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The Fokker-Planck Equation
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The Smoluchowski Equation

Consider three arbitrary times: t3 > f> > t1 and let x(t) be a random process

We can alway write that
Py(x3,t3|x1,t1) = /P3($3,t3|332,t2;$1,t1) Py (o, to|x1, t1) dzo

which simply states that as x transitions from x1 at t1 to x3 at t3, it must pass through
some x2 at 1o

[ff the random process is Markovian and stationary, we have that

P3(x3,ts|z2,t2; x1,t1) = Pa(x3,t3|T2, t2) = Pa(x3,t3 — ta|z2)

In this case the expression simplifies to

Py(x3,t3|z1) = /P2($3,t3 — ta|z2) Po(z2,t2|x1) das

known as the Smoluchowski equation (or the Chapman-Kolmogorov equation)



From Smoluchowski Equation to Fokker-Planck

Py(x3,t3|x1) = /P2($3,t3 — ta|z2) Po(z2,t2|x1) das

zz : L wp | Po(z,t+ At) = /\IJ(A:U, At|lz — Az, t) Py(x — Az, t|zo)d(Az)

r1 — Xy only valid for stationary, Markovian random process
where ¥ (Azx, At|z — Az, t) = Py(z,t + At|lx — Az, t) is the transition probability that

starting from x — Az at t the random variable undergoes a change Az in timestep At

Using a Taylor series expansion for the integrant in the above expression, we obtain

n

Py(z,t+ At) = / d(Ax) Z Aa: V(Az, At|x — Az, t) Py(x — Ax,t|zg)]

r—Az=x

-/ d(Aa:)Z(_Ax)n W (Aa, Atlz, 1) Po(e, tzo)

n! ox™

. (—nl!)” 8‘1 ! [P2(;I;,t|x0) / d(Az) (Az)" U(Az, Atlz — A, t)

_ Z(_1)n 9" (((A2)") Pa(a, tlao)

n! Oxm



From Smoluchowski Equation to Fokker-Planck

Using that the n=0 term in the Taylor series expansion is nothing but P,(z, t|x,) we obtain

8P2($,t|$0) . Pg(x,t"‘Aﬂxo) — P2($,t|$0)
= lim
ot At—0 At
; 5 [D®(@,t) Po(a, tlzo)]

Ax)™
where we have defined | D™ (z,t) = Alimo (Az) Axt) )
"

If we only keep the first two terms in the Taylor series expansion (i.e., we assume that
Ax is small enough such that the higher order terms can be ignored), then we obtain the

aPZ _ —Q[D(l)PQ] i

0P, 17
ot ox

255207 P

Fokker-Planck equation

This is a generalized diffusion equation for the evolution of P»



The Fokker-Planck Equation

Validity: when is the FP equation valid?

Assumptions made: random process is stationary & Markovian
diffusive limit (Ax small)

A stochastic force is Markovian if ‘'sampled’ on time scale Af > zcol

As discussed in the lecture notes, these assumptions are valid for describing
the collisional evolution of a globular cluster, or the Brownian motion of a
pollen floating in the air (if pollen is massive compared to air molecules).

However, the FP equation can not be used to describe the diffusion of
individual air molecules.



Diffusion in velocity space: Av =v(At) — v
® — lim B o L _
DU = A = A A
- ((Av)?) 1
D® = Alir_r)lo N AI}tr_r)lo Y [(v(At)v(At)) — 2v(v(At)) + v?]
For white noise we have that (v(t)) = ve /™

Substitution in the expressions for D) and D@ and using Taylor series expansion for exponential:

DO — _, L D@ —op_
m’ m?2

T4 ov

* OP(v,t) %lvavP(v,t) N D~*0 P(v,t)] _ 19 [vP(v,t) D OP(v,t)

or ov m Ov? + 4 Ov

Recall: dissipation time z4= m/y



OP(v,t) 1
o  m K ov m Ov?

