90 degrees out of phase.

This is an important result. It shows that a plasma behaves somewhat like a solid
dielectric (aka an insulator), which also responds to an induced electric field, ~E, by

setting up a polarization field, ~P = 4πχ~E, with χ the electric susceptibility. Note,
though, that if the electric field is constant in time, a plasma acts like a conductor.
Only when the applied electric field is time-variable does the plasma reveal dielectric
behavior, which can be quantified by the dielectric function (see Appendix N).

Magnetic Mirrors:
In all four examples above the drift arises from a ‘force’ perpendicular to the magnetic
field. There are also forces that are parallel to the magnetic field, and these can give
rise to the concept of magnetic mirrors.

Let us first introduce the concept of magnetic moment. As you may recall from
a course on electromagnetism, the current loop with area A and current I (i.e.,
the current flowing along a closed loop that encloses an area A) has an associated
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magnetic moment given by

µ =
I A

c

A charged particle moving along its Larmor radius is such a loop with A = πr2L and
I = q(Ω/2π). Using that Ω = v⊥/rL and substituting the definition of the Larmor
radius, we find that the magnetic moment of a charge gyrating in a magnetic field
B is given by

µ =
πr2Lqv⊥
2πcrL

=
1
2
mv2⊥
B

The magnetic moment is an adiabatic invariant, which means that it is conserved
under slow changes in an external variable. In other words, if B only changes slowly
with position and time, then the magnetic momentum of a charged particle gyrating
is conserved!

Now consider the magnetic field topologies shown in Fig. 33. In panel (a), on the left,
the field is uniform and all field lines run parallel. The ellipse represents a gyration of
a particle whose guiding center moves along the central field line. The Lorentz force
is perpendicular to both ~B and v⊥ and pointing towards the guiding center. Now
consider the topology in panel (b). The field lines converge towards the right. At the
top of its gyro-radius, the magnetic field now makes an angle wrt the magnetic field
line corresponding to the guiding center, and as a result the Lorentz force (indicated
in red), now has a non-zero component in the z-direction. Hence, the particle will
be accelerated away from the direction in which the field strength increases!

To make this quantitative, let us compute the Lorentz force in the z-direction:

Fz =
q

c

(
~v × ~B

)
z
=
q

c
v⊥BR

where BR is the magnetic field component in the cylindrical R-direction, and the
z-direction is as indicated in Fig. 33. Using the Maxwell equation ∇· ~B = 0, we have
that

1

R

∂

∂R
(RBR) +

∂Bz

∂z
= 0

which implies

RBR = −
∫ R

0

R
∂Bz

∂z
(R)dR
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Figure 34: Illustration of a magnetic bottle. The black horizontal curved lines depict
magnetic field lines, which are ‘squeezed’ together at the ends by two electrical coils.
As a result the magnetic field strength is larger at the ends than in the middle,
creating magnetic mirrors in between charged particles can be trapped. An example
of a particle trajectory is shown.

If we take into account that ∂Bz

∂z
does not vary significantly over one Larmor radius,

we thus find that

BR = −1

2
R
∂Bz

∂z

Substituting this in our expression for the Lorentz force in the z-direction, with R
equal to the Larmor radius, we find that

Fz = −1

2
mv2⊥

1

B

∂Bz

∂z
= −µ∂Bz

∂z

This makes it clear that the Lorentz force has a non-zero component, proportional
to the magnetic moment of the charged particle, in the direction opposite to that in
which the magnetic field strength increases.

Now we are ready to address the concept of magnetic mirror confinement. Con-
sider a magnetic field as depicted in Fig. 34. Close to the coils, the magnetic field is
stronger than in between. Now consider a particle gyrating along one of these field
lines, as shown. Suppose the particle starts out with kinetic energy K0 =

1
2
m(v2⊥+v

2
‖)

and magnetic moment µ. Both of these quantities will be conserved as the charged
particle moves. As the particle moves in the direction along which the strength of
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~B increases (i.e., towards one of the coils), v⊥ must increase in order to guaran-
tee conservation of the magnetic moment. However, the transverse kinetic energy
can never exceed the total kinetic energy. Therefore, when the particle reaches a
region of sufficiently strong ~B, where the transverse kinetic energy equals the total
kinetic energy, it is not possible for the particle to penetrate further into regions of
even stronger magnetic field: the particle will be reflected back, and the region of
increasing magnetic field thus acts as a reflector, known as a magnetic mirror.

The contraption shown in Fig. 34 is known as amagnetic bottle as it can be used to
‘store’ charged particles. Note, though, that a magnetic bottle is inherently ‘leaky’.
To see this, let B0 denote the magnetic field strength in the middle of the bottle,
and Bmax the maximum magnetic field strength, which arises at the positions of the
two coils. Let ~v0 be the velocity of the particle at the middle of the bottle, and
let v⊥,0 be its corresponding transverse speed: v⊥,0 = v0 sin θ. Since the transverse
velocity at the time of reflection has to equal v0, we see that only those particles will
be reflected for which sin2 θ > B0/Bmax. Particles for which θ is smaller make up a
loss cone, as these particles will leak out of the magnetic bottle.

Magnetic bottles are not only found in laboratories; the Earth’s magnetic field creates
its own magnetic bottles due to its toroidal topology. The charged particles that are
trapped give rise to what are called the Van Allen belts (electrons and protons
have their own belts, as depicted in Fig. 35). As the trapped particles move back
and forth between the North and South poles of the Earth’s magnetic field, they
experience curvature drift (in opposite directions for the electrons and protons).
The resulting currents are called the ring currents. Note that collisions among the
charged particles causes charges to be kicked into the loss cone (i.e., the loss cone
is constantly refilled due to two-body interactions), which causes them to leak out
of the Earth’s magnetosphere. Over time a quasi-equilibrium is established in which
the loss rate equals the rate of replenishment due to the Solar wind. Note that this
is only a quasi-equilibrium due to the time-variability of the Solar wind.
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Figure 35: Illustration of the Van Allen belts of trapped, charged particles in the
toroidal magnetic field of the Earth.
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CHAPTER 27

Plasma Kinetic Theory

In Chapter 6 we discussed the kinetic theory of fluids. Starting from the Liouville
theorem we derived the BBGKY hierarchy of equations, which we repeat here for
convenience:

∂f (1)

∂t
= {H(1), f (1)}+

∫
d3~q2 d

3~p2
∂U(|~q1 − ~q2|)

∂~q1
· ∂f

(2)

∂~p1
·
·
·

∂f (k)

∂t
= {H(k), f (k)}+

k∑

i=1

∫
d3~qk+1 d

3~pk+1
∂U(|~qi − ~qk+1|)

∂~qi
· ∂f

(k+1)

∂~pi

Here k = 1, 2, ..., N , f (k) is the k-particle DF, which relates to the N -particle DF
(N > k) according to

f (k)(~w1, ~w2, ..., ~wk, t) ≡
N !

(N − k)!

∫ N∏

i=k+1

d6 ~wi f
(N)(~w1, ~w2, ..., ~wN , t) ,

and H(k) is the k-particle Hamiltonian given by

H(k) =

k∑

i=1

~p 2
i

2m
+

k∑

i=1

V (~qi) +
1

2

k∑

i=1

k∑

j=1
j 6=i

U(|~qi − ~qj |)

with V (~q) the potential associated with an external force, and U(r) the two-body
interaction potential between two (assumed equal) particles separated by a distance
r = |~qi − ~qj |.

All of this is completely general: it holds for any Hamiltonian system consisting of N
particles, and therefore also applies to plasmas. However, we also saw that in order
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to make progress, one needs to make certain assumptions that allow one to truncate
the BBGKY hierarchy at some point (in order to achieve closure).

If one can ignore two-body collisions, then the phase-space coordinates of the particles
will be uncorrelated, such that

f (2)(~q1, ~q2, ~p1, ~p2) = f (1)(~q1, ~p1) f
(1)(~q2, ~p2)

which is equivalent to setting the correlation function g(1, 2) = 0 (see Chapter 6
for details). The first equation in the BBGKY hierarchy is now closed, and yields
the Collisionless Boltzmann Equation (CBE), which can be written as

df

dt
=
∂f

∂t
+ ~̇x · ∂f

∂~x
+ ~̇v · ∂f

∂~v
= 0

and is the fundamental evolution equation for collisionless systems. As we have
discussed in Chapter 25, collective effects are typically more important for plasmas
than collisional effects. Hence, as long as one considers plasma effects for which
collisions are NOT important (i.e., high frequency plasma waves), then one is justified
in using the CBE. It is common, though, to refer to this as the Vlasov equation,
when applied to a plasma, and we will follow that nomenclature.

In a gravitational N -body system the acceleration in the third term of the CBE
~̇v = −∇Φ, where Φ follows from the Poisson equation

∇2Φ = 4πGρ

with

ρ(~x, t) = m

∫
f(~x,~v, t)d3~v

In the case of a plasma, the acceleration is given by

~̇v =
q

m

[
~E(~x, t) +

~v

c
× ~B(~x, t)

]

And since the effects of collisions are ignored here, the fields ~E and ~B are the smooth,
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ensemble-averaged fields that satisfy the Maxwell equations

∇ · ~E = 4πρ

∇ · ~B = 0

∇× ~E = −1

c

∂ ~B

∂t

∇× ~B =
4π

c
~J +

1

c

∂ ~E

∂t

Here ρ = ρi+ ρe is the total charge density and ~J = ~Je+ ~Ji the total current density,
which are related to the distribution function according to

ρs(~x, t) = qs

∫
d3~v fs(~x,~v, t)

~Js(~x, t) = qs

∫
d3~v ~v fs(~x,~v, t)

for species ‘s’. Thus we see that the Maxwell equations are for a plasma, what the
Poisson equation is for a gravitational system6. Note that the distribution function
in the Vlasov equation is the sum of fi(~x,~v, t) plus fe(~x,~v, t).

As we discussed at great length in Chapter 6, if one wants to describe a dilute, neutral
fluid in which the particles only have short-range interactions (such that U(r) ≃ 0
outside of some small distance rcoll), then we can make the assumption of molecular
chaos, which states that

f (2)(~q, ~q, ~p1, ~p2) = f (1)(~q, ~p1) f
(1)(~q, ~p2)

(note that the collisions are assumed to be perfectly localized, such that we only
need to know the 2-particle DF for ~q1 = ~q2 = ~q). This assumption allows us to close
the BBGKY hierarchy, yielding the Boltzmann Equation:

df

dt
=
∂f

∂t
+ ~̇x · ∂f

∂~x
+ ~̇v · ∂f

∂~v
= I[f ]

Here I[f ] is the collision integral, which describes how the phase-space density
around a particle (or fluid element) changes with time due to short-range collisions.

6Actually, the first of the Maxwell equations can be written in the form of a Poisson equation
when using that the electric field can be written as the gradient of the scalar, electric potential φ(r)
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Upon taking the moment equations of this Boltzmann equation we obtain a hierarchy
of ‘fluid equations’, which we can close upon supplementing them with constitutive
equations for various transport coefficients (i.e., viscosity and conductivity) that
can be computed using the Chapman-Enskog expansion (something we did not
cover in these lecture notes).

In the case of a plasma, though, we cannot use the assumption of molecular chaos,
as individual particles have many (of order Λ) simultaneous long-range Coulomb
interactions. This situation is very different from that of a neutral gas, and the
Boltzmann equation can therefore NOT be used to describe a plasma.

So what assumption can we make for a plasma that allows us to truncate the BBGKY
hierarchy? The standard approach is to assume that h(1, 2, 3) = 0 (i.e., assume that
the three-body correlation function is zero). This is a very reasonable assumption
to make, as it basically asserts that two-body interactions are more important than
three-body interactions. However, even with h(1, 2, 3) = 0 the BBGKY hierarchy
yields a set of two equations (for ∂f (1)/∂t and ∂f (2)/∂t) that is still extremely difficult
to solve. Hence, additional assumptions are necessary. The two assumptions that
are typically made to arrive at a manageable equation are

1. the plasma is spatially homogeneous.

2. the two-point correlation function g(1, 2) relaxes much faster than the one-point
distribution function f(1).

The latter of these is known as Bogoliubov’s hypothesis, and is a reasonable
assumption under certain conditions. Consider for example injecting an electron
into a plasma. The other electrons will adjust to the presence of this new electron in
roughly the time it takes for them to have a collision with the new electron. Using
that the typical speed of the electrons is ve ∝ kBT and using the Debye length as the
typical length scale, the time scale for the injected electron to relax is λe/ve ∼ ω−1

p .
In contrast, the time for f(1) to relax to the newly injected electron is ∼ Λω−1

p , as
all the Λ particles within the Debye volume need to undergo mutual collisions.

Using the BBGKY hierarchy with h(1, 2, 3) = 0, assuming the plasma to be spatially
homogeneous, and adopting Bogoliubov’s hypothesis yields, after some tedious alge-
bra the Lenard-Balescu equation. Although the student is not required to know
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or comprehend this equation, it is given here for the sake of completeness:

∂f(~v, t)

∂t
= −8π4ne

m2
e

∂

∂~v

∫
d~k d~v ′ ~k~k · φ2(k)

|ε(~k,~k · ~v)|2
δ[~k · (~v−~v ′)]

[
f(~v)

∂f

∂~v ′ − f(~v ′)
∂f

∂~v

]

Here

φ(k) =
e2

2π2k2

is the Fourier transform of the Coulomb potential φ(x) = e2/|x|, and

ε(~k, ω) = 1 +
ω2
p,e

k2

∫
d~v

~k · (∂f/∂~v)
ω − ~k · ~v

is called the dielectric function, which basically represents the plasma shielding of a
test particle. Note that ~x does not appear as an argument of the distribution function,
which reflects the assumption of a homogeneous plasma. And the term in square
brackets has no explicit time-dependence, which reflects Bogoliubov’s hypothesis.
We emphasize that because of the assumptions that underly the Lenard-Balescu
equation, it is NOT applicable to all plasma processes. Although it can be used to
describe, say, the collisional relaxation of an electron beam in a plasma, it cannot
be used to describe for example the collisional damping of spatially inhomogeneous
wave motion.

The rhs of the Lenard-Balescu equation represents the physics of two-particle colli-
sions. This is evident from the fact that the term φ(k)/ε(~k,~k · ~v) appears squared.
This term represents the Coulomb potential of a charged particle (the φ(k)-part)
together with its shielding cloud (represented by the dielectric function). Hence, the
fact that this term appears squared represents the collision of two shielded particles.
It may be clear that this is not an easy equation to deal with. However, one can
obtain a simplified but fairly accurate form of the Lenard-Balescu equation that can
be recast in the form of a Fokker-Planck equation

∂f(~v, t)

∂t
= − ∂

∂vi
[Ai f(~v)] +

1

2

∂2

∂vi∂vj
[Bij f(~v)]

Here

Ai =
8πnee

4 ln Λ

m2
e

∂

∂vi

∫
d~v ′ f(~v

′, t)

|~v − ~v ′|
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is called the coefficient of dynamical friction, which represents the slowing down
of a typical particle because of many small angle collisions, and

Bij =
4πnee

4 ln Λ

m2
e

∂2

∂vi∂vj

∫
d~v ′ |~v − ~v ′| f(~v ′, t)

is the diffusion coefficient, which represents the increase of a typical particle’s
velocity (in the direction perpendicular to its instantaneous velocity) due to the
many small angle collisions.

If the two terms on the rhs of the Fokker-Planck equation balance each other, such
that ∂f(~v, t)/∂t = 0, then the plasma has reached an equilibrium. It can be shown
that this is only the case if f(~v) follows a Maxwell-Boltzmann distribution.
This is another way of stating that two-body collisions drive the systems towards a
Maxwellian.

As discussed in Chapter 9, the Fokker-Planck equation is a very general equation
in physics; it describes the evolution of a distribution function due to any phe-
nomenon that in some approximate sense can be considered Markovian. A well
known example is Brownian motion. The Fokker-Planck equation is also used
for describing the collisional evolution of gravitational N -body systems (i.e., glob-
ular clusters), while the first-order diffusion coefficient Ai is used to describe the
orbital decay of a massive body due to dynamical friction (cf. Chapter 16). Hence,
once more we see the strong similarity between gravitational N -body systems and
plasmas.
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CHAPTER 28

Vlasov Equation & Two-Fluid Model

In Chapter 25 we have seen that the two-body collision frequency of a plasma is
much smaller than the plasma frequency (by roughly a factor Λ). Hence, there are
plasma phenomena that have a characteristic time scale that is much shorter than
the two-body relaxation time. For such phenomena, collisions can be ignored, and
we may consider the plasma as being collisionless.

And as we have seen in the previous chapter, the equation that governs the dynamics
of a collisionless plasma is the Vlasov equation.

∂f

∂t
+ ~v · ∂f

∂~x
+
~F

m
· ∂f
∂~v

= 0

with
~F = n

∫
d~x2d~v2 ~F12f

(1)(~x2, ~v2, t)

the smooth force acting on particle 1 due to the long-range interactions of all other
particles (effectively only those within the Debye length). This equation derives from
the BBGKY hierarchy upon neglecting the two-particle correlation function, g(1, 2),
which, as we have seen in Chapter 6, is equivalent to assuming that the system is
collisionless.

An important application of the Vlasov equation is the so-called two-fluid model
of plasma physics, in which the plasma is regarded as an inter-penetrating mixture
of a negatively charged fluid of electrons, and a positively charged fluid of ions. In
that case,

f(~x,~v, t) = fe(~x,~v, t) + fi(~x,~v, t)

where the subscripts ‘e’ and ‘i’ refer to electrons and ions, respectively. Since the
Vlasov equation is linear, both fe and fi obey the Vlasov equation. If the force ~F
is purely electromagnetic (i.e., we can ignore the gravitational force), then we have
that

∂fa
∂t

+ ~v · ∂fa
∂~x

+
qa
m

(
~E +

~v

c
× ~B

)
· ∂fa
∂~v

= 0
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where ‘a’ is either ‘e’ or ‘i’.

Rather than solving the Vlasov equation, we follow the same approach as with our
neutral fluids, and our collisionless fluids, and solve instead the moment equations,
by multiplying the Vlasov equation with χ(~v) and integrating over all of velocity
(momentum) space (cf. Chapter 7).

For χ = 1 this yields the continuity equation

∂na

∂t
+∇ · (na ~ua) = 0

while χ = ma~va yields the momentum equations

ma na

[
∂~ua
dt

+ (~ua · ∇) ~ua

]
= −∇Pa + qana

(
~E +

~ua
c

× ~B

)

Note that the continuity equation is exactly the same as for a neutral fluid or a colli-
sionless fluid, while the momentum equations are the same as the Euler equations
for a neutral, inviscid fluid or the Jeans equations for a collisionless fluid,
except that the gravitational force is now replaced by the electromagnetic Lorentz
force.

We emphasize that we have ignored viscosity here, something we will continue
to do throughout our discussion of plasma physics. More accurately, the above
momentum equations should be the Navier-Stokes equations, i.e., there should
be an additional term µ[∇2~ua +

1
3
∇(∇ · ~ua)] on the rhs. As we are mainly concerned

with astrophysical flows, for which the Reynolds number is large, ignoring viscosity
when discussing astrophysical plasmas is a reasonable thing to do.

As for neutral fluids, we need to complement these moment equations with an equa-
tion of state (EoS) in order to close the equations. Without going into detail, in most
cases the EoS of a plasma can be taken to have one of the following three forms:

Pa = 0 (”cold plasma”)
Pa = na kB Ta (”ideal plasma”)
Pa = Cnγ

a (”adiabatic processes”)

A ‘cold plasma’ is a plasma in which the random motions of the particles are not
important.
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NOTE: in the presence of strong magnetic fields, the thermodynamic properties of
the plasma can be very different in directions parallel and perpendicular to ~B; in
those cases the pressure cannot be fully described by a scalar, but requires a stress-
tensor-equivalent instead. We will not consider such situations here, but it will be
discussed in the next Chapter on MHD.

Since the momentum equations for our plasma contain the electric and magnetic
fields, we need to complement the moment equations and EoS with the Maxwell
equations

∇ · ~E = 4π(ni − ne) e

∇ · ~B = 0

∇× ~E = −1

c

∂ ~B

∂t

∇× ~B =
4π

c
(ni~ui − ne~ue) e+

1

c

∂ ~E

∂t

Upon inspection, this complete set of 18 equations (8 Maxwell eqs, 2× 3 momentum
equations, 2 continuity equations, and 2 equations of state) describes the evolution

of a total of 16 scalar quantitie: ~E (3), ~B (3), ~ui (3), ~ue (3), ni, ne, Pi, and Pe.
This set of equations constitutes the two-fluid model of plasma physics. Note that
this model derives from the Vlasov equation, and can therefore only be used to
describe plasma phenomena in which collisions can be neglected.

As an example of an application of the two-fluid model, consider electro-magnetic
oscillations in a plasma.

Let’s assume the plasma to be ‘cold’ (i.e., Pe = Pi = 0), and consider perturbations
in a uniform, homogeneous plasma. The perturbation analysis treatment is exactly
analogous to that of accoustic waves in Chapter 17: First, apply small perturbations
to the dynamical quantities (i.e., n0 → n0+n1, ~E0 → ~E0+ ~E1, etc, where subscripts
‘0’ refer to the unperturbed equilibrium solution. In what follows, we assume the
plasma to be unmagnetized, i.e., ~B0 = 0. Next, linearize the equations, which implies
that we ignore all higher-order terms. For the momentum equations this yields

me n0
∂~v1
∂t

= −e n0
~E1
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Note that the magnetic force ~v1× ~B1 is second-order in the perturbed quantities and
therefore neglected. For the Maxwell equations we obtain that

∇× ~B1 = −4π

c
n0 e~v1 +

1

c

∂ ~E1

∂t

and

∇× ~E1 = −1

c

∂ ~B1

∂t
.

These three equations suffice to solve for the evolution of ~v1, ~E1 and ~B1. In particular,
upon combining these equations, and assuming all perturbations to be of the form
EXP[−i(~k ·~x−ωt)], which implies that ∂/∂t → −iω and ∇ → −i~k, one obtains, after
some algebra, the dispersion relation ω(~k). In the case of our two-fluid model,
this dispersion relation has the form

~k × (~k × ~E1) = −ω
2

c2

(
1− ω2

p

ω2

)
~E1

Here

ωp =

(
4π n0 e

2

me

)1/2

is the plasma frequency in the undisturbed plasma. As a rule of thumb, it is useful
to remember that

fp =
ωp

2π
≃ 104Hz

( ne

cm−3

)1/2

Hence, in the ISM, which has densities of the order of ne ∼ 0.01 − 1.0 cm−3, the
plasma frequency is roughly 103 to 104Hz.

If, without loss of generality, we choose our z-axis to be in the direction of the wave-
vector, such that ~k = k~ez, then the dispersion relation takes the following matrix
form 


ω2 − ω2

p − k2c2 0 0
0 ω2 − ω2

p − k2c2 0
0 0 ω2 − ω2

p





E1,x

E1,y

E1,z


 =



0
0
0




This dispersion relation corresponds to two physically distinct types of wave modes:

Plasma Oscillations:

These are oscillation modes for which

E1x = E1y = 0 , ω2 = ω2
p
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where the z-direction is taken to be along ~k. Hence, since the group velocity
vg = ∂ω/∂k = 0 we see that these correspond to non-propagating, longitudi-
nal oscillations with a frequency equal to the plasma frequency. These are called
plasma waves, or Langmuir waves. Physically, they are waves in which pertur-
bations in ~E, cause a separation between electrons and ions, which results in an
electrostatic restoring force.

Electromagnetic waves:

These are oscillation modes for which

E1z = 0 , ω2 = ω2
p + k2c2

where as before the z-direction is taken to be along ~k. Hence, these are transverse
waves. In fact, these are simply electromagnetic waves, but modified by the plasma.
Note that if the plasma density approaches zero, ωp ∝ n

1/2
e → 0, and the dispersion

relation becomes that of light in vacuum (as it should be). The group velocity (i.e.,
the velocity with which information propagates) is given by

vg ≡
∂ω

∂k
= c

√
1− ω2

p

ω2

which is less than the speed of light, c. For comparison, the phase velocity is given
by

vph ≡ ω

k
=

c√
1− ω2

p

ω2

which is larger than c. Note, though, that this does not violate special relativity, as
no physical signal is travelling at this speed (i.e., it does not carry any information).

• If ω ≫ ωp, we have that ω2 = k2c2 which is the usual dispersion relation for
EM waves in a vacuum, and vg = c. The frequency of these EM waves is too
high for the plasma to respond, and plasma effects are negligible. When ω ↓ ωp

then the EM waves slow down, and the phase velocity increases. The refractive
index of a medium is defined as n ≡ c/vph = ck/ω, which for a plasma is given by
n2 = 1− (ωp/ω)

2. Hence, when ω ↓ ωp we have that n ↓ 0.

• If ω < ωp, then k and vg become imaginary. This indicates that the EM waves
simply cannot penetrate the plasma; they are reflected back. The reason is that the
plasma can counteract the oscillations in the EM field at a rate that is faster, thereby
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shorting the fluctuations, and thus the EM wave. This explains why low-frequency
radio signals can be reflected from the ionispheric plasma, and why cyclotron radia-
tion cannot travel through the plasma that permeates the Universe (unless it derives
from very strong magnetic fields, in which case the frequency can be larger than the
plasma frequency).

In the analysis above we have assumed that the plasma is ‘cold’, which implies that
we could ignore its thermal pressure (i.e., Pa 6= 0). We now revisit this analysis, this
time assuming that the pressure is non-negligble (i.e., a ‘warm’ plasma) and obeys
the adiabatic relation. Linearizing the Euler equation for the electron fluid yields

me n0
∂~v1
∂t

= −e n0
~E1 −

γP0

n0
∇n1

which differs from the one for the cold plasma in that it contains an additional
pressure perturbation term. Since our Euler equation now depends on n1, we need
to complement it with the perturbed continuity equation, which reads

∂n1

∂t
+ n1∇ · ~v1 = 0

Using the first of the Maxwell equations, we have that

∇ · ~E1 = −4πen1

Thus, we have three equations for the three perturbed quantities, n1, ~v1, and ~E1.
As before, assuming all perturbations to be of the form EXP[−i(~k · ~x − ωt)], the
combination of these three equations, applied to longitudinal waves, yields the famous
dispersion relation for Langmuir waves:

ω2 = ω2
p + k2γ

P0

men0
= ω2

p + γk2
kBTe
me

= ω2
p + 3k2〈v2e 〉

Here, in the second step, we have assumed that P0 = n0kBTe, while in the third step
we have used the fact that the electrons only move in one direction (that of ~k) to
set γ = 3. Note that this is only valid for adiabatic compression, which will be a
good approximation as long as the typical electron only travels a small fraction of
wavelength in one wave period; Hence, the above dispersion relation is only valid as
long as 〈ve〉ω−1 ≪ λ, i.e., ω/k ≫ 〈ve〉.
Using the dispersion relation for Langmuir waves, we see that the group velocity is

vg ≡
∂ω

∂k
=

√
3〈ve〉

√
1− ω2

p

ω2
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which is equivalent to that for the EM waves in a cold plasma, but with c replaced
by

√
3〈ve〉. Contrary to the dispersion relation for Langmuir waves in a cold plasma,

we now have a non-zero group velocity (i.e., the Langmuir waves in a warm plasma
are travelling) with a dependence on k (i.e., a warm plasma is a dispersive medium
to Langmuir waves).

The above analysis is based on a perturbation analysis of the two-fluid model, which
is based on moment equations of the Vlasov equation. Landau performed a more
thorough analysis, by actually perturbing the Vlasov equation itself. He found
that the Langmuir waves will damp, a process known as Landau damping.

This damping may come as a surprise (as it did to Landau, when he first derived
this result). After all, damping is typically associated with dissipation, and hence
requires either radiation, or collisions that convert wave energy into random, thermal
energy. But the Vlasov equation includes neither radiation nor collisions. So where
does this damping come from? Without going through a rigorous derivation, which
is somewhat tedious, involving nasty complex contour integrals, we merely sketch
how Landau damping arises from the energy exchange between a Langmuir wave
with phase velocity vph ≡ ω/k and particles in the plasma with velocities approxi-
mately equal to vph; these particles can interact strongly with the wave (similar to
how particles that are in near-resonance with a perturber can exchange energy with
it). Particles that have a velocity v <∼ vph will be accelerated (i.e., gaining energy)
by the electric field of the Langmuir wave to move with the phase velocity of the
wave. Particles with v >∼ vph, on the other hand, will be decelerated (losing energy).
All in all, the particles have a tendency to synchronize with the wave. An imbalance
between energy gainers and energy losers arises from the fact that the velocity distri-
bution of a plasma is typically a Maxwell-Boltzmann distribution; hence, there will
be slightly more particles with v < vph (energy gainers) than particles with v > vph
(energy losers). Hence, there is a net tranfer of energy from the wave to the particles,
causing the former to damp.

A famous metaphor for Landau damping involves surfing. One can view Langmuir
waves as waves in the ocean, and the particles as surfers trying to catch the wave,
all moving in the same direction. If the surfer is moving on the water surface at a
velocity slightly less than the waves he will eventually be caught and pushed along
by the wave (gaining energy). On the other hand, a surfer moving slightly faster
than a wave will be pushing on the wave as he moves uphill (losing energy to the
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wave). Within this metaphor, it is also clear that if the surfer is not moving at all,
no exchange of energy happens as the wave simply moves the surfer up and down
as it goes by. Also a wind-surfer, who is moving much faster than the wave won’t
interact much with the wave either.

Hence, Landau damping arises from gradients in the distribution function at the
phase velocity of the wave, which can cause a transfer of energy from the wave to
the particles; Landau damping is a prime example of a wave-particle interaction.
As first pointed out by Lynden-Bell, it is similar to violent relaxation for a purely
collisionless, gravitational system, in which the energy in potential fluctuations (i.e.,
oscillations in the gravitational system, for example due to gravitational collapse)
are transferred into random motions, ultimately leading to virialization (relaxation).
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CHAPTER 29

Magnetohydrodynamics

As discussed in the previous chapter, when discussing phenomena in which electrons
and ions respond differently (such as the response of a plasma to electromagnetic
oscillations), the two-fluid model (or Vlasov equation) has to be applied.

When we consider phenomena with length scales much larger than the Debye
length, and time scales much longer than the inverse of the plasma frequency,
charge separation is small, and can typically be neglected. In that case we don’t
need to treat electrons and ions separately. Rather, we treat the plasma as a single
fluid. Note, though, that as we are considering phenomena with longer time scales,
our one-fluid model of plasma physics will have to account for collisions (i.e., we
won’t be able to use the Vlasov equation as our starting point). As we will see, the
main effect of these collisions is to transfer momentum between electrons and ions,
which in turn manifests as an electrical current.

A formal derivation of the MHD equation is a formidable task. We instead follow
a more heuristic approach in what follows. In the previous chapter we derived a
two-fluid model by taking moment equations of the Vlasov equations for the electron
and ion species. We follow the same approach here. However, since in MHD we
cannot ignore collisions, we have to supplement the Vlasov equation with a collision
term:

∂fa
∂t

+ ~v · ∂fa
∂~x

+
qa
m

(
~E +

~v

c
× ~B

)
· ∂fa
∂~v

=

(
∂fa
∂t

)

coll

where as before ‘a’ refers to a species, either ‘e’ or ‘i’. As we will see, we can obtain
the necessary insight to develop our one-fluid model, without regard of what this
collision term looks like in detail.
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By integrating the above ‘Boltzmann-like’ equation over velocity space, we obtain
the continuity equation

∂na

∂t
+∇ · (na ~ua) = 0

where we have used that

∫
d~v

(
∂fa
∂t

)

coll

= 0

This term represents the change in the number of particles of species ‘a’ in a small
volume of configuration space due to collisions. To good approximation this is zero,
which follows from the fact that while Coulomb interactions can cause large changes
in momentum (when b < b90), they do not cause much change in the positions of the
particles. Hence, the collision term leaves the continuity equation unaltered.

For the momentum equation, we multiply the above ‘Boltzmann-like’ equation with
velocity and again integrate over velocity space. If we once again ignore viscosity,
this yields exactly the same equation as for the two-fluid model discussed in the
previous chapter, but with one additional, collisional term:

ma na

[
∂~ua
dt

+ (~ua · ∇) ~ua

]
= −∇Pa + qana

(
~E +

~ua
c

× ~B

)
+ ~Ca

where

~Ca = ma

∫
d~v ~v

(
∂fa
∂t

)

coll

This term represents the change in the momentum of species ‘a’ at position ~x due
to Coulomb interactions. Note that a given species cannot change its momentum
through collisions with members of its own species (i.e., the center of mass of two

electrons is not changed after they have collided with each other). Hence, ~Ce repre-
sents the change in the momentum of the electrons due to collisions with the ions,
and ~Ci represents the change in the momentum of the ions due to collisions with
the electrons. And, since the total momentum is a conserved quantity, we have that
~Ce = −~Ci.
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Since in MHD we treat the plasma as a single fluid, we now define the relevant
quanties:

total mass density ρ ≡ me ne +mi ni

total charge density ρc ≡ qe ne + qi ni = e(ni − ne)

com fluid velocity ~u ≡ 1

ρ
(mi ni ~ui +me ne ~ue)

current density ~J = qe ne ~ue + qi ni ~ui

total pressure P = Pe + Pi

By multiplying the continuity equations for the electrons with me, and adding it
to the continuity equation for the ions multiplied by mi, one obtains the MHD
continuity equation,

∂ρ

∂t
+∇ · (ρ~u) = 0

This equation, which expresses mass conservation, is identical to the continuity
equation for a neutral fluid.