- +_

2 52
0vP(v,t) N D~ 0 P(v,t)] _ 19 [’UP(’U,t) f@Pa(z,t)
d

Tq OV

Let’s see what this does:
Let’s assume that P(v,0) is a narrow Gaussian centered on vo>0
The FP expression has three terms:
P(v,t) which is positive for all v
v dP/ov which is positive for O < v < vo, negative otherwise
02P/dv2 which is negative for |v-vo| < o, positive otherwise

The second term causes the PDF to move towards v=0 (friction)
The third term causes the PDF to broaden (diffusion)

2
At equilibrium 8P (v, £) /0t — 0, This requires that 2F = —“™p = P ocexp (-T2
ov D 2D~

Using the Einstein-Smoluchowski equation, according to which Dy = kgT' and requiring
normalization, we obtain the Maxwell-Boltzmann distribution

m 1/2 mu?
Fealv) = (27rkBT) oxP (_ZkBT)




Extension to higher dimensions:

The FP equation we derived thus far is valid for one-dimensional Markov processes X(t).

It is straightforward to extent this to multi-dimensional Markov processes x(t)=[x1(t),xz(t),..

Note that the first-order diffusion "coefficient’ is now a vector, and the second-order

diffusion "coefficient; has become a tensor

6P2 8 (1) 1 82 (2) aP _ (1) 1 62 (2)
B = gDV P+ 55 DO W |G =g [DURI g5 5, 1D P
M _ ROAR) (Ad). T(AZ AR — Tim AL):)
D7 = Al}tr_l% t/d (AZ) (Ax); V(AZ, At|Z) = lim
@ _ pm L [ gr(Az AR T(AR ALY — T (AT (AT)))
D;; Alir_rgo t/d (AZ) (Az); (Az); ¥(AZ, At|Z) = lim ”

. Xn(t)]

The above multi-dimentional FP equation has many applications in physics, mathematics
and beyond...



The collision integral as a Fokker-Planck equation:

Thus far we focussed on FP applications in which we want to describe the evolution of a PDF
P(x,t) that starts from some xg at t=to

Sometimes, though, we want to describe the evolution of an unconstrained PDF, P(x,t), under
the influence of some stochastic force.

A particular application of the latter is to describe the evolution of the 1-particle
distribution function, f=f(1), under the influence of long-range forces (i.e., gravity) in
cases where the collisionality of the system is not negligible.

This evolution is described by the Boltzmann equation
df Bf of
dt ~ ot LAY = ( )
with the collision integral given by

O\ [ o e OU(G — @) OF®
(at)c_/d%d“ o4, o7,

which is a complicated-to-solve integro-differential equation that depends on the 2-particle
DF, which thus requires input from higher-order equations in the BBGKY hierarchy



The collision integral as a Fokker-Planck equation:

As an alternative approach, we now try to use the Fokker-Planck equation to solve this

Hence, we seek a FP equation that describes the evolution of f(q,p,t), due to collisionality,
rather than the evolution of P2(q,p,t|qo,po,t)

Our stochastic variable is w(t) = (q(t), p(t)

’

Let V(Ad, W) d°(Aw) At be the transition probability that a particle with phase-space coordinates
W is scattered to the phase-space volume d°(Aw) centered on @ + Aw during At

Stochastic collisions cause the distribution function to change based on a competition between
a gain term and a loss term:

(5
loss term : ( fa(ZU)) = —f(w) /dG(A’JJ’) U (AW, W) ,

gain term : (8]”_(10_’)) = /d6(A'u7) U (AW, W — Aw) f(w — Aw)
o ).,

Hence, we can write the collision integral as

(%f)c — /dG(Aw) (U (AD, @ — AD) f (0 — Ad) — U (A, @) f ()]

Note the subtle assumption that f(w)and (A, w) are statistically independent: molecular chaos



The collision integral as a Fokker-Planck equation:

Now let’s restrict ourselves to weak encounters only (those for which |A|is small)

Then we can Taylor expand and truncate at second order (i.e., make FP ansatz)

U(AD, @ — AG) f(@ — AT) = U(AD, @) f(&F)—
82

3 Awi% (U(AD, @) f(&)] + % > Aw; Aw; (¥ (AW, @) f(w)]

i=1 i,j=1

Substituting in our expression for the collision integral then yields

9N 32w fy + 13 -2 (Dlawaw,) fa)
8t c B i—1 6’(1)2 ’ 2 i1 8’11)18’11)9 ' I v
with the following diffusion coefficients: [] not is a function of’, but average of’
D[Aw;Aw;] = /dG(Afu'f) Aw;Aw; ¥ (AW, W)

These express the expectation values for changes in Aw; and Aw;Aw; per unit time interval



The collision integral as a Fokker-Planck equation:

Substituting this expression for the collision integral (which is a Fokker-Planck equation)
in the Boltzmann equation yields

82

ow; 0w;

- Z D (i )+ 5 Y

,7=1

{D[Aw;Aw] f(w)}

Kramer’s equation of Schwarzschild equation

NOTE: sometimes the above equation is simply referred to as the Fokker-Planck equation

The above equation describes the Lagrangian evolution of the distribution function due to
long-range collisions (for which, as we will see, the assumption of weak collisisions is justified).