In addition, we also have charge conservation which is given by

∂ρc
∂t

+∇ · ~J = 0

For themomentum equation, it is common to assume that ∂na/∂t and ua are small
compared to other terms. This allows one to neglect terms that contain products of
these small quantities, which in turn allows one to add the momentum equations for
electrons and ions, yielding:

ρ
∂~u

∂t
= −∇P + ρc ~E +

1

c
~J × ~B
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In general, in MHD one assumes that ne ≃ ni, which implies that the charge density,
ρc, is typically (very) small. We adopt that assumption here as well, which implies

that the ρc ~E term in the momentum equations vanishes and that we no longer need
to consider the charge conservation equation.

In MHD, the energy equation is the same as for a neutral fluid, except that there is
an additional term to describe Ohmic dissipation (aka Ohmic loss). In the absence
of radiation, viscosity and conduction, we therefore have

ρ
dε

dt
= −P ∇ · ~u− J2

σ

Here J2 = ~J · ~J and σ is the electric conductivity. The Ohmic dissipation term
describes how collisions convert magnetic energy into thermal energy. Hence, it is
similar in nature to the viscous dissipation rate, V, which describes how collisions
manifest as viscosity in converting bulk motion (shear) in thermal energy.

Since both the momentum and energy equations contain the current density, we
need to complement them with an equation for the time-evolution of ~J . This rela-
tion, called the generalized Ohm’s law, derives from multiplying the momentum
equations for the individual species by qa/ma, adding the versions for the electrons
and ions, while once again ignoring terms that contain products of small quanties
(i.e., ∂na/∂t and ua). Using that ~Ce = −~Ci, that ni ≈ ne, that Pe ≈ Pi ≈ P/2, and
that m−1

i ≪ m−1
e , one can show that

memi

ρe2
∂ ~J

∂t
=

mi

2ρe
∇P + ~E +

1

c
~u× ~B − mi

ρec
~J × ~B +

mi

ρe
~Ci

(for a derivation see the excellent textbook Introduction to Plasma Theory by D.R.
Nicholson).

The above generalized Ohm’s law is rather complicated. But fortunately, in most
circumstances certain terms are significantly smaller than others and can thus be
ignored. Before discussing which terms can be discarded, though, we first give a
heuristic derivation of the collision term ~Ci.

278



As already mentioned above, ~Ce = −~Ci describes the transfer of momentum from
the electrons to the ions (and vice-versa). Let’s consider the strong interactions,
i.e., those with an impact parameter b ≃ b90. Since the electron basically loses all
its forward momentum in such a collision, we have that the electron fluid loses an
average momentum me(~ue − ~ui) to the ion fluid per strong electron-ion encounter.
Hence, the rate of momentum transfer is approximately given by

~Ce = −me ne νL (~ue − ~ui)

where νL is the collision frequency for strong collisions. Since the current density is
~J = qe ne ~ue+ qi ni ~ui ≃ ne e (~ui−~ue) , where we have used that ni ≃ ne, we can write
this as

~Ce = +ne e η ~J

where
η =

me νL
ne e2

This parameter is called the electric resistivity, and is the inverse of the electric
conductivity, σ. Substituting the expression for νL derived in Chapter 27 (and
using v0 ∼ ve ∼ (3kBT/me)

1/2), we find that

η =
4π

3
√
3

m
1/2
e e2

(kB T )3/2
≈ 2.4

m
1/2
e e2

(kB T )3/2

Using a much more rigorous derivation of the electrical resistivity, accounting for the
whole range of impact parameters, Spitzer & Härm (1953) obtain (assuming that all
ions have Z = 1)

η = 1.69 lnΛ
m

1/2
e e2

(kB T )3/2

in reasonable agreement with our crude estimate.

Using the above expression for ~Ce, the collision term in the generalized Ohm’s law
reduces to ~J/σ. Typically, especially when considering low frequency phenomena,

which we tend to do with MHD, the ∂ ~J/∂t term is small compared to this collision
term and can thus be ignored. In addition, for a sufficiently ‘cold’ plasma the ∇P
terms can also be neglected. Finally, since currents are typically small the ~J × ~B
term, which describes theHall effect, is typically small compared to ~u/c× ~B. Hence,
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we can simplify the generalized Ohm’s law to read

~J = σ

(
~E +

~u

c
× ~B

)

This equation is usually referred to as Ohm’s law.

The MHD equations derived thus far (mass continuity, charge continuity, momentum
conservation and Ohm’s law) need to be complemented with the Maxwell equa-
tions. Fortunately, these can also be simplified. Let’s start with Ampère’s circuital
law

∇× ~B =
4π

c
~J +

1

c

∂ ~E

∂t

It can be shown (see §3.6 in The Physics of Fluids and Plasma by A.R. Choudhuri)
that [

1

c

∂ ~E

∂t

]
/
[
∇× ~B

]
∼ v2

c2

Hence, in the non-relativistic regime considered here, the displacement current is
negligble, which implies that ~J = c

4π
∇× ~B. Combined with Ohm’s law, we therefore

have that
~E =

c

4πσ
(∇× ~B)− ~u

c
× ~B

Hence, we see that, in MHD, the electric field does not have to be considered an
independent variable; instead, it can be obtained from ~u and ~B.

Plugging the above expression for ~E in Faraday’s law of induction

∇× ~E = −1

c

∂ ~B

∂t

which is another Maxwell equation, yields that

∂ ~B

∂t
= − c2

4πσ
∇× (∇× ~B) +∇× (~u× ~B)
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Using the vector identity ∇× (∇× ~B) = ∇(∇· ~B)−∇2 ~B (see Appendix A), and the

fact that ∇· ~B = 0 (yet another Maxwell equation), we finally obtain the induction
equation

∂ ~B

∂t
= ∇× (~u× ~B) + λ∇2 ~B

where

λ ≡ c2

4πσ

is called the magnetic diffusivity. As is evident from the induction equation, it
describes the rate at which the magnetic field diffuses due to collisions in the plasma.

Before we finally summarize our set of MHD equations, we apply one final modifica-
tion by expanding the Lorentz force term, ~J × ~B, in the moment equations. Using
Ampère’s circuital law without the displacement current, we have that

1

c
( ~J × ~B) =

1

4π
(∇× ~B)× ~B =

1

4π

[
( ~B · ∇) ~B −∇

(
B2

2

)]

where the last step is based on a standard vector identity (see Appendix A).
Next, using that

(
~B · ∇

)
~B = Bj

∂Bi

∂xj
=
∂BiBj

∂xj
− Bi

∂Bj

∂xj
=
∂BiBj

∂xj

where the last step follows from the fact that ∇ · ~B = 0, we can now write the
momentum equations in index form as

ρ
∂ui
∂t

= −∂P
∂xi

− ∂

∂xi

(
B2

8π

)
+

∂

∂xj

(
BiBj

4π

)
= +

∂

∂xj
[σij −Mij ]

Here σij = −Pδij is the stress tensor (in the absence of viscosity) and

Mij ≡
B2

8π
δij −

BiBj

4π

is the magnetic stress tensor. Its’ diagonal elements represent the magnetic
pressure, while its off-diagonal terms arise from magnetic tension.
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The following table summarizes the full set of resistive MHD equations. These
are valid to describe low-frequency plasma phenomena for a relatively cold plasma in
which ne ≃ ni, such that the charge density can be neglected. Note also that conduc-
tion, viscosity, radiation and gravity are all neglected (the corresponding terms are
trivially added). A fluid that obeys these MHD equations is called a magnetofluid.

Continuity Eq.
dρ

dt
= −ρ∇ · ~u

Momentum Eqs. ρ
d~u

dt
= −∇P +

1

c
~J × ~B

Energy Eq. ρ
dε

dt
= −P ∇ · ~u− J2

σ

Ohm’s Law ~J = σ

(
~E +

~u

c
× ~B

)

Induction Eq.
∂ ~B

∂t
= ∇× (~u× ~B) + λ∇2 ~B

Constitutive Eqs. λ =
c2

4πσ
, σ−1 = η ∝ m

1/2
e e2

(kBT )3/2

The equations of resistive MHD

Note that in the momentum equations we have written the Lagrangian derivative
d~u/dt, rather than the Eulerian ∂~u/∂t that we obtained earlier in our derivation.
This is allowed, since we had assumed that both (~ue · ∇)~ue and (~ui · ∇)~ui are small
compared to other terms, which therefore also applies to (~u · ∇)~u.

Note also that although we have written the above set of MHD equations including
the electric field ~E, this is not an independent dynamical quantity. After all, as
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already mentioned above, it follows from ~B and ~u according to

~E =
c

4πσ
∇× ~B − ~u

c
× ~B

In fact, Ohm’s law is not required to close this set of equations as the current density
~J can be computed directly from the magnetic field ~B using Ampère’s circuital law
without displacement current; ∇× ~B = (4π/c) ~J .

Hence, we see that in the end MHD is actually remarkably similar to the hydrody-
namics of neutral fluids. The ‘only’ additions are the magnetic field, which adds an
additional pressure and an (anisotropic) tension, and the Coulomb collisions, which
cause Ohmic dissipation and a diffusion of the magnetic fields. To further strengthen
the similarities with regular fluid hydrodynamics, note that the induction equation
is very similar to the vorticity equation

∂ ~w

∂t
= ∇× (~u× ~ω)−∇×

(∇P
ρ

)
+ ν∇2~ω

(see Chapter 13). Here ~w is the vorticity and ν the kinetic viscosity. Except
for the baroclinic term, which is absent in the induction equation, vorticity and
magnetic field (in the MHD approximation) behave very similar (cf., magnetic field
lines and vortex lines).

Motivated by this similarity, we now define the magnetic Reynolds number

Rm =
U L

λ

with U and L the characteristic velocity and length scales of the plasma flow. Recall
(from Chapter 16), the definition of the Reynolds number R = U L/ν. We thus
merely replaced the kinetic viscosity with the magnetic diffusivity, which is
proportional to the electric resistivitiy (and thus inversely proportional to the
conductivity).

• When Rm ≪ 1, the second term in the induction equation dominates, which
therefore becomes

∂B

∂t
≃ λ∇2 ~B

This is the situation one typically encounters in laboratory plasmas, where U and L
are small. The implication is that, the magnetic field in laboratory plasmas, when
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left to itself, decays away due to magnetic diffusion. This can be understood from
the fact that magnetic fields are directly related to currents, which die away due to
Ohmic dissipation unless one applies a source of voltage.

• When Rm ≫ 1, the first term in the induction equation dominates, which therefore
becomes

∂B

∂t
≃ ∇× (~u× ~B)

This is the situation we typically encounter in astrophysics, where U and L are
large. In the limit of infinite conductivity (i.e., zero electrical resistivity, and thus
zero magnetic diffusivity), the above equation is exact, and we talk of ideal MHD.
Obviously, with infinite conductivity there is also no Ohmic dissipation, and the
energy equation in ideal MHD is therefore identical to that for a neutral fluid. Hence,
for ideal MHD the full, closed set of equations reduces to

Continuity Eq.
dρ

dt
= −ρ∇ · ~u

Momentum Eqs. ρ
d~u

dt
= −∇P +

1

c
~J × ~B

Energy Eq. ρ
dε

dt
= −P ∇ · ~u

Induction Eq.
∂ ~B

∂t
= ∇× (~u× ~B)

Ampère’s law ∇× ~B =
4π

c
~J

The equations of ideal MHD

The reader may wonder what happens to Ohm’s law in the limit where σ → ∞; In
order to assure only finite currents, we need to have that E + ~u/c× ~B = 0, and thus
~E = 1

c
~u × ~B. However, since ~E is not required (is not an independent dynamical

quantity), this is of little relevance.
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An important implication of ideal MHD is that

d

dt

∫

S

~B · d2s = 0

This expresses that the magnetic flux is conserved as it moves with the fluid. This is
known as Alfvén’s theorem of flux freezing. It is the equivalent of Helmholtz’
theorem that dΓ/dt = 0 for an inviscid fluid (with Γ the circulation). An implication
is that, in the case of ideal MHD, two fluid elements that are connected by a magnetic
flux line, will remain connected by that same magnetic flux line.

(Ideal) MHD is used to describe many astrophysical processes, from the magnetic
field topology of the Sun, to angular momentum transfer in accretion disks, and from
the formation of jets in accretion disks, to the magnetic breaking during star forma-
tion. One can also apply linear perturbation theory to the ideal MHD equations, to
examine what happens to a magnetofluid if it is perturbed. If one ignores viscosity,
heat conduction, and electric resistivity (i.e., we are in the ideal MHD regime), then
the resulting dispersion relation is given by

ω2~u1 = (c2s + u2A)(
~k · ~u1)~k + ~uA · ~k

[
(~uA · ~k)~u1 − (~uA · ~u1)~k − (~k · ~u1)~uA

]

Here ~uA is a characteristic velocity, called the Alfvén velocity, given by

~uA =
~B0√
4πρ0

The above dispersion relation, ω(~k), for given sound speed, cs, and Alvén velocity,
~uA, of the magnetofluid, is the basic dispersion relation for hydromagnetic waves.
Although it has a complicated looking form, there is one solution that is rather
simple. It corresponds to a purely tranverse wave in which the displacement, and
therefore the velocity perturbation ~u1(~x, t), is perpendicular to both the wave vector
~k and the magnetic field (which is in the direction of ~uA). Under those conditions
the dispersion relation reduces to

ω2 = (~uA · ~k)2

These waves, called Alfvén waves, have a group velocity vg = ∂ω/∂~k = ~uA and are
moving, with that velocity, along the magnetic field lines.
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Any wave is driven by some restoring force. In the case of accoustic waves these are
pressure gradients, while the restoring force in the case of the plasma oscillations
(Langmuir waves) discussed in the previous chapter arise from the electrical field
that results from a separation of electrons and ions. In the case of perturbations to a
magnetofluid, there are two restoring forces that play a role; pressure gradients and
magnetic tension. In the case of Alfvèn waves the restoring force is purely the tension
in the magnetic field lines (pressure plays no role). Hence, Alfvén waves are similar
to the waves in a rope or string, which are also transverse waves. The group velocity
of these waves is proportional to

√
tension/density. Since the magnetic tension is

given by B2/4π, we see that the Alfvén velocity has exactly the same form.

Note that in the case of ideal MHD the resistivity is zero, and there is thus no
diffusion or dissipation of the magnetic fields, which instead are ‘frozen’ into the
fluid. In the case of resistive MHD (i.e., if the magnetic resistivity is non-zero) the
Alfvén waves will experience damping, thereby transferring the energy stored in the
magnetic wave to random, thermal energy.

Alfvèn waves, though, are not the only solution to the dispersion relation given
above. There are two additional solutions, corresponding to fast mode and slow
mode waves. Contrary to the Alfvèn waves, the restoring force for these modes is
a combination of magnetic tension and pressure (i.e., they are mixtures of acoustic
and magnetic waves). Without going into any detail, we only mention in closing
that any disturbance of a magnetofluid can be represented as a superposition of the
Alfvèn, fast and slow modes.
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Appendices
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familiar with this. An exception are Appendices H to K, which provide details that
are NOT considered part of this course’s curriculum. They are included to provide
background information for those readers that want to know a bit more.
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Appendix A

Vector Calculus

Vector: ~A = (a1, a2, a3) = a1î+ a2ĵ + a3k̂

Amplitude of vector: | ~A| =
√
a21 + a22 + a23

Unit vector: | ~A| = 1

Basis: In the above example, the unit vectors î, ĵ and k̂ form a vector basis.

Any 3 vectors ~A, ~B and ~C can form a vector basis

as long as det( ~A, ~B, ~C) 6= 0.

Determinant: det( ~A, ~B) =

∣∣∣∣
a1 a2
b1 b2

∣∣∣∣ = a1b2 − a2b1

det( ~A, ~B, ~C) =

∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= a1

∣∣∣∣
b2 b3
c2 c3

∣∣∣∣ + a2

∣∣∣∣
b3 b1
c3 c1

∣∣∣∣+ a3

∣∣∣∣
b1 b2
c1 c2

∣∣∣∣

Geometrically: det( ~A, ~B) = ± area of parallelogram

det( ~A, ~B, ~C) = ± volume of parallelepiped

Multiplication by scalar: α ~A = (αa1, αa2, αa3)

|α ~A| = |α| | ~A|

Summation of vectors: ~A+ ~B = ~B + ~A = (a1 + b1, a2 + b2, a3 + b3)
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Einstein Summation Convention: ai bi =
∑

i aibi = a1b1 + a2b2 + a3b3 = ~a ·~b
∂Ai/∂xi = ∂A1/∂x1 + ∂A2/∂x2 + ∂A3/∂x3 = ∇ · ~A
Aii = A11 + A22 + A33 = Tr ~A (trace of ~A)

Dot product (aka scalar product): ~A · ~B = ai bi = | ~A| | ~B| cos θ
~A · ~B = ~B · ~A

Useful for:

• computing angle between two vectors: cos θ = ~A · ~B/(| ~A| | ~B|)

• check orthogonality: two vectors are orthogonal if ~A · ~B = 0

• compute projection of ~B in direction of ~A, which is given by ~A · ~B/| ~A|

Cross Product (aka vector product): ~A× ~B =

∣∣∣∣∣∣

î ĵ k̂
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
= εijkai bj êk

| ~A× ~B| = | ~A| | ~B| sin θ = det( ~A, ~B)

NOTE: εijk is called the Levi-Civita tensor, which is described in Appendix G.

In addition to the dot product and cross product, there is a third vector product
that one occasionally encounters in dynamics;

Tensor product: ~A⊗ ~B = AB (AB)ij = aibj
~A⊗ ~B 6= ~B ⊗ ~A

The tensor product AB is a tensor of rank two and is called a dyad. It is best to
define a dyad by what it does: it transforms a vector ~C into another vector with the
direction of ~A according to the rule

( ~A⊗ ~B) ~C = ~A ( ~B · ~C)

A dyadic is a linear combination of dyads (i.e., 4(~a⊗~b+2(~c⊗ ~d)−7(~e⊗ ~f)). Dyadics
are important because each tensor of rank two can be written as a dyadic!.
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~A · ~B = ~B · ~A ~A× ~B = − ~B × ~A

(α ~A) · ~B = α( ~A · ~B) = ~A · (α~B) (α ~A)× ~B = α( ~A× ~B) = ~A× (α~B)

~A · ( ~B + ~C) = ~A · ~B + ~A · ~C ~A× ( ~B + ~C) = ~A× ~B + ~A× ~C

~A · ~B = 0 → ~A ⊥ ~B ~A× ~B = 0 → ~A ‖ ~B

~A · ~A = | ~A|2 ~A× ~A = 0

Triple Scalar Product: ~A · ( ~B × ~C) = det( ~A, ~B, ~C) = εijkai bj ck
~A · ( ~B × ~C) = 0 → ~A, ~B, ~C are coplanar
~A · ( ~B × ~C) = ~B · ( ~C × ~A) = ~C · ( ~A× ~B)

Triple Vector Product: ~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B) ~C

as is clear from above, ~A× ( ~B × ~C) lies in plane of ~B and ~C.

Useful to remember: ( ~A× ~B) · ( ~C × ~D) = ( ~A · ~C) ( ~B · ~D)− ( ~A · ~D) ( ~B · ~C)
( ~A× ~B)× ( ~C × ~D) =

[
~A · ( ~B × ~D)

]
~C −

[
~A · ( ~B × ~C)

]
~D

Gradient Operator: ∇ = ~∇ =
(

∂
∂x
, ∂
∂y
, ∂
∂z

)

This vector operator is sometimes called the nabla or del operator.

Laplacian operator: ∇2 = ∇ · ∇ = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2

This is a scalar operator.

Differential: f = f(x, y, z) → df = ∂f
∂x

dx+ ∂f
∂y

dy + ∂f
∂z

dz

Chain Rule: If x = x(t), y = y(t) and z = z(t) then df
dt

= ∂f
∂x

dx
dt

+ ∂f
∂y

dy
dt

+ ∂f
∂z

dz
dt

If x = x(s, t), y = y(s, t) and z = z(s, t) then ∂f
∂s

= ∂f
∂x

∂x
∂s

+ ∂f
∂y

∂y
∂s

+ ∂f
∂z

∂z
∂s
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Gradient Vector: ∇f = gradf =
(

∂f
∂x
, ∂f
∂y
, ∂f
∂z

)

the gradient vector at (x, y, z) is normal to the level surface
through the point (x, y, z).

Directional Derivative: The derivative of f = f(x, y, z) in direction of ~u is
Du f = ∇f · ~u

|~u| = |∇f | cos θ

Vector Field: ~F (~x) = (Fx, Fy, Fz) = Fxî+ Fy ĵ + Fzk̂
where Fx = Fx(x, y, z), Fy = Fy(x, y, z), and Fz = Fz(x, y, z).

Divergence of Vector Field: div ~F = ∇ · ~F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z

A vector field for which ∇ · ~F = 0 is called solenoidal or divergence-free.

Curl of Vector Field: curl ~F = ∇× ~F =

∣∣∣∣∣∣

î ĵ k̂
∂/∂x ∂/∂y ∂/∂z
Fx Fy Fz

∣∣∣∣∣∣
A vector field for which ∇× ~F = 0 is called irrotational or curl-free.

Laplacian of Vector Field: ∇2 ~F = (∇ · ∇)~F = ∇(∇ · ~F )−∇× (∇× ~F )

Note that ∇2 ~F 6= ∇(∇ · ~F ): do not make this mistake.

Let S(~x) and T (~x) be scalar fields, and let ~A(~x) and ~B(~x) be vector fields:

∇S = gradS = vector ∇2S = ∇ · (∇S) = scalar

∇ · ~A = div ~A = scalar ∇2 ~A = (∇ · ∇) ~A = vector

∇× ~A = curl ~A = vector
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∇× (∇S) = 0 curl gradS = 0

∇ · (∇× ~A) = 0 div curl ~A = 0

∇(ST ) = S∇T + T ∇S

∇ · (S ~A) = S(∇ · ~A) + ~A · ∇S

∇× (S ~A) = (∇S)× ~A+ S(∇× ~A)

∇ · ( ~A× ~B) = ~B · (∇× ~A)− ~A · (∇× ~B)

∇× ( ~A× ~B) = ~A(∇ · ~B)− ~B(∇ · ~A) + ( ~B · ∇) ~A− ( ~A · ∇) ~B

∇( ~A · ~B) = ( ~A · ∇) ~B + ( ~B · ∇) ~A + ~A× (∇× ~B) + ~B × (∇× ~A)

~A× (∇× ~A) = 1
2
∇( ~A · ~A)− ( ~A · ∇) ~A

∇× (∇2 ~A) = ∇2(∇× ~A)

292



Appendix B

Conservative Vector Fields

Line Integral of a Conservative Vector Field: Consider a curve γ running from
location ~x0 to ~x1. Let d~l be the directional element of length along γ (i.e., with
direction equal to that of the tangent vector to γ), then, for any scalar field Φ(~x),

∫ ~x1

~x0

∇Φ · d~l =
∫ ~x1

~x0

dΦ = Φ(~x1)− Φ(~x0)

This implies that the line integral is independent of γ, and hence

∮

c

∇Φ · d~l = 0

where c is a closed curve, and the integral is to be performed in the counter-clockwise
direction.

Conservative Vector Fields:
A conservative vector field ~F has the following properties:

• ~F (~x) is a gradient field, which means that there is a scalar field Φ(~x) so that
~F = ∇Φ

• Path independence:
∮
c
~F · d~l = 0

• Irrotational = curl-free: ∇× ~F = 0
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Appendix C

Integral Theorems

Green’s Theorem: Consider a 2D vector field ~F = Fxî+ Fy ĵ

∮
~F · d~l =

∫ ∫

A

∇× ~F · n̂ dA =

∫ ∫

A

|∇ × ~F | dA

∮
~F · n̂ dl =

∫ ∫

A

∇ · ~F dA

NOTE: in the first equation we have used that ∇ × ~F is always pointing in the
direction of the normal n̂.

Gauss’ Divergence Theorem: Consider a 3D vector field ~F = (Fx, Fy, Fz)

If S is a closed surface bounding a region D with normal pointing outwards, and ~F
is a vector field defined and differentiable over all of D, then

∫ ∫

S

~F · d~S =

∫ ∫ ∫

D

∇ · ~F dV

Stokes’ Curl Theorem: Consider a 3D vector field ~F = (Fx, Fy, Fz)

If C is a closed curve, and S is any surface bounded by C, then

∮

c

~F · d~l =
∫ ∫

S

(∇× ~F ) · n̂ dS

NOTE: The curve of the line intergral must have positive orientation, meaning that
d~l points counterclockwise when the normal of the surface points towards the viewer.
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Appendix D

Curvi-Linear Coordinate Systems

In astrophysics, one often works in curvi-linear, rather than Cartesian coordinate
systems. The two most often encountered examples are the cylindrical (R, φ, z)
and spherical (r, θ, φ) coordinate systems.

In this chapter we describe how to handle vector calculus in non-Cartesian coordi-
nate systems (Euclidean spaces only). After giving the ‘rules’ for arbitrary coordinate
systems, we apply them to cylindrical and spherical coordinate systems, respectively.

Vector Calculus in an Arbitrary Coordinate System:

Consider a vector ~x = (x, y, z) in Cartesian coordinates. This means that we can
write

~x = x~ex + y ~ey + z ~ez

where ~ex, ~ey and ~ez are the unit directional vectors. Now consider the same vector
~x, but expressed in another general (arbitrary) coordinate system; ~x = (q1, q2, q3).
It is tempting, but terribly wrong, to write that

~x = q1 ~e1 + q2 ~e2 + q3 ~e3

where ~e1, ~e2 and ~e3 are the unit directional vectors in the new (q1, q2, q3)-coordinate
system. In what follows we show how to properly treat such generalized coordinate
systems.

In general, one expresses the distance between (q1, q2, q3) and (q1+dq1, q2+dq2, q3+
dq3) in an arbitrary coordinate system as

ds =
√
hij dqi dqj

Here hij is called the metric tensor. In what follows, we will only consider orthog-
onal coordinate systems for which hij = 0 if i 6= j, so that ds2 = h2i dq

2
i (Einstein

summation convention) with hi =
√
hii.

An example of an orthogonal coordinate system are the Cartesian coordinates, for
which hij = δij . After all, the distance between two points separated by the infinites-
imal displacement vector d~x = (dx, dy, dz) is ds2 = |d~x|2 = dx2 + dy2 + dz2.
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The coordinates (x, y, z) and (q1, q2, q3) are related to each other via the transfor-
mation relations

x = x(q1, q2, q3)

y = y(q1, q2, q3)

z = z(q1, q2, q3)

and the corresponding inverse relations

q1 = q1(x, y, z)

q2 = q2(x, y, z)

q3 = q3(x, y, z)

Hence, we have that the differential vector is:

d~x =
∂~x

∂q1
dq1 +

∂~x

∂q2
dq2 +

∂~x

∂q3
dq3

where
∂~x

∂qi
=

∂

∂qi
(x, y, z)

The unit directional vectors are:

~ei =
∂~x/∂qi
|∂~x/∂qi|

which allows us to rewrite the expression for the differential vector as

d~x =

∣∣∣∣
∂~x

∂q1

∣∣∣∣ dq1 ~e1 +
∣∣∣∣
∂~x

∂q2

∣∣∣∣ dq2 ~e2 +
∣∣∣∣
∂~x

∂q3

∣∣∣∣ dq3 ~e3

and thus

|d~x|2 =
∣∣∣∣
∂~x

∂qi

∣∣∣∣
2

dq2i

(Einstein summation convention). Using the definition of the metric, according to
which |d~x|2 = h2idq

2
i we thus infer that

hi =

∣∣∣∣
∂~x

∂qi

∣∣∣∣
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Using this expression for the metric allows us to write the unit directional vectors
as

~ei =
1

hi

∂~x

∂qi

and the differential vector in the compact form as

d~x = hi dqi ~ei

From the latter we also have that the infinitesimal volume element for a general
coordinate system is given by

d3~x = |h1 h2 h3| dq1 dq2 dq3

Note that the absolute values are needed to assure that d3~x is positive.
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Now consider a vector ~A. In the Cartesian basis C = {~ex, ~ey, ~ez} we have that

[ ~A]C = Ax ~ex + Ay ~ey + Az ~ez

In the basis B = {~e1, ~e2, ~e3}, corresponding to our generalized coordinate system,
we instead have that

[ ~A]B = A1 ~e1 + A2 ~e2 + A3 ~e3

We can rewrite the above as

[ ~A]B = A1




e11
e12
e13


 + A2




e21
e22
e23


 + A3




e31
e32
e33


 =




A1e11 + A2e21 + A3e31
A2e12 + A2e22 + A3e32
A3e13 + A2e23 + A3e33




and thus

[ ~A]B =




e11 e21 e31
e12 e22 e32
e13 e23 e33






A1

A2

A3


 ≡ T




A1

A2

A3




Using similar logic, one can write

[ ~A]C =




ex1 ey1 ez1
ex2 ey2 ez2
ex3 ey3 ez3






Ax

Ay

Az


 =




1 0 0
0 1 0
0 0 1






Ax

Ay

Az


 = I




Ax

Ay

Az




and since ~A is the same object independent of its basis we have that

I




Ax

Ay

Az


 = T




A1

A2

A3




and thus, we see that the relation between [ ~A]B and [ ~A]C is given by

[ ~A]C = T [ ~A]B , [ ~A]B = T−1 [ ~A]C

For this reason, T is called the transformation of basis matrix. Note that the
columns of T are the unit-direction vectors ~ei, i.e., Tij = eij . Since these are or-
thogonal to each other, the matric T is said to be orthogonal, which implies that
T−1 = TT (the inverse is equal to the transpose), and det(T ) = ±1.

Now we are finally ready to determine how to write our position vector ~x in the new
basis B of our generalized coordinate system. Let’s write ~x = ai ~ei, i.e.

[~x]B =




a1
a2
a3
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We started this chapter by pointing out that it is tempting, but wrong, to set ai = qi
(as for the Cartesian basis). To see this, recall that |~x| =

√
(a1)2 + (a2)2 + (a3)2,

from which it is immediately clear that each ai needs to have the dimension of length.
Hence, when qi is an angle, clearly ai 6= qi. To compute the actual ai you need to
use the transformation of basis matrix as follows:

[~x]B = T−1 [~x]C =




e11 e12 e13
e21 e22 e23
e31 e32 e33






x
y
z


 =




e11x+ e12y + e13z
e21x+ e22y + e23z
e31x+ e32y + e33z




Hence, using our expression for the unit direction vectors, we see that

ai =
1

hi

(
∂xj
∂qi

xj

)
=

1

hi

(
∂~x

∂qi
· ~x
)

Hence, the position vector in the generalized basis B is given by

[~x]B =
∑

i

1

hi

(
∂~x

∂qi
· ~x
)
~ei

and by operating d/dt on [~x]B we find that the corresponding velocity vector in the
B basis is given by

[~v]B =
∑

i

hi q̇i ~ei

with q̇i = dqi/dt. Note that the latter can also be inferred more directly by simply
dividing the expression for the differential vector (d~x = hi qi ~ei) by dt.
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Next we write out the gradient, the divergence, the curl and the Laplacian for our
generalized coordinate system:

The gradient:

∇ψ =
1

hi

∂ψ

∂qi
~ei

The divergence:

∇ · ~A =
1

h1h2h3

[
∂

∂q1
(h2h3A1) +

∂

∂q2
(h3h1A2) +

∂

∂q3
(h1h2A3)

]

The curl (only one component shown):

(∇× ~A)3 =
1

h1h2

[
∂

∂q1
(h2A2)−

∂

∂q2
(h1A1)

]

The Laplacian:

∇2ψ =
1

h1h2h3

[
∂

∂q1

(
h2h3
h1

∂ψ

∂q1

)
+

∂

∂q2

(
h3h1
h2

∂ψ

∂q2

)
+

∂

∂q3

(
h1h2
h3

∂ψ

∂q3

)]

The Convective operator:

( ~A · ∇) ~B =

[
Ai

hi

∂Bj

∂qi
+

Bi

hi hj

(
Aj
∂hj
∂qi

− Ai
∂hi
∂qj

)]
~ej
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Vector Calculus in Cylindrical Coordinates:

For cylindrical coordinates (R, φ, z) we have that

x = R cosφ y = R sin φ z = z

The scale factors of the metric therefore are:

hR = 1 hφ = R hz = 1

and the position vector is ~x = R~eR + z~ez .

Let ~A = AR~eR + Aφ~eφ + Az~ez an arbitrary vector, then

AR = Ax cosφ− Ay sinφ

Aφ = −Ax sinφ+ Ay cosφ

Az = Az

In cylindrical coordinates the velocity vector becomes:

~v = Ṙ~eR +R~̇eR + ż ~ez

= Ṙ~eR +R φ̇~eφ + ż ~ez

The Gradient:

∇ψ =
∂ψ

∂R
~eR +

1

R

∂ψ

∂φ
~eφ +

∂ψ

∂z
~ez

The Divergence:

∇ · ~A =
1

R

∂

∂R
(RAR) +

1

R

∂Aφ

∂φ
+
∂Az

∂z

The Curl:

∇× ~A =

(
1

R

∂Az

∂φ
− ∂Aφ

∂z

)
~eR +

(
∂AR

∂z
− ∂Az

∂R

)
~eφ +

1

R

(
∂

∂R
(RAφ)−

∂AR

∂φ

)
~ez
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The Convective Operator:

( ~A · ∇) ~B =

(
AR

∂BR

∂R
+
Aφ

R

∂BR

∂φ
+ Az

∂BR

∂z
− AφBφ

R

)
~eR

+

(
AR

∂Bφ

∂R
+
Aφ

R

∂Bφ

∂φ
+ Az

∂Bφ

∂z
+
AφBR

R

)
~eφ

+

(
AR

∂Bz

∂R
+
Aφ

R

∂Bz

∂φ
+ Az

∂Bz

∂z

)
~ez

The Laplacian:

scalar : ∇2ψ =
1

R

∂

∂R

(
R
∂ψ

∂R

)
+

1

R2

∂2ψ

∂φ2
+
∂2ψ

∂z2

vector : ∇2 ~F =

(
∇2FR − FR

R2
− 2

R2

∂Fθ

∂θ

)
~eR

+

(
∇2Fθ +

2

R2

∂FR

∂θ
− Fθ

R2

)
~eθ

+
(
∇2Fz

)
~ez
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Vector Calculus in Spherical Coordinates:

For spherical coordinates (r, θ, φ) we have that

x = r sin θ cos φ y = r sin θ sinφ z = r cos θ

The scale factors of the metric therefore are:

hr = 1 hθ = r hφ = r sin θ

and the position vector is ~x = r~er.