Note that it is a differential equation, rather than an integro-differential equation, which is
much easier to solve.

Key is to compute the first and second order diffusion coefficients...

This Kramer’s equation is the primary tool we have (in addition to N-body simulations) to
describe the evolution of a gravitational system under the influence of collisions



Weak vs. Strong Encounters

The Fokker-Planck equation, and thus Kramer’s equation, is only valid for weak encounters

But among the numerous collisions in a gravitational system, there will always be some
some encounters that are strong (cause a large |Ad|)...

We now demonstrate that their impact is negligible and can thus be ignored

The velocity impuls of a subject mass due to a high-speed encounter with a field particle
of mass m with impact parameter b and velocity v is given by

2G'm
bv

(you will derive this in one of the problem sets)

A’ULZ

Let’s define strong collisions as those for which the impact parameter b < bgo
where bgo is the impact parameter for which Av, = v, i.e., for which the deflection is 90 degrees

2Gm
bgg = 5
v

The surface density of field particles in a system of size R is roughly N/(7R?2)

N 2N

Hence, when a subject mass crosses the systemonceithas —db= — -27bdb= —bdb
db mR? R?

encounters with impact parameters in the range b, b+db



Weak vs. Strong Encounters

If we assume that the system is homogeneous, then <Av,> =0 (average out)

bma.x 2
/ db _ oy (G_m> In A
b b R'U

min

bmax 2
However, Av? = / (Av,)?(b) % db =8N (i_?:)

bmin

b
where we have defined the Coulomb logarithm InA = In ( bmax)
min
For weak encounters we can set bmin = boo and bmax = R

Substituting the expression for bgo we then have that In A = In N

, , , GM GNm , 8 )
Using that the typical velocity v ~ = VT ®r we obtain that Av? = N In Nv

Thus, it takes of the order of N/(8 In N) crossings for the net effect of weak encounters to
be such that (Av,)? ~ v?

N
This is called the two-body relaxation time Trelax = ———Teross
8In N




Weak vs. Strong Encounters

For comparison, we now compute how long it takes for strong collisions to have a comparable
effect

Since a single strong collision already causes (Av,)? > v? we just need to calculate the
collision time for strong collisions

Teoll = (now)™!
stro ]- R 2
rong __
n=3N / 4 R3 » Teoll — 3N ( bgo) Tcross
o = 7(2bgg)? = 4mb3,.
b 2G'm
90 — 2 N 2
v ron
» 7_52110 & = ETcross - g In N Trelax
v2 _ GNm
R

The net impact of weak encounters is of order In NV

times as important as that of strong encounters




The Diffusion Coefficients:

Solving the Fokker-Planck equation basically boils down to computing the diffusion coefficients
D[Aw;] and D[Aw; Aw;] with w; being a 6D phase-space vector

In general, doing this in 6D phase-space is extremely complicated. However, we can simplify things

From the expression for Av? we see that each octave in impact parameter makes an
equal contribution

Let us use this to derive the impact parameter b+/2 such that encounters with b < b1/2 contribute
50 percent to the total. This requires solving

In(b1/2) — In(bmin) = In(bmax) — IN(bmin)

bmax =R R
» b2 = \/—N

bma.x/bmin =A~N

More than 50 percent of the total impact of collisions is due to those with an impact parameter
that is significantly smaller than the mean particle separation Aint = R/N1/3

l local approximation is justified (unless resonance effects are important...)

|Ax| « |Av| this is true because encounter time b/v is much smaller than orbital time

(you will derive this in one of the problem sets)



The Diffusion Coefficients:

Hence, if we pick @ = (Z, %) then we are justified in setting D[Az;] = D[Az;Az;] = D[Az;Av;] = 0

and the Fokker-Planck equation simplifies to

af\ < oy L
(g)c——;a {D[Av;] f(w)} 5

{D|Av;Av;] f(w)}

ov; 8'03

and we are left with the task to compute D[Av;] and D[Av;Av]