Let ~A = Ar~er + Aθ~eθ + Aφ~eφ an arbitrary vector, then

Ar = Ax sin θ cos φ+ Ay sin θ sinφ+ Az cos θ

Aθ = Ax cos θ cos φ+ Ay cos θ sinφ−Az sin θ

Aφ = −Ax sinφ+ Ay cosφ

In spherical coordinates the velocity vector becomes:

~v = ṙ ~er + r ~̇er

= ṙ ~er + r θ̇ ~eθ + r sin θ φ̇~eφ

The Gradient:

∇ψ =
∂ψ

∂r
~er +

1

r

∂ψ

∂θ
~eθ +

1

r sin θ

∂ψ

∂φ
~eφ

The Divergence:

∇ · ~A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ

The Curl:

∇× ~A =
1

r sin θ

[
∂

∂θ
(sin θAφ)−

∂Aθ

∂φ

]
~er+

[
1

r sin θ

∂Ar

∂φ
− 1

r

∂

∂r
(rAφ)

]
~eθ+

1

r

[
∂

∂r
(rAφ)−

∂Ar

∂θ

]
~eφ
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The Convective Operator:

( ~A · ∇) ~B =

(
Ar
∂Br

∂r
+
Aθ

r

∂Br

∂θ
+

Aφ

r sin θ

∂Br

∂φ
− AθBθ + AφBφ

r

)
~er

+

(
Ar
∂Bθ

∂r
+
Aθ

r

∂Bθ

∂θ
+

Aφ

r sin θ

∂Bθ

∂φ
+
AθBr

r
− AφBφcotθ

r

)
~eθ

+

(
Ar
∂Bφ

∂r
+
Aθ

r

∂Bφ

∂θ
+

Aφ

r sin θ

∂Bφ

∂φ
+
AφBr

r
+
AφBθcotθ

r

)
~eφ

The Laplacian:

scalar : ∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂ψ2

vector : ∇2 ~F =

(
∇2Fr −

2Fr

r2
− 2

r2 sin θ

∂(Fθ sin θ)

∂θ
− 2

r2 sin θ

∂Fφ

∂φ

)
~er

+

(
∇2Fθ +

2

r2
∂Fr

∂θ
− Fθ

r2 sin θ
− 2 cos θ

r2 sin2 θ

∂Fφ

∂φ

)
~eθ

+

(
∇2Fφ +

2

r2 sin θ

∂Fr

∂φ
+

2 cos θ

r2 sin2 θ

∂Fθ

∂φ
− Fφ

r2 sin2 θ

)
~eφ
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Appendix E

Legendre Transforms

Consider a function of only two variables, f(x, y), so that the total derivative has
the form

df = u dx+ v dy

where

u =
∂f

∂x
, v =

∂f

∂y

Suppose we want to transition to a new function g = g(u, y). If we define

g = ux− f

then we have that
dg = u dx+ x du− df = x du− v dy

which is exactly the form for a differential of a function g = g(u, y). The quantities
x and v are now functions of the variables u and y given by the relations

x =
∂g

∂u
, v = −∂g

∂y

We say that the Legendre transformation

f → g =
∂f

∂x
x− f

transforms a function f = f(x, y) to a new function g = g(u, y) where u = ∂f
∂x
. The

key here is that no information has been lost. After all, we can always use the inverse
Legendre transform

g → f =
∂g

∂u
u− g

to transform g(u, y) back to the original f(x, y).

In physics, Legendre transformations are used to convert functions of a particular
quantity into a function of its conjugate quantity. The product of two quantities
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that are conjugate has units of energy, or sometime power. Examples are velocity
which is conjugate to momentum, pressure which is conjugate to volume, or temper-
ature which is conjugate to entropy.

As an explicit example encountered in Chapter 3, we can convert from the Lagrangian
L(qi, q̇i, t) to a new function, the Hamiltonian H(qi, pi, t), where pi = ∂L/∂q̇i is
the conjugate variable to q̇i (i.e., the generalized momentum p is conjugate to the
generalized velocity q̇). Using the relations above, we immediately see that

H = q̇i pi −L

which indeed is the expression that defines the Hamiltonian.

Other examples of the use of Legendre transforms in physics are in thermodynamics.
In thermodynamics one encounters a variety of thermodynamic potentials, which
have units of energy and are always expressed as functions of two variables. Examples
are the energy U = U(S, V ), the enthalpy H = H(S, P ), and the Gibbs free energy
G = G(T, V ), among others. These thermodynamic potentials are related to each
other via Legendre transformations. For example, since V and P are conjugate to
each other (their product has units of energy), U(S, V ) and H(S, P ) are related via
a Legendre transformation

H = U + P V

To see this, use the first law of thermodynamics, according to which

dU = T dS − P dV

which implies that

T =
∂U

∂S
, P = −∂U

∂V

Along similar lines, we have that

G = H − T S

For details, see any good textbook on thermodynamics.
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Appendix F

Differential Equations

The equations of fluid dynamics are all differential equations. In order to provide
the necessary background, this appendix gives a very brief overview of the basics.

A differential equation is an ordinary differential equation (ODE) if the un-
known function depends on only 1 independent variable.

If the unknown function depends on two or more independent variables, then the
differential equation is a partial differential equation (PDE).

The order of a differential equation is that of the highest derivative appearing in
the equation.

Consider the following examples:

[a] du
dx

= 2x2 − 4

[b] eu d2u
dx2 + 3

(
du
dx

)4
= 2

[c] ∂2u
∂t2

− 4∂2u
∂x2 = 0

Equation [a] is an ODE of order 1, equation [b] is an ODE of order 2, and equation
[c] is a PDE of order 2.

In what follows we shall often use the following shorthand notation:

u′ ≡ du

dx
, u′′ ≡ d2u

dx2
, u(n) ≡ dnu

dxn
.

When the independent variable is time, we often use a dot rather than a hyphen,
i.e., u̇ = du/dt, ü = d2u/dt2, etc.
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When dealing with PDEs, we use the following shorthand:

u,x ≡ ∂u

∂x
, u,xy ≡

∂2u

∂x∂y
, u,tt ≡

∂2u

∂2t
,

etc. Consider the following examples

∇2u = 0 ↔ u,xx + u,yy + u,zz = 0

∇(∇ · u) +∇2u+ u = 0 ↔ uk,ki + ui,jj + ui = 0

Note that in the latter we have adopted the Einstein summation convention.

A differential equation along with subsidiary conditions on the unknown function and
its derivatives, all given at the same value of the independent variable, consistitute
an initial value problem.

If the subsidiary conditions are given at more than one value of the independent vari-
able, the problem is a boundary value problem and the conditions are boundary
conditions.

There are three broad classes of boundary conditions:

• Dirichlet boundary conditions: The value of the dependent variable is
specified on the boundary.

• Neumann boundary conditions: The normal derivative of the dependent
variable is specified on the boundary.

• Cauchy boundary conditions: Both the value and the normal derivative of
the dependent variable are specified on the boundary.

Cauchy boundary conditions are analogous to the initial conditions for a second-order
ODE. These are given at one end of the interval only.
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Linear and non-linear PDEs: A linear PDE is one that is of first degree in all of
its field variables and partial derivatives.

Consider the following examples:

[a] ∂u
∂x

+ ∂u
∂y

= 0

[b] ∂u
∂x

+
(

∂u
∂y

)2
= 0

[c] ∂2u
∂x2 +

∂2u
∂y2

= x+ y

[d] ∂u
∂x

+ ∂u
∂y

= u2

[e] ∂2u
∂x2 + u ∂2u

∂y2
= 0

Equations [a] and [c] are linear, while [b], [d] and [e] are all non-linear.

We can write the above equations in operator notation as:

[a] L(u) = 0 with L :=
∂

∂x
+

∂

∂y

[b] L(u) = 0 with L :=
∂

∂x
+

(
∂

∂y

)2

[c] L(u) = x+ y with L :=
∂2

∂x2
+

∂2

∂y2

[d] L(u) = 0 with L :=
∂

∂x
+

∂

∂y
− u2

[e] L(u) = 0 with L :=
∂2

∂x2
+ u

∂2

∂y2
= 0

Homogeneous and non-homogeneous PDEs: Let L be a linear operator. Then,
a linear PDE can be written in the form

L(u) = f(x1, x2, x3, ..., xn, t)

The PDE is said to be homogeneous iff f(x1, x2, x3, ..., xn, t) = 0. Thus, in the
examples above, equation [a] is homogeneous, while [c] is non-homogeneous (aka
inhomogeneous).
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In (hydro-)dynamics, we typically encounter three types of second-order PDEs, clas-
sified as elliptic, hyperbolic, and parabolic. Each type has certain characteristics
that help determine if a particular finite element approach is appropriate to the prob-
lem being described by the PDE. Interestingly, just knowing the type of PDE can
give us insight into how smooth the solution is, how fast information propagates,
and the effect of initial and boundary conditions.

Consider a second-order PDE for the unknown function u(x, y) of the form

a u,xx + b u,xy + c u,yy + d u,x + e u,y + f u+ g = 0

where each of a, b,...,g are allowed to be functions of x and/or y.

Elliptic: The above PDE is called elliptic if b2 − 4ac < 0.
An example is the 2D Poisson equation u,xx + u,yy = f (which has a = c = 1
and b = 0). The solutions of elliptic PDEs are always smooth, and boundary data
at any point affect the solution at all points in the domain. There is no temporal
propagation, yet elliptic PDEs convey the effect of objects on each other. Newtonian
mechanics is an example of this, which is why the Poisson equation is elliptic.

Parabolic: The above PDE is called parabolic if b2 − 4ac = 0.
An example is the heat equation u,t = u,xx (which has a = 1 and b = c = 0) which
describes heat flow in a 1D system. Parabolic PDEs are usually time dependent and
represent diffusion-like processes (i.e., dissipation, convection). Solutions are smooth
in space but may possess singularities.

Hyperbolic: The above PDE is called hyperbolic if b2 − 4ac > 0.
An example is the wave equation u,xx − 1

c2s
u,tt = f (which has b = 0, a = 1 and

c = −1/c2s < 0). In a system modeled with a hyperbolic PDE, information travels at
a finite speed referred to as the wavespeed (cs in the example here). Information is not
transmitted until the wave arrives. The smoothness of the solution to a hyperbolic
PDE depends on the smoothness of the initial and boundary conditions. For instance,
if there is a jump in the data at the start or at the boundaries, then the jump will
propagate as a shock in the solution. If, in addition, the PDE is nonlinear, then
shocks may develop even though the initial conditions and the boundary conditions
are smooth.
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Finally, since solving PDEs can often be reduced to solving (sets) of ODEs, a few
words about solving the latter. Problems involving ODEs can always be reduced to
a set of first-order ODEs! For example, the 2nd order ODE

d2u

dx2
+ s(x)

du

dx
= t(x)

can be rewritten as two first-order ODEs

du

dx
= v(x) ,

dv

dx
= t(x)− s(x)v(x)

Consider the general nth-order initial value problem

dnu

dxn
= an−1(x)

dn−1

dxn−1
+ .....+ a1(x)

du

dx
+ a0(x) u(x) + f(x)

with u(0) = c0, u
′(0) = c1, u

′′(0) = c2, ... ,u
(n−1)(0) = cn−1 as the initial values.

In general, this can be written in matrix form as

u′ = A(x)u(x) + f(x)

with the initial values given by u(0) = c. Here the elements of u are given by
u1 = u(x), u2 = u′(x), ..., un = u(n−1)(x). Theses are interrelated with the elements
of u′ by the equations u′1 = u2, u

′
2 = u3, ... ,u′n−1 = un, u

′
n = u(n)(x). The matrices

A(x) and f(x) are related to ai(x) and f(x) according to

A(x) =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 1
a0(x) a1(x) a2(x) a3(x) · · · an−1(x)




and

f(x) =




0
0
...
0

f(x)
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Hence, solving an ODE of order N reduces to solving a set of N coupled first-order
differential equations for the functions ui (i = 1, 2, ..., N) having the general form

dui
dx

= fi(x, u1, u2, ..., un)

where the functions fi on the rhs are known.
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Appendix G

The Levi-Civita Symbol

The Levi-Civita symbol, also known as the permutation symbol or the anti-
symmetric symbol,is a collection of numbers, defined from the sign of a permu-
tation of the natural numbers 1, 2, 3, ..., n. It is often encountered in linear algebra,
vector and tensor calculus, and differential geometry.

The n-dimensional Levi-Civita symbol is indicated by εi1i2...in, where each index
i1, i2, ..., in takes values 1, 2, ..., n, ans has the defining property that the symbol is
total antisymmetric in all its indices: when any two indices are interchanged, the
symbol is negated:

ε...ip...iq... = −ε...iq...ip...
If any two indices are equal, the symbol is zero, and when all indices are unequal,
we have that

εi1i2...in = (−1)pε1,2,...n

where p is called the parity of the permutation. It is the number of pairwise inter-
changes necessary to unscramble i1, i2, ..., in into the order 1, 2, ..., n. A permutation
is said to be even (odd) if its parity is an even (odd) number.

Example: what is the parity of {3, 4, 5, 2, 1}?
{1, 2, 3, 4, 5}
{3, 2, 1, 4, 5}
{3, 4, 1, 2, 5}
{3, 4, 5, 2, 1}

Answer: p = 3, since three pairwise interchanges are required.

In three dimensions the Levi-Civita symbol is defined by

εijk =





+1 if (i, j, k) is (1,2,3), (2,3,1), or (3,1,2)
−1 if (i, j, k) is (3,2,1), (1,3,2), or (2,1,3)
0 if i = j, or j = k, or k = i
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Appendix H

The BBGKY Hierarchy

In this Appendix we derive the BBGKY hierarchy of evolution equations for the
k-particle distribution function f (k)(~w1, ~w2, ... ~wk) starting from the Liouville equa-
tion for the N -particle distribution function f (N)(~w1, ~w2, ... ~wN), where N > k. Here
~wi ≡ (~qi, ~pi) is the 6D phase-space vector of particle i,

As we have seen in Chapter 6, the Liouville equation, which is given by

df (N)

dt
=
∂f (N)

∂t
+ {f (N),H(N)} = 0

expresses the incompressibilty of Hamiltonian flow in Γ-space. Here we have adopted
the notation based onPoisson brackets (see Chapter 4), and we have used the index
’(N)’ on the Hamiltonian to emphasize that this is the N -particle Hamiltonian

H(N)(~qi, ~pi) =

N∑

i=1

~p 2
i

2m
+

N∑

i=1

V (~qi) +
1

2

N∑

i=1

N∑

j=1
j 6=i

Uij

Here V (~q) is the potential corresponding to an external force, and we have used
Uij as shorthand notation for

Uij ≡ U(|~qi − ~qj |)

the potential energy associated with the two-body interaction between particles i and
j. Note that Uij = Uji. The factor 1/2 in the above expression for the Hamiltonian
is to correct for double-counting of the particle pairs.

We can relate the N -particle Hamiltonian, H(N) to the k-particle Hamiltonian, H(k),
which is defined in the same way as H(N) but with N replaced by k < N , according
to

H(N) = H(k) +H(k,N) +
k∑

i=1

N∑

j=k+1

Uij
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Here

H(k) =

k∑

i=1

~p 2
i

2m
+

k∑

i=1

V (~qi) +
1

2

k∑

i=1

k∑

j=1
j 6=i

Uij

and

H(k,N) =
N∑

i=k+1

~p 2
i

2m
+

N∑

i=k+1

V (~qi) +
1

2

N∑

i=k+1

N∑

j=k+1
j 6=i

Uij

To see this, consider the Uij term, for which we can write

N∑

i=1

N∑

j=i
j 6=i

Uij =

k∑

i=1

N∑

j=1
j 6=i

Uij +

N∑

i=k+1

N∑

j=1
j 6=i

Uij

=

k∑

i=1

k∑

j=1
j 6=i

Uij +

k∑

i=1

N∑

j=k+1

Uij +

N∑

i=k+1

k∑

j=1

Uij +

N∑

i=k+1

N∑

j=k+1
j 6=i

Uij

The second and third terms are identical (since Uij = Uji) so that upon substitution
we obtain the above relation between H(N) and H(k).

Now let’s take the Liouville equation and integrate it over the entire phase-space
of particles k + 1 to N :

∫ N∏

n=k+1

d3~qn d
3~pn

∂f (N)

∂t
=

∫ N∏

n=k+1

d3~qn d
3~pn {H(N), f (N)}

First the LHS: using that the integration is independent of time, we take the time
derivative outside of the integral, yielding

∂

∂t

∫ N∏

n=k+1

d3~qn d
3~pn f

(N) =
(N − k)!

N !

∂f (k)

∂t

where we have made use of the definition of the reduced k-particle distribution
function (see Chapter 6). Writing out the Poisson brackets in the RHS, and splitting
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the summation over i in two parts, we can write the RHS as the sum of two integrals,
I1 plus I2, where

I1 =

∫ N∏

n=k+1

d3~qn d
3~pn

k∑

i=1

(
∂H(N)

∂~qi
· ∂f

(N)

∂~pi
− ∂H(N)

∂~pi
· ∂f

(N)

∂~qi

)

and

I2 =

∫ N∏

n=k+1

d3~qn d
3~pn

N∑

i=k+1

(
∂H(N)

∂~qi
· ∂f

(N)

∂~pi
− ∂H(N)

∂~pi
· ∂f

(N)

∂~qi

)

Integral I2 vanishes. To see this, realize that ∂H(N)/∂~qi is independent of ~pi and
∂H(N)/∂~pi is independent of ~qi (this follows from the definition of the Hamiltonian).
Because of this, each terms in I2 can be cast in the form

+∞∫

−∞

dx

+∞∫

−∞

dy g(x)
∂f(x, y)

∂y
=

+∞∫

−∞

dx g(x) [f(x, y)]y=+∞
y=−∞

i.e., these turn into surface integrals, and since f (N)(~qi, ~pi) = 0 in the limits |~qi| → ∞
(systems are of finite extent) and |~pi| → ∞ (particles have finite speed), we see that
I2 must vanish.

In order to compute I1, we first write H(N) in terms of H(k) and H(k,N) as indicated
above. This allows us split the result in three terms, I1a, I1b and I1c given by

I1a =

∫ N∏

n=k+1

d3~qn d
3~pn

k∑

i=1

(
∂H(k)

∂~qi
· ∂f

(N)

∂~pi
− ∂H(k)

∂~pi
· ∂f

(N)

∂~qi

)
,

I1b =

∫ N∏

n=k+1

d3~qn d
3~pn

k∑

i=1

(
∂H(k,N)

∂~qi
· ∂f

(N)

∂~pi
− ∂H(k,N)

∂~pi
· ∂f

(N)

∂~qi

)
,

and

I1c =

∫ N∏

n=k+1

d3~qn d
3~pn

k∑

i=1

(
∂

∂~qi

[
k∑

l=1

N∑

j=k+1

Ukl

]
· ∂f

(N)

∂~pi
− ∂

∂~pi

[
k∑

l=1

N∑

j=k+1

Ukl

]
· ∂f

(N)

∂~qi

)
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We now examine each of these in turn. Starting with I1a, for which we realize that
the operator for f (N) is independent of the integration variables, such that we can
take it outside of the integral. Hence, we have that

I1a =

k∑

i=1

(
∂H(k)

∂~qi
· ∂

∂~pi
− ∂H(k)

∂~pi
· ∂

∂~qi

) ∫ N∏

n=k+1

d3~qn d
3~pn f

(N)

Using the definition of the reduced k-particle distribution function, this can be writ-
ten as

I1a =
(N − k)!

N !

k∑

i=1

(
∂H(k)

∂~qi
· ∂f

(k)

∂~pi
− ∂H(k)

∂~pi
· ∂f

(k)

∂~qi

)
=

(N − k)!

N !
{H(k), f (k)}

where we have made use of the definition of the Poisson brackets (see Chapter 4).

Next up is I1b. It is clear that this integral must vanish, since both ∂H(k,N)/∂~qi
and ∂H(k,N)/∂~pi are equal to zero. After all, the index i runs from 1 to k, and the
phase-space coordinates of those particles do not appear in H(k,N). This leaves I1c;
since Ukl is independent of momentum, the second term within the brackets vanishes,
leaving only

I1c =

∫ N∏

n=k+1

d3~qn d
3~pn

k∑

i=1

(
N∑

j=k+1

∂Uij

∂~qi
· ∂f

(N)

∂~pi

)

Upon inspection, you can see that each term of the j-summation is equal (this follows
from the fact that we integrate over all of ~qj for each j = k + 1, ..., N). Hence, since
there are N − k such terms we have that
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I1c = (N − k)
k∑

i=1

∫ N∏

n=k+1

d3~qn d
3~pn

(
∂Ui,k+1

∂~qi
· ∂f

(N)

∂~pi

)

= (N − k)
k∑

i=1

∫
d3~qk+1 d

3~pk+1

(
∂Ui,k+1

∂~qi
· ∂

∂~pi

)∫ N∏

n=k+2

d3~qn d
3~pn f

(N)

= (N − k)
(N − k − 1)!

N !

k∑

i=1

∫
d3~qk+1 d

3~pk+1

(
∂Ui,k+1

∂~qi
· ∂f

(k+1)

∂~pi

)

=
(N − k)!

N !

k∑

i=1

∫
d3~qk+1 d

3~pk+1

(
∂Ui,k+1

∂~qi
· ∂f

(k+1)

∂~pi

)

where as before we have taken the operator outside of the integral, and we have used
the definition of the reduced distribution functions.

Combining everything, we obtain our final expression for the evolution of the reduced
k-particle distribution function

∂f (k)

∂t
= {H(k), f (k)}+

k∑

i=1

∫
d3~qk+1 d

3~pk+1

(
∂Ui,k+1

∂~qi
· ∂f

(k+1)

∂~pi

)

Note that the evolution of f (k) thus depends on f (k+1), such that the above expression
represents a set of N coupled equations, known as the BBGKY hierarchy. Note
also that this derivation is completely general; the ONLY assumption we have made
along the way is that the dynamics are Hamiltonian!

For the 1-particle distribution function the above expression reduces to

∂f (1)

∂t
= {H(1), f (1)}+

∫
d3~q2 d

3~p2

(
∂U12

∂~q1
· ∂f

(2)

∂~p1

)

with H(1) = p2

2m
+ V (~q) the 1-particle Hamiltonian and f (2) = f (2)(~q1, ~q2, ~p1, ~p2, t) the

2-particle distribution function. This equation forms the basis for the Boltz-
mann equation, as discussed in Chapters 6 and 7.
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Appendix I

Equations of State

Equation of State (EoS): a thermodynamic equation describing the state of matter
under a given set of physical conditions. In what follows we will always write our
EoS in the form P = P (ρ, T ). Other commonly used forms are P = P (ρ, ε) or
P = P (ρ, S).

Ideal Gas: a hypothetical gas that consists of identical point particles (i.e. of zero
volume) that undergo perfectly elastic collisions and for which interparticle forces
can be neglected.

An ideal gas obeys the ideal gas law: P V = N kB T .

Here N is the total number of particles, kB is Boltzmann’s constant, and V is the
volume occupied by the fluid. Using that ρ = N µmp/V , where µ is the mean
molecular weight in units of the proton mass mp, we have that the EoS for an
ideal gas is given by

P =
kB T

µmp
ρ

NOTE: astrophysical gases are often well described by the ideal gas law. Even for a
fully ionized gas, the interparticle forces (Coulomb force) can typically be neglected
(i.e., the potential energies involved are typically < 10% of the kinetic energies).
Ideal gas law breaks down for dense, and cool gases, such as those present in gaseous
planets.
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Maxwell-Boltzmann Distribution: the distribution of particle momenta, ~p =
m~v, of an ideal gas follows the Maxwell-Boltzmann distribution.

P(~p) d3~p =

(
1

2πmkBT

)3/2

exp

(
− p2

2mkBT

)
d3~p

where p2 = ~p · ~p. This distribution follows from maximizing entropy under the
following assumptions:

1. all magnitudes of velocity are a priori equally likely

2. all directions are equally likely (isotropy)

3. total energy is constrained at a fixed value

4. total number of particles is constrained at a fixed value

Using that E = p2/2m we thus see that P(~p) ∝ e−E/kBT .

Pressure: pressure arises from (elastic) collisions of particles. A particle hitting a
wall head on with momentum p = mv results in a transfer of momentum to the wall
of 2mv. Using this concept, and assuming isotropy for the particle momenta, it can
be shown that

P = ζ n 〈E〉

where ζ = 2/3 (ζ = 1/3) in the case of a non-relativistic (relativistic) fluid, and

〈E〉 =
∫ ∞

0

E P(E) dE

is the average, translational energy of the particles. In the case of our ideal (non-
relativistic) fluid,

〈E〉 =
〈
p2

2m

〉
=

∫ ∞

0

p2

2m
P(p) dp =

3

2
kBT
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Hence, we find that the EoS for an ideal gas is indeed given by

P =
2

3
n 〈E〉 = n kB T =

kBT

µmp

ρ

Specific Internal Energy: the internal energy per unit mass for an ideal gas is

ε =
〈E〉
µmp

=
3

2

kBT

µmp

Actually, the above derivation is only valid for a true ‘ideal gas’, in which the particles
are point particles. More generally,

ε =
1

γ − 1

kBT

µmp

where γ is the adiabatic index, which for an ideal gas is equal to γ = (q+5)/(q+3),
with q the internal degrees of freedom of the fluid particles: q = 0 for point particles
(resulting in γ = 5/3), while diatomic particles have q = 2 (at sufficiently low
temperatures, such that they only have rotational, and no vibrational degrees of
freedom). The fact that q = 2 in that case arises from the fact that a diatomic
molecule only has two relevant rotation axes; the third axis is the symmetry axis of
the molecule, along which the molecule has negligible (zero in case of point particles)
moment of inertia. Consequently, rotation around this symmetry axis carries no
energy.

Photon gas: Having discussed the EoS of an ideal gas, we now focus on a gas of
photons. Photons have energy E = hν and momentum p = E/c = hν/c, with h the
Planck constant.

Black Body: an idealized physical body that absorbs all incident radiation. A black
body (BB) in thermal equilibrium emits electro-magnetic radiation called black
body radiation.

The spectral number density distribution of BB photons is given by

nγ(ν, T ) =
8πν2

c3
1

ehν/kBT − 1
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which implies a spectral energy distribution

u(ν, T ) = nγ(ν, T ) hν =
8πhν3

c3
1

ehν/kBT − 1

and thus an energy density of

u(T ) =

∫ ∞

0

u(ν, T ) dν =
4σSB
c

T 4 ≡ ar T
4

where

σSB =
2π5k4B
15h3c2

is the Stefan-Boltzmann constant and ar ≃ 7.6× 10−15erg cm−3K−4 is called the
radiation constant.

Radiation Pressure: when the photons are reflected off a wall, or when they
are absorbed and subsequently re-emitted by that wall, they transfer twice their
momentum in the normal direction to that wall. Since photons are relativistic, we
have that the EoS for a photon gas is given by

P =
1

3
n 〈E〉 = 1

3
nγ 〈hν〉 =

1

3
u(T ) =

aT 4

3

where we have used that u(T ) = nγ 〈E〉.

Quantum Statistics: according to quantum statistics, a collection of many indis-
tinguishable elementary particles in thermal equilibrium has a momentum distri-
bution given by

f(~p) d3~p =
g

h3

[
exp

(
E(p)− µ

kBT

)
± 1

]−1

d3~p

where the signature ± takes the positive sign for fermions (which have half-integer
spin), in which case the distribution is called the Fermi-Dirac distribution, and
the negative sign for bosons (particles with zero or integer spin), in which case the
distribution is called the Bose-Einstein distribution. The factor g is the spin
degeneracy factor, which expresses the number of spin states the particles can
have (g = 1 for neutrinos, g = 2 for photons and charged leptons, and g = 6
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for quarks). Finally, µ is called the chemical potential, and is a form of potential
energy that is related (in a complicated way) to the number density and temperature
of the particles (see Appendix K).

Classical limit: In the limit where the mean interparticle separation is much larger
than the de Broglie wavelength of the particles, so that quantum effects (e.g., Heisen-
berg’s uncertainty principle) can be ignored, the above distribution function of mo-
menta can be accurately approximated by the Maxwell-Boltzmann distribution.

Heisenberg’s Uncertainty Principle: ∆x ∆px > h (where h = 6.63×10−27g cm2 s−1

is Planck’s constant). One interpretation of this quantum principle is that phase-
space is quantized; no particle can be localized in a phase-space element smaller than
the fundamental element

∆x ∆y ∆z ∆px ∆py ∆pz = h3

Pauli Exclusion Principle: no more than one fermion of a given spin state can
occupy a given phase-space element h3. Hence, for electrons, which have g = 2, the
maximum phase-space density is 2/h3.

Degeneracy: When compressing and/or cooling a fermionic gas, at some point
all possible low momentum states are occupied. Any further compression therefore
results in particles occupying high (but the lowest available) momentum states. Since
particle momentum is ultimately responsible for pressure, this degeneracy manifests
itself as an extremely high pressure, known as degeneracy pressure.

Fermi Momentum: Consider a fully degenerate gas of electrons of electron
density ne. It will have fully occupied the part of phase-space with momenta p ≤
pF. Here pF is the maximum momentum of the particles, and is called the Fermi
momentum. The energy corresponding to the Fermi momentum is called the Fermi
energy, EF and is equal to p2F/2m in the case of a non-relativistic gas, and pFc in
the case of a relativistic gas.

Let Vx be the volume occupied in configuration space, and Vp = 4
3
πp3F the volume

occupied in momentum space. If the total number of particles is N , and the gas is
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fully degenerate, then

Vx Vp =
N

2
h3

Using that ne = N/Vx, we find that

pF =

(
3

8π
ne

)1/3

h

EoS of Non-Relativistic, Degenerate Gas: Using the information above, it
is relatively straightforward (see Problem Set 4) to compute the EoS for a fully
degenerate gas. Using that for a non-relativistic fluid E = p2/2m and P = 2

3
n 〈E〉,

while degeneracy implies that

〈E〉 = 1

N

∫ Ef

0

EN(E) dE =
1

N

∫ pF

0

p2

2m

2

h3
Vx 4πp

2 dp =
3

5

p2F
2m

we obtain that

P =
1

20

(
3

π

)2/3
h2

m8/3
ρ5/3

EoS of Relativistic, Degenerate Gas: In the case of a relativistic, degenerate gas,
we use the same procedure as above. However, this time we have that P = 1

3
n 〈E〉

while E = p c, which results in

P =
1

8

(
3

π

)1/3
c h

m4/3
ρ4/3
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White Dwarfs and the Chandrasekhar limit: White dwarfs are the end-states
of stars with mass low enough that they don’t form a neutron star. When the
pressure support from nuclear fusion in a star comes to a halt, the core will start
to contract until degeneracy pressure kicks in. The star consists of a fully ionized
plasma. Assume for simplicity that the plasma consists purely of hydrogen, so that
the number density of protons is equal to that of electrons: np = ne. Because of
equipartition

p2p
2mp

=
p2e
2me

Since mp >> me we have also that pp >> pe (in fact pp/pe =
√
mp/me ≃ 43).

Consequently, when cooling or compressing the core of a star, the electrons will
become degenerate well before the protons do. Hence, white dwarfs are held up
against collapse by the degeneracy pressure from electrons. Since the electrons
are typically non-relativistic, the EoS of the white dwarf is: P ∝ ρ5/3. If the white
dwarf becomes more and more massive (i.e., because it is accreting mass from a
companion star), the Pauli-exclusion principle causes the Fermi momentum, pF, to
increase to relativistic values. This softens the EoS towards P ∝ ρ4/3. Such an
equation of state is too soft to stabilize the white dwarf against gravitational collapse;
the white dwarf collapses until it becomes a neutron star, at which stage it is
supported against further collapse by the degeneracy pressure from neutrons. This
happens when the mass of the white dwarf reaches Mlim ≃ 1.44M⊙, the so-called
Chandrasekhar limit.