Working out how encounters with impact parameter b between a field particle and a subject
mass impact the velocity of the latter and computing the expectation values <Av;> and <Av; Av;>
by integrating over b and the velocity distribution f(v) of the field particles, yields

D[Av;] = (Av;) = 47G*my(m +m,)InA

D[Av;Av;] = (Av;Av;) = 47G*mZInA

0,
5. )

0? .
Bvic?vj g(v)

with h(v) and g(v) known as the Rosenbluth potentials, given by

>
—~
S

|l

Q

VS
<y

N’
I]

/d3—' fa(ﬁa)
T — U,

/ &, fu(5) |5 — 7,

(see Binney & Tremaine for detailed derivation)



The Diffusion Coefficients:

If the velocity distribution of field particles is isotropic, this simplifies to

D[Avj] = —167G*m,(m+ m,) In A &y(v)
D[(Av)?] = ?’3_27r2G2m§ InAv [£4(0) + Fi(v)]
D[(Av,)?*] = ?;’—QWZG?mi InAv [3&(v) — E4(v) + 2F71(v)]

where

()

F0) = [ (%) fboa,

£.(v) = / (%) fuw)dv,

(%

It is straightforward to compute related diffusion coefficients, i.e.,

DIAE] = %((U+A17)2—772)=(Av-ﬁ)+(Af¢7-Aﬁ)

v D[(&w)] + 3DI(AD)] + 5 DI((A7)1)]

D[(AE)?] = v*D[(A%);)’]



The Diffusion Coefficients:

Now that we can compute the diffusion coefficient due to weak gravitational encounters
we can compute a more accurate (and more local) estimate of the two-body relaxation time

Since the two-body relaxation time is defined as the time scale on which the cumulative
effect of two-body collisions becomes significant, we have that

2

vrms

"l = Dl(Aw))?

Assuming that the velocity distribution of field particles is isotropic and Maxwellian,
that v2.ms = 02, and that the typical speed of a particle is equal to v = /3 o, one obtains

0.3

G?mp InA

Trelax — 0.34

Unlike the more common treiax = N/(8INN) 7cross this expression is based on local quantities

Solar neighborhood: (0 = 30 kms™, p = 0.04 Mg pc™3, m = 1 M)

&

Trelax = 6 X 10 yr(InA/18.5)~1



df™) — gfW) Dynamics

dt ot

Hamiltonian]

+ {f™, 1™} =0

O O = UG oy woei Tny By Dy 53 PN E)

Liouville Theorem

- - N o N
dft8) gHE) . ’ ” (N) _ p; _ e
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BBGKY Hierarchy U

. N
f(l\') _ / H (1(];3 (l[jl; f(:\")
+ {0, 10} = 7(£®)
is the system collisionlesss?

1 [% 0 are the forces short-range?

df B ofm
dt Ot

Gollisionless Molecular Chaos Diffusive limit
(@, q.p,52) = fOUG5) FV(G P2) |Add| = (|AZ], |A7]) small for At ~ 7o

Boltzmann Equation

e "

Boltzmann Equation Fokker-Planck Equation




Collisionless Boltzmann Equation:

df(l)

=0

dt
1 £(1) 9 £(1)
Boltzmann Equation: " _ (9F
dt ot /.o
. af® 9 m), 1 o (1)
Fokker-Planck Equation: & - o {D[Az i|f } - 501301’.) {D[Az iAv;| f }
Collisionless 1) S 7160 1D aft) Bolt
Boltzma'nn (l{lt = (| |take moments> / d3v ({“ = <take moments - {Jt = ( ?;f ) E;u:g:) a:n
Equation coll

2

0
—n

Master Moment Equation ot

o)+ =

().I','

[n{xp:)] +

0P
0.1',‘

X

\ (p) =collisional invariant

B

op;

Vv

Collisionless Fluid

Oij = O0jj du;

1 00;j

Jeans Equations

od

6 unknowns

No Equation of State

dt  p Ox;

(‘).I','

\Y

Navier-Stokes Equations
du;

1 0P {(’)u,
= = A B +
dx;

At poa;

Euler Equations
du; ~ 19P 09
dt pOx; Orx;

ou;

Collisional Fluid

ox; a

0P
ox;

2 . Ouy
SN —
3 '().l'}f
zero viscosity

p=0

Equation of State
P = P(p)