Non-Relativistic Relativistic

non-degenerate P ∝ ρ T P ∝ T 4

degenerate P ∝ ρ5/3 P ∝ ρ4/3

Summary of equations of state for different kind of fluids
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Appendix J

Derivation of the Energy Equation

The energy equation can be obtained from the master moment equation

∂

∂t
n〈Q〉+ ∂

∂xi

[
n〈Qvi〉

]
+
∂Φ

∂xi
n

〈
∂Q

∂vi

〉
= 0

by substituting

Q =
1

2
mv2 =

m

2
vivi =

m

2
(ui + wi)(ui + wi) =

m

2
(u2 + 2uiwi + w2)

Hence, we have that 〈Q〉 = 1
2
mu2 + 1

2
m〈w2〉 where we have used that 〈u〉 = u and

〈w〉 = 0. Using that ρ = mn, the first term in the master moment equation thus
becomes

∂

∂t
[n〈Q〉] = ∂

∂t

[
ρ
u2

2
+ ρε

]

where we have used that the specific internal energy ε = 1
2
〈w2〉. For the second term,

we use that

n〈vkQ〉 =
ρ

2
〈(uk + wk)(u

2 + 2uiwi + w2)〉

=
ρ

2
〈u2uk + 2uiukwi + w2uk + u2wk + 2uiwiwk + w2wk〉

=
ρ

2

[
u2uk + uk〈w2〉+ 2ui〈wiwk〉+ 〈w2wk〉

]

= ρ
u2

2
uk + ρεuk + ρui〈wiwk〉+ ρ〈wk

1

2
w2〉

Using that ρ〈wiwk〉 = −σik, the second term of the master moment equation becomes

∂

∂xk
[n〈vkQ〉] =

∂

∂xk

[
ρ

(
u2

2
+ ε

)
uk − σikui + ρ〈wk

1

2
w2〉
]

Finally, for the third term we use that
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∂Q

∂vk
=
m

2

∂v2

∂vk
= mvk

To understand the last step, note that in Cartesian coordinates v2 = v2x + v2y + v2z .
Hence, we have that

n
∂Φ

∂xk

〈
∂Q

∂vk

〉
= ρ

∂Φ

∂xk
〈vk〉 = ρ

∂Φ

∂xk
uk

Combining the three terms in the master moment equation, we finally obtain the
following form of the energy equation:

∂

∂t

[
ρ

(
u2

2
+ ε

)]
= − ∂

∂xk

[
ρ

(
u2

2
+ ε

)
uk − σjkuj + ρ〈wk

1

2
w2〉
]
− ρ uk

∂Φ

∂xk
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Appendix K

The Chemical Potential

Consider a system which can exchange energy and particles with a reservoir, and
the volume of which can change. There are three ways for this system to increase
its internal energy; heating, changing the system’s volume (i.e., doing work on the
system), or adding particles. Hence,

dU = T dS − P dV + µ dN

Note that this is the first law of thermodynamics, but now with the added possibility
of changing the number of particles of the system. The scalar quantity µ is called
the chemical potential, and is defined by

µ =

(
∂U

∂N

)

S,V

This is not to be confused with the µ used to denote the mean weight per particle,
which ALWAYS appears in combination with the proton mass, mp. As is evident
from the above expression, the chemical potential quantifies how the internal energy
of the system changes if particles are added or removed, while keeping the entropy
and volume of the system fixed. The chemical potential appears in the Fermi-Dirac
distribution describing the momentum distribution of a gas of fermions or bosons.

Consider an ideal gas, of volume V , entropy S and with internal energy U . Now
imagine adding a particle of zero energy (ǫ = 0), while keeping the volume fixed.
Since ǫ = 0, we also have that dU = 0. But what about the entropy? Well, we
have increased the number of ways in which we can redistribute the energy U (a
macrostate quantity) over the different particles (different microstates). Hence, by
adding this particle we have increased the system’s entropy. If we want to add a
particle while keeping S fixed, we need to decrease U to offset the increase in the
number of ‘degrees of freedom’ over which to distribute this energy. Hence, keeping
S (and V ) fixed, requires that the particle has negative energy, and we thus see that
µ < 0.
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For a fully degenerate Fermi gas, we have that T = 0, and thus S = 0 (i.e., there is
only one micro-state associated with this macrostate, and that is the fully degenerate
one). If we now add a particle, and demand that we keep S = 0, then that particle
must have the Fermi energy (see Chapter 13); ǫ = Ef . Hence, for a fully degenerate
gas, µ = Ef .

Finally, consider a photon gas in thermal equilibrium inside a container. Contrary to
an ideal gas, in a photon gas the number of particles (photons) cannot be arbitrary.
The number of photons at given temperature, T , and thus at given U , is given by
the Planck distribution and is constantly adjusted (through absorption and emission
against the wall of the container) so that the photon gas remains in thermal equilib-
rium. In other words, Nγ is not a degree of freedom for the system, but it set by the
volume and the temperature of the gas. Since we can’t change N while maintaining
S (or T ) and V , we have that µ = 0 for photons.

To end this discussion of the chemical potential, we address the origin of its name,
which may, at first, seem weird. Let’s start with the ‘potential’ part. The origin of
this name is clear from the following. According to its definition (see above), the
chemical potential is the ‘internal energy’ per unit amount (moles). Now consider
the following correspondences:

Gravitational potential is the gravitational energy per unit mass:

W =
Gm1m2

r
⇒ φ =

Gm

r
⇒ φ =

∂W

∂m

Similarly, electrical potential is the electrical energy per unit charge

V =
1

4πε0

q1 q2
r

⇒ φ =
1

4πε0

q

r
⇒ φ =

∂V

∂q

These examples make it clear why µ is considered a ‘potential’. Finally, the word
chemical arises from the fact that the µ plays an important role in chemistry (i.e.,
when considering systems in which chemical reactions take place, which change the
particles). In this respect, it is important to be aware of the fact that µ is an
additive quantity that is conserved in a chemical reaction. Hence, for a chemical

329



reaction i+ j → k + l one has that µi + µj = µk + µl. As an example, consider the
annihilation of an electron and a positron into two photons. Using that µ = 0 for
photons, we see that the chemical potential of elementary particles (i.e., electrons)
must be opposite to that of their anti-particles (i.e., positrons).

Because of the additive nature of the chemical potential, we also have that the
above equation for dU changes slightly whenever the gas consists of different particle
species; it becomes

dU = T dS − P dV +
∑

i

µi dNi

where the summation is over all species i. If the gas consists of equal numbers
of elementary particles and anti-particles, then the total chemical potential of the
system will be equal to zero. In fact, in many treatments of fluid dynamics it may be
assumed that

∑
i µi dNi = 0; in particular when the relevant reactions are ‘frozen’

(i.e., occur on a timescales τreact that are much longer than the dynamical timescales
τdyn of interest), so that dNi = 0, or if the reactions go so fast (τreact ≪ τdyn)
that each reaction and its inverse are in local thermodynamic equilibrium, in which
case

∑
i µi dNi = 0 for those species involved in the reaction. Only in the rare,

intermediate case when τreact ∼ τdyn is it important to keep track of the relative
abundances of the various chemical and/or nuclear species.
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Appendix L

The Lighthill Equation

As discussed in Chapter 17, acoustic waves result from disturbances in a compressible
fluid. These disturbances may arise from objects being moved through the fluid.
However, sound waves can also be sourced by fluid motions themselves. A familiar
example is the noise from jet-engines; the noise emenates from the turbulent wake
created by engines. In astrophysics, turbulence will also typically create sound waves.
In general these sound waves will not have an important impact on the physics. A
potential exception is the heating of the ICM by sound waves created by turbulent
wakes created by AGN feedback. We now derive the main equation that describes
how fluid motion can source sound waves.

In the linear perturbation theory used in Chapter 17, we neglected the inertial ac-
celeration term ~u · ∇~u since it is quadratic in the (assumed small) velocity. When
developing a theory in which the sound waves are sourced by fluid, the velocities
are not necessarily small, and we cannot neglect the inertial acceleration term. To
proceed, it is advantageous to start from the Euler equation in flux-conservative form
(see Chapter 12)

∂ρui
∂t

+
∂Πij

∂xj
= 0

Here Πij is the momentum flux density tensor which, for an inviscid fluid, is
given by

Πij = Pδij + ρuiuj

We now set ρ = ρ0 + ρ1 and P = P0 + P1, where the subscript ‘0’ indicates the
unperturbed equilibrium flow, and ‘1’ refers to the perturbed quantities. Using that,
∂ρ0/∂t = 0, the continuity equation reduces to

∂ρ1
∂t

+
∂ρui
∂xi

= 0

In addition, using the fact that we can ignore P0, since the pressure only enters the
Euler equation via its gradient, and ∇P0 = 0 (i.e., the unperturbed medium is in
pressure equilibrium), we can write the momentum flux density tensor as

Πij = ρuiuj + P1δij + c2sρ1δij − c2sρ1δij = c2sρ1δij +Qij
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where we have introduced the tensor

Qij ≡ ρuiuj + (P1 − c2sρ1)δij

which describes the departure of Πij from linear theory. To see this, recall that
in linear theory any term that is quadratic in velocity is ignored, and that in linear
theory the perturbed pressure and density are related according to P1 = c2sρ1. Hence,
in linear theory Qij = 0.

Substituting the above expression for Πij in the Euler equation in flux-conservative
form yields

∂ρui
∂t

+ c2s
∂ρ1
∂xi

= −∂Qij

∂xj

Next we take the time-derivative of the continuity equation to obtain

∂2ρ1
∂t2

+
∂

∂xi

[
∂ρui
∂t

]
= 0

Substituting the Euler equation finally yields the inhomogeneous wave equation

∂2ρ1
∂t2

− c2s
∂2ρ1
∂x2i

=
∂2Qij

∂xi∂xj

which is known as the Lighthill equation, after M.J. Lighthill who first derived it
in 1952. It is an example of an inhomogeneous wave equation; the term on the
rhs is a source term, and its presence makes the PDE inhomogeneous.

Inhomogeneous wave equations are well known in Electrodynamics. In particular,
introducing the (scalar) electric potential, φ, and the (vector) magnetic potential ~A,

defined from the ~E and ~B fields by

~E = −∇φ − ∂ ~A

∂t
~B = ∇× ~A

and adopting the Lorenz gauge condition

1

c2
∂φ

∂t
+∇ · ~A = 0
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the four Maxwell equations in a vacuum with charge ρ and current ~J reduce to
two uncoupled, inhomogeneous wave equations that are symmetric in the potentials:

∇2φ− 1

c2
∂2φ

∂t2
= − ρ

ε0

∇2 ~A− 1

c2
∂2 ~A

∂t2
= −µ0

~J .

As discussed in many standard textbooks on electromagnetism, the general solution
of the inhomogeneous wave equation

∂2ρ1
∂t2

− c2s
∂2ρ1
∂x2i

= G(~x, t)

is given by

ρ1(~x, t) =
1

4πc2s

∫ G(~x′, t− |~x− ~x′|/cs)
|~x− ~x′| dV ′

This represent a superposition of spherical acoustic waves traveling outward from
their sources located at ~x′.

Thus, we have seen that keeping the higher-order velocity terms yields a source term
of acoustic waves, given by

G(~x, t) = ∂2

∂xi∂xj

[
ρuiuj + (P1 − c2sρ1)δij

]

Note that this is a scalar quantity (Einstein summation). Although this equation
gives some insight as to how fluid motion can spawn sound waves, actually solving
the Lighthill equation for a turbulent velocity field ~u(~x, t) is obviously horrendously
difficult.

We end by considering the impact of viscosity and conductivity. As discussed in
Chapter 17, these transport mechanisms can be ignored as long as the wavelength of
the sound wave is much larger than the mean-free path of the fluid particles. How-
ever, in the long run viscosity and conductivity will cause some level of momentum
dissipation and energy diffusion, which will cause the sound waves to die out. In
fact, for a non-ideal fluid the momentum flux density tensor is given by

Πij ≡ ρ〈vivj〉 = ρuiuj + Pδij − τij

333



Hence, the viscous stress tensor, τij , enters the tensor Qij that describes the
departure of Πij from linear theory. Hence, viscosity can simply be included in the
source (or sink) term of the Lighthill equation. Note that in its derivation we did
NOT linearize; we did NOT make the assumptions that ρ1 ≪ ρ0 or P1 ≪ P0. The
Lighthill equation is therefore valid in general as long as ρ1 and P1 are perturbations
away from an equilibrium solution with ∂ρ0/∂t = 0 and ∇P0 = 0.
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Appendix M

The Forced, Damped Oscillator

In order to understand how a many-body system responds to a perturbing (oscillat-
ing) force, it is often insightful to first consider one of the simplest examples: the
forced damped oscillator which you have undoubtedly encountered as part of your
undergraduate physics courses. A solid understanding of this system is extremely
beneficial for understanding, for example, how galaxies react to external forcing. Af-
ter all, you can think of a galaxy as a huge collection of harmonic oscillators. As
we have seen in Part I, in an integrable Hamiltonian system the motion of the stars
is quasi-periodic, being made up of three oscillations (i.e., round-and-round, in-and-
out, up-and-down), each with their own frequencies. Each of these oscillations is like
a harmonic oscillator, and will respond to the forcing as such.

Let us start with a simple, unforced, damped oscillator consisting of a mass on a
spring bobbing up and down in a vessel with a liquid that causes a friction. The
equation of motion is

mẍ = −k x− b ẋ

where dots indicate time-derivatives, k is the spring constant, and b is the friction
term. Dividing by mass yields

ẍ+ γ ẋ+ ω2
0 x = 0

Here ω0 ≡
√
k/m is the natural, angular frequency of the system and γ ≡ b/m. It is

common practice to also define the quality parameter Q ≡ ω0/γ. In the absence
of friction (γ = 0) the solution to the above diffential equation is simply

x(t) = A cos(ω0t+ α)

where A and α are two constants whose values derive from the initial conditions
(ICs). We can find the solution to the above differential equation in the case where
γ 6= 0 by substituting a trial solution x(t) ∝ e−iωt. This yields that

ω2 + iγω − ω2
0 = 0

which has solutions

ω = −iγ
2
±
√
ω2
0 −

γ2

4
, ω2

0 > γ2/4

335



Figure 36: The various responses of a damped, harmonic oscillator. See text for details.

Taking the real part of our trial solution with our expression for ω ultimately yields
the solution

x(t) = A e−
γ
2
t cos(ωt+ α)

where, as before, A and α are dictated by the ICs, and

ω =

√
ω2
0 −

γ2

4
= ω0

√
1− 1

4Q2
.

This is the solution for an underdamped oscillator. If γ2 > 4ω2
0 then the system

is said to be overdamped: the friction is so strong that the response is damped
without any oscillations. When γ = 2ω0 the system is critically damped, which
is the solution for which the system returns to its equilibrium situation the fastest,
without overshooting (see Fig. 36).

Now let’s start forcing this damped oscillator with an oscillating force F (t) =
F0 cos(ωt). The equation of motion now becomes

ẍ+ γ ẋ+ ω2
0 x =

F0

m
cos(ωt)

This is an inhomogeneous differential equation, whose solution is the sum of two
parts: the complementary solution (aka transient solution), which is the solution
to the homogeneous equation (i.e., with F0 = 0, which produces the solution of
the damped oscillator discussed above), plus a particular solution, (aka steady-state
solution) which describes the steady-state solution which is the solution to which
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the system asymptotes at late times. When forcing an oscillator with a frequency
ω, the steady-state solution will be an oscillation with the same frequency as the
forcing. Hence, we consider a trial solution (for the particular solution only) of the
form Ase

iωt+φs . Here ω is the forcing frequency, and φs is an angle that describes the
phase-difference between the driving and the response. Taking the above expression
to the complex plane (i.e., cos(ωt) → eiωt) and substituting this trial solution gives

−ω2 − iγω + ω2
0 =

F0

Asm
eiφs =

F0

Asm
(cosφs + i sinφs)

Seperately equating the real and imaginary parts yields the following two equations:

−ω2 + ω2
0 =

F0

Asm
cos φs

−ω γ =
F0

Asm
sin φs .

Adding these two expressions in quadrature gives the amplitude of our trial solution

As =
F0/m√

(ω2
0 − ω2)2 + (ωγ)2

while dividing both equations gives a solution for the phase-difference

tanφs =
ω γ

ω2
0 − ω2

Note that there are no longer any free parameters. The steady-state solution is
independent of the ICs. By the time the system settles in this steady-state solution,
it has lost all its memory of the ICs!

Hence, the full solution (complementary + particular) for the forced, damped oscil-
lator is given by

x(t) = A e−
γ
2
t cos(ω1t+ α) + As cos(ωt+ φs)

with ω1 = ω0

√
1− (2Q)−1, and A and α two constants that depend on the ICs.

At early times, before the first term has damped away, the system is beating with
frequencies ω1 and the driving frequency ω, which can cause erratic behavior, knowns
as transient behavior. At sufficiently late times, the complementary solution has
damped away, and the system settles in its steady-state solution, oscillating with the
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same frequency as the forcing, but with an amplitude and phase-difference given by
the expressions for As and φs given above.

It is useful to examine these expressions in some detail. When ω ≪ ω0 then A =
F0/(mω2

0) = F0/k. Hence, the amplitude is governed by the amplitude of the forcing
plus the spring constant. In addition, as intuitively clear, the response is exactly
in phase with the perturber (φs = 0). When ω ≫ ω0 the system is unable to
keep up with the forcing, and the response dies away (As → 0). Interestingly, the
phase-difference φs → π, indicating that the response is exactly out-of-phase with
the perturber. Finally, when ω = ω0 the system is in resonance, causing a large
response given by As = F0/(mω0γ) = Q (F0/k). Note that As → ∞ in the absence
of any damping (γ = 0). A key insight from this treatment of the forced, damped
oscillator is that when one crosses the resonance, the sign of the response changes
with respect to the forcing (i.e., goes from in-phase to out-of-phase, or vice versa).
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Appendix N

The Dielectric Function

In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator
that can be polarised by an applied electric field. When a dielectric material is
placed in an electric field, electric charges do not flow through the material as in
an electrical conductor, because they have no free, electrons that may drift through
the material, but instead they shift, only slightly, from their average equilibrium
positions, causing dielectric polarisation. Because of dielectric polarisation, positive
charges are displaced in the direction of the field and negative charges shift in the
direction opposite to the field. This creates an internal electric field that reduces the
overall field within the dielectric itself.

Hence, an electric field applied to a dielectric introduces an electric displacement
field, ~D, as well as a polarization field, ~P , inside the dielectric. These fields are
related to the applied electric field according to

~D = ε ~E ~P = χ ~E

Here ε is the relative permittivity of the medium, which is also known as the
dielectric constant, and χ is the electric susceptibility. Note that

ε = 1 + 4πχ

If the applied electric field is static, and the dielectric material is not anisotropic,
then ε and χ are scalars. If the material is anisotropic, though, both are tensors.

Now consider applying a electric field that varies spatially and temporally according
to, ~E ∝ exp[i(~k · ~x + ωt)]. Now the electric displacement, ~D, and polarization, ~P ,
also depend on location and time, and, in Fourier space, the dielectric constant now
becomes a dielectric function ε(~k, ω). Hence, the dielectric function is basically a
linear response function, describing the correlation between the imposed electric
field ~E(~r, t) and the resulting electric displacement, ~D(~r, t) (i.e., the response) in the
medium.

The dielectric function depends on the dielectric. A plasma is basically a con-
ductor, as it has free electrons, and it indeed acts like a conductor when a static
electric field is applied to it. However, when applying an electric field of the form
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~E ∝ exp[i(~k ·~x+ωt)] it responds in a complicated way, as described by the dielectric
function. In particular, the dielectric function of a plasma describes how it responds
to EM waves. Note that a dielectric function is typically a complex function. If it
has an imaginary part then it implies that the response is unstable, either showing
(exponential) damping or growth.

Relation to dispersion relation: Important insights come from considering the
zeros of the dielectric function; the relation between ω and ~k for which ε(~k, ω) = 0
is called the dispersion relation ω(k), which describes the normal modes of the
plasma.

Normal Modes: a normal model of a dynamical system is a pattern of motion that
can be sustained without external forcing and in which all parts of the system move
sinusoidally with the same frequency and with a fixed phase relation. In other words,
it is a mode of the form exp[i(~k ·~x+ωt)] that is a solution to the perturbation analysis
of the dynamical system. The frequencies of normal modes are known as its natural
frequencies or resonant frequencies (driving a system at its natural frequencies
causes resonance, i.e., a large response). The most general motion of a (linear) system
is a superposition of its normal modes. Normal modes are orthogonal to each other,
which implies that exciting one normal mode can never cause excitation of another
mode.

The refractive index, n, of a medium is the ratio of the speed of light in vacuum and
the phase velocity in the medium: n = c/vφ. Hence, since plasmas typically have
0 < ε < 1, and n =

√
ε, we have that the group velocity of EM waves in a plasma

vφ > c. note that this is NOT a violation of special relativity, since information
is propagated by the group velocity vg = ∂ω/∂k, and not by the phase velocity
vφ ≡ ω/k.

An example of a plasma with an index of refraction less than unity is Earth’s iono-
sphere. This causes EM waves propagating through the ionosphere to be bent ”away
from the normal” allowing the radio wave to be refracted back toward earth, thus
enabling long-distance radio communications

Recall, the refractive index may depend on wavelength, which is called dispersion,
as for example in a prism. Since the dielectric function of a plasma in general depends
on wavelength, most plasma’s are dispersive
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WORKSHEET 1

Gauging Prior Knowledge

The next page has a a list of concepts that will be discussed in ASTR 501. In order to
gauge your level of knowledge at the beginning of this course, please indicate (using
a cross) your level of familiarity with each topic:

Use ‘Familiar’ if you understand this topic well, to the point that you can explain it
to you peers.

Use ‘Somewhat’ if you have heared of it, but are not comfortable with it.

Use ‘Not at all’ if you have never heared of it, or heared of it without knowing really
what it is.
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SPRING 2022

Term Familiar Somewhat Not at all
Euler-Lagrange equations 6 1
Hamilton-Jacobi equation 4 3
Canonical transformation 3 4
Noether’s theorem 2 4 1
Poisson brackets 3 2 2
Action-Angle variables 2 1 4
Integrable Hamiltonian 2 4 1
Liouville Theorem 2 3 2
Molecular chaos 1 3 3
BBGKY hierarchy 3 4
Markovian process 3 2 2
Fluctuation-Dissipation Theorem 1 6
Langevin equation 1 6
Smoluchowski equation 1 6
Fokker-Planck equation 3 3 1
Lagrangian vs. Eulerian derivatives 5 2
Navier-Stokes equation 5 2
Baroclinicity 1 3 3
Kelvin’s circulation theorem 2 1 4
Crocco’s theorem 7
Reynold’s number 2 5
Reynold stress 1 3 3
Ranking-Hugoniot jump conditions 1 4 2
Rayleigh-Taylor instability 4 2 1
Kelvin-Helmholtz instability 5 2
Thermal instability 4 3
Jeans equations 3 4
Jeans’ theorem 4 3
Impulse approximation 3 1 3
Gravothermal Catastrophe 2 2 3
Plasma frequency 5 2
Lenard-Balescu equation 2 5
Alfvén velocity 7
Landau damping 1 4 2
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FALL 2023

Term Familiar Somewhat Not at all
Euler-Lagrange equations 8 2
Hamilton-Jacobi equation 4 4 2
Canonical transformation 4 3 3
Noether’s theorem 6 2 2
Poisson brackets 6 2 2
Action-Angle variables 2 4 4
Integrable Hamiltonian 1 6 3
Liouville Theorem 3 2 5
Molecular chaos 1 1 8
BBGKY hierarchy 2 8
Markovian process 2 8
Fluctuation-Dissipation Theorem 1 9
Langevin equation 1 1 8
Smoluchowski equation 1 9
Fokker-Planck equation 1 6 3
Lagrangian vs. Eulerian derivatives 6 4
Navier-Stokes equation 3 6 1
Baroclinicity 1 9
Kelvin’s circulation theorem 2 1 7
Crocco’s theorem 2 8
Reynold’s number 7 3
Reynold stress 4 6
Ranking-Hugoniot jump conditions 1 4 5
Rayleigh-Taylor instability 3 3 4
Kelvin-Helmholtz instability 3 5 2
Thermal instability 2 4 4
Jeans equations 3 5 2
Jeans’ theorem 3 4 3
Impulse approximation 1 5 4
Gravothermal Catastrophe 1 4 5
Plasma frequency 2 2 6
Lenard-Balescu equation 2 8
Alfvén velocity 1 3 6
Landau damping 1 6 3

343



WORKSHEET 2

Integrable or Not Integrable?

Which of the following Hamilitonian systems is integrable and why?

Example 1: one-degree of freedom, single particle

The Hamiltonian of a n = 1 system is

H(q, p) =
p2

2m
+ V (q)

According to Liouville’s theorem of integrable systems (Chapter 4), a system of n
degrees of freedom (hereafter dof) is integrable if it has (at least) n integrals of
motion (hereafter IoM), Ii, in involution ({Ii, Ij} = 0).

Since H 6= H(t) (no explicit time-dependence), we have that dH/dt = 0 and the
Hamiltonian itself is thus a constant of motion (H = E, reflecting conservation of
energy, consistent with symmetry under time-translation and Noether’s theorem).
Hence, the system is integrable.

Every time-independent Hamiltonian with one dof is integrable

Example 2: two uncoupled Hamiltonians of 1 degree of freedom

The hamiltonian of this n = 2 system is

H(q1, q2, p1, p2) = H1(q1, p1) +H2(q2, p2)

In order for this system to be integrable it needs two IoM in involution. Since the two
Hamiltonians are uncoupled and time-independent, both H1 and H2 are constants
of motion. Furthermore, they are in involution, which follows directly from

{H1,H2} =
∂H1

∂qi

∂H2

∂pi
− ∂H1

∂pi

∂H2

∂qi
= 0

(i.e., one of the factors in each term is always zero. Hence, this system is integrable.
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any Hamiltonian H(q1, ..., qn, p1, ..., pn) =
n∑

i=1

Hi(qi, pi), representing a sum

of n uncoupled, time-independent Hamiltonians of 1 dof, is integrable

Example 3: free particle (n = 2) moving inside a box

Consider a free particle (no force and thus no potential) moving in a 2D (x, y) system
constrained by 0 ≤ x ≤ L and 0 ≤ y ≤ L. These constraints are NOT holonomic,
and therefore do not reduce the number of degrees of freedom. Rather, they specify
what in dynamics is called the stadium (see first panel of Fig. 37).

The Hamiltonian of this system is given by

H(x, y, px, py) =
p2x
2m

+
p2y
2m

+ V (x, y)

The potential only specifies the stadium and is such that V (x, y) = 0 inside the
stadium, and ∞ outside (indicating a reflective boundary). Although this makes the
Hamiltonian not differentiable, this is only a problem at the boundary, not in the
stadium, and therefore of no concern.

For the system to be integrable it needs n = 2 IoM in involution. So let’s think
about what are constants of motion. First of all, since H 6= H(t), we have that the
Hamiltonian itself is an integral of motion. Note that px and/or py are NOT IoM;
after all, when you bounce against the wall at x = L then px changes sign. What is
conserved, though, is the square of the momentum; hence, both p2x and p2y are IoM.
It is easy to see that these are in involution:

{p2x, p2y} = {pxpx, pypy} = px{px, pypy}+ px{px, pypy} = −2px{pypy, px} =

− 2px [py{py, px}+ py{py, px}] = 4pxpy{px, py} = 0

The last step follows from the fact that px and py are canonical momenta.

So we have two IoM in involution, and therefore the system is integrable. Note that
we do NOT have three independent IoM in involution; although the Hamiltonian is
another IoM, and it is in involution with both p2x and p2y (which is easy to see), it is
not independent; after all, inside the stadium H = (p2x/2m) + (p2y/2m).

Finally, you may wonder what happens to a particle that I start from the center
(x, y) = (L/2, L/2) and shoot under an angle of 45o at one of the corners. How do
you apply the law of reflection in this case. This case cannot be treated, and because
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Figure 37: The stadiums discussed in examples 3 to 6.

of this Hamiltonian system is actually pseudo-integrable: there is a subset of initial
conditions of measure zero for which you can not write down what the solution is.

Example 4: free particle (n = 2) moving inside a circular stadium

Same situation as in example 3, except that this time the stadium is circular with a
radius R (see second panel of Fig. 37).

The Hamiltonian of this system is given by

H(x, y, px, py) =
p2x
2m

+
p2y
2m

+ V (x, y)

where this time V (x, y) = 0 if r =
√
x2 + y2 < R and infinity otherwise. Upon

inspection it is clear that neither px or py, nor p
2
x or p2y are IoM. The Hamiltonian

itself, though, still is one.

In this case, the system has circular symmetry. I can rotate the stadium around the
z-axis and everything remains the same. Hence, the Hamiltonian obeys a continuous
symmetry, and Noether’s theorem tells us that there must be an associated constant
of the motion. It is easy to see that this is the angular momentum Lz = xpy − ypx.
We leave it as an exercise for the reader to confirm that {H, Lz} = 0, and thus that
we have two independent IoM in involution. Yes, this system too is integrable.

Example 5: free particle (n = 2) moving inside a square stadium with
circular object in center

In this example we place a circular object at the center of a square stadium, as
depicted in the third panel of Fig. 37. Note that this time there is no circular
symmetry, and thus no conservation of angular momentum. Neither are px, py, p

2
x

or p2y conserved. The only constant of motion is the actual Hamiltonian, and this is
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thus a non-integrable system! You can easily see that it is subject to chaos (extreme
sensitivity to initial conditions), by considering the two trajectories shown in Fig. 37.

Example 6: free particle (n = 2) moving inside a Bunimovich stadium

The Bunimovich stadium is depicted in the rightmost panel of Fig. 37. It is con-
structed by cutting a circle in two halves, and connecting them with straight lines,
to make a shape similar to that of the Circus Maximus in ancient Rome. Similar to
example 5, because of the lack of symmetry, there is no IoM other than H, and this
is another example of a non-integrable Hamiltonian system. The last two examples
show that

even systems with only 2 degrees of freedom can produce chaos

Example 7: particle in a central potential in 3D

The Hamiltonian for this example is

H(~q, ~p) = H(~r, ~p) =
~p2

2m
+ V (r)

For this Hamiltonian with 3 degrees of freedom to be integrable, it need to have 3
independent IoM in involution. As always, because the Hamiltonian is autonomous,
H is an IoM. Also, because the potential is central, we have spherical symmetry,
and thus ~L is an integral of motion. Now, ~L has three components, so these are
really three IoM. However, they are NOT in involution with each other; {Li, Lj} 6= 0

when i 6= j (think of quantum mechanics, in which L̂x and L̂y do not commute).
Hence, we can only pick one of the three components, and we shall pick Lz. It is not
difficult to check that Li Poisson commutes with H. Thus, thus far we have two IoM
in involution. As it turns out, one can take ~L2 as a third one, since {Lz, ~L

2} = 0.
Hence, this system is integrable!

Every central force problem is integrable in 3D, independent of V (r)

Example 8: a two-particle system in 3D

For this case we have that

H(~r1, ~r2, ~p1, ~p2) =
~p21
2m1

+
~p22
2m2

+ V (~r1, ~r2)
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For this system to be integrable, we need a total of 6 independent IoM in involution
(there are 6 degrees of freedom). However, the system doesn’t have any symmetry,
and no IoM other than H is obvious. In order to get some insight, it is useful to go
to the center of mass coordinate system. Let ~r = ~r1 − ~r2, ~R = (m1~r1 + m2~r2)/M ,

M = m1 + m2, µ = m1m2/M , ~P = ~p1 + ~p2 and ~p = µ(~v1 − ~v2). In these new
coordinates, the Hamiltonian is given by

H(~r, ~R, ~p, ~P ) =
~P 2

2M
+
~p2

2µ
+ V (~r, ~R)

Note that this does not really simplify the situation. As it turns out, this general
two-particle system has no IoM other than H. Note that not even ~P is conserved,
which is obvious from the fact that the potential depends on ~R. Clearly, then, this
system is not integrable.

Example 9: a two-particle system in 3D for which V = V (|~r1 − ~r2|).
For this case we have that in the center-of-mass frame, the Hamiltonian is given by

H(~r, ~R, ~p, ~P ) =
~P 2

2M
+
~p2

2µ
+ V (r)

Hence, we see that ~R is cyclic, and thus that the conjugate momenta ~P = (Px, Py, Pz)
are conserved. In fact, upon closed inspection one notices that the above Hamiltonian
can be split in two: H(~r, ~p, ~P ) = H1(~P ) + H2(~r, ~p). The first term corresponds to
a free system (the center of mass), which is integrable, and the second corresponds
to a 3D central force system, which, as we have seen in example 7 is also integrable.
Hence, the total system must be integrable as well, and indeed, with respect to the
center of mass the angular momentum vector is conserved (spherical symmetry →
Noether’s theorem), and we can add Lz and ~L2 to our list of four IoM for a grand
total of 6, as required.

A two-body system with a central force is integrable

Example 10: an n-particle system in 3D with central forces

Consider the following Hamiltonian

H(~q1, ~q2, ..., ~qn, ~p1, ~p2, ..., ~pn) =
n∑

i=1

~p2i
2mi

+
∑

i 6=j

V (|~ri − ~rj |)
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As we have seen, this is integrable for n = 2; what about n > 2? Converting again
to the center of mass frame, one infers the following integrals of motion (we’ll worry
about involution later):

• the Hamiltonian H itself (because H 6= H(t))

• the total angular momentum vector ~Ltot =
∑

i ~ri × ~pi

• the total momentum vector ~Ptot =
∑

i ~pi (since there are no external forces,
the total momentum is conserved; see Chapter 3)

• the initial position vector, ~R0, of the center of mass. Since ~R(t) = ~R0 +

(~Ptot/M)t, we have that R0 = R(t)− (~Ptot/M)t is an integral of motion

No matter how hard you try, you will not find another independent integral of motion.
Hence, we have a grand total of only 10 integrals of motion (these are known as the
10 Galilean invariants). For an n particle system in 3D we have 3n degrees of
freedom, and we thus need 3n IoM in involution. Hence, we immediately see that
the system will NOT be integrable for n ≥ 4. For the case n = 3 it comes down to
whether or not the the Galilean invariants are in involution or not. We already know
that ~Ltot only yields 2, rather than 3 independent IoM in involution (Ltot,z and ~L

2
tot).

We leave it as an exercise for the student to show that not all of the remaining IoM
are in involution, and we thus conclude that

An N-body system in 3D is NOT integrable for N > 2,
even when all the forces are central
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