
LECTURE 8





The Smoluchowski Equation
Consider three arbitrary times:  t3 > t2 > t1  and let x(t) be a random process
We can alway write that

which simply states that as x transitions from x1 at t1 to x3 at t3, it must pass through 

some x2 at t2

Iff the random process is Markovian and stationary, we have that

In this case the expression simplifies to

known as the Smoluchowski equation (or the Chapman-Kolmogorov equation)




From Smoluchowski Equation to Fokker-Planck

where                                                                         is the transition probability that 

starting from               at t the random variable undergoes a change        in timestep 

Using a Taylor series expansion for the integrant in the above expression, we obtain

only valid for stationary, Markovian random process



Using that the n=0 term in the Taylor series expansion is nothing but                    we obtain 

where we have defined

If we only keep the first two terms in the Taylor series expansion (i.e., we assume that 

∆x is small enough such that the higher order terms can be ignored), then we obtain the

Fokker-Planck equation

This is a generalized diffusion equation for the evolution of P2

From Smoluchowski Equation to Fokker-Planck



Validity:  when is the FP equation valid?

Assumptions made:  random process is stationary & Markovian
diffusive limit  (∆x small)

As discussed in the lecture notes, these assumptions are valid for describing

the collisional evolution of a globular cluster, or the Brownian motion of a

pollen floating in the air (if pollen is massive compared to air molecules).


However, the FP equation can not be used to describe the diffusion of 

individual air molecules.

A stochastic force is Markovian if `sampled’ on time scale  ∆t > 𝝉coll



Diffusion in velocity space:

For white noise we have that 

Substitution in the expressions for D(1) and D(2) and using Taylor series expansion for exponential:

Recall: dissipation time  𝝉d= m/𝛾



Let’s see what this does:

Let’s assume that P(v,0) is a narrow Gaussian centered on v0>0

The FP expression has three terms:

P(v,t)           which is positive for all v

v ∂P/∂v        which is positive for 0 < v < v0, negative otherwise

∂2P/∂v2           which is negative for  |v-v0| < 𝝈, positive otherwise

The second term causes the PDF to move towards v=0 (friction)
The third term causes the PDF to broaden (diffusion)

At equilibrium . This requires that

Using the Einstein-Smoluchowski equation, according to which                     and requiring

normalization, we obtain the Maxwell-Boltzmann distribution



The FP equation we derived thus far is valid for one-dimensional Markov processes x(t).

Extension to higher dimensions:

It is straightforward to extent this to multi-dimensional Markov processes x(t)=[x1(t),x2(t),…xn(t)]

Note that the first-order diffusion `coefficient’ is now a vector, and the second-order

diffusion `coefficient; has become a tensor

The above multi-dimentional FP equation has many applications in physics, mathematics 
and beyond…



Thus far we focussed on FP applications in which we want to describe the evolution of a PDF

P(x,t) that starts from some x0 at t=t0

Sometimes, though, we want to describe the evolution of an unconstrained PDF, P(x,t), under

the influence of some stochastic force.

A particular application of the latter is to describe the evolution of the 1-particle 
distribution function, f=f(1), under the influence of long-range forces (i.e., gravity) in 

cases where the collisionality of the system is not negligible.

This evolution is described by the Boltzmann equation

with the collision integral given by

which is a complicated-to-solve integro-differential equation that depends on the 2-particle 
DF, which thus requires input from higher-order equations in the BBGKY hierarchy

The collision integral as a Fokker-Planck equation:



As an alternative approach, we now try to use the Fokker-Planck equation to solve this

Hence, we seek a FP equation that describes the evolution of f(q,p,t), due to collisionality,

rather than the evolution of P2(q,p,t|q0,p0,t)

Our stochastic variable is  w(t) = (q(t), p(t))

Let                                    be the transition probability that a particle with phase-space coordinates

    is scattered to the phase-space volume              centered on                during    

Stochastic collisions cause the distribution function to change based on a competition between

a gain term and a loss  term:

Hence, we can write the collision integral as

Note the subtle assumption that          and                    are statistically independent:  molecular chaos   

The collision integral as a Fokker-Planck equation:



Now let’s restrict ourselves to weak encounters only (those for which         is small) 

Then we can Taylor expand and truncate at second order (i.e., make FP ansatz)

Substituting in our expression for the collision integral then yields

with the following diffusion coefficients:

These express the expectation values for changes in        and              per unit time interval

[.]  not `is a function of’, but `average of’

The collision integral as a Fokker-Planck equation:



Substituting this expression for the collision integral (which is a Fokker-Planck equation) 

in the Boltzmann equation yields

Kramer’s equation of Schwarzschild equation

NOTE: sometimes the above equation is simply referred to as the Fokker-Planck equation

The above equation describes the Lagrangian evolution of the distribution function due to

long-range collisions (for which, as we will see, the assumption of weak collisisions is justified).

Note that it is a differential equation, rather than an integro-differential equation, which is

much easier to solve.

Key is to compute the first and second order diffusion coefficients…

This Kramer’s equation is the primary tool we have (in addition to N-body simulations) to 

describe the evolution of a gravitational system under the influence of collisions

The collision integral as a Fokker-Planck equation:



The Fokker-Planck equation, and thus Kramer’s equation, is only valid for weak encounters

Weak vs. Strong Encounters

But among the numerous collisions in a gravitational system, there will always be some

some encounters that are strong (cause a large         )…

We now demonstrate that their impact is negligible and can thus be ignored

The velocity impuls of a subject mass due to a high-speed encounter with a field particle

of mass m with impact parameter b and velocity v is given by

(you will derive this in one of the problem sets)

Let’s define strong collisions as those for which the impact parameter b < b90

where b90 is the impact parameter for which ∆v⊥ = v, i.e., for which the deflection is 90 degrees

The surface density of field particles in a system of size R is roughly  N/(𝜋R2) 

Hence, when a subject mass crosses the system once it has 
encounters with impact parameters in the range b, b+db



If we assume that the system is homogeneous, then <∆v⊥> = 0  (average out)

However,

where we have defined the Coulomb logarithm

For weak encounters we can set bmin = b90 and bmax = R

Substituting the expression for b90 we then have that ln Λ ≃ ln N

Using that the typical velocity we obtain that 

Thus, it takes of the order of N/(8 ln N) crossings for the net effect of weak encounters to

be such that  

This is called the two-body relaxation time

Weak vs. Strong Encounters



For comparison, we now compute how long it takes for strong collisions to have a comparable

effect

Since a single strong collision already causes                       we just need to calculate the

collision time for strong collisions 

Weak vs. Strong Encounters



The Diffusion Coefficients:

Solving the Fokker-Planck equation basically boils down to computing the diffusion coefficients
and                      with      being a 6D phase-space vector

In general, doing this in 6D phase-space is extremely complicated. However, we can simplify things

Let us use this to derive the impact parameter b1/2 such that encounters with b < b1/2 contribute

50 percent to the total. This requires solving

From the expression for         we see that each octave in impact parameter makes an 

equal contribution

More than 50 percent of the total impact of collisions is due to those with an impact parameter

that is significantly smaller than the mean particle separation 𝜆int = R/N1/3 

local approximation is justified (unless resonance effects are important…)

|∆x|  ≪  |∆v|   this is true because encounter time b/v is much smaller than orbital time
(you will derive this in one of the problem sets)



Hence, if we pick                     then we are justified in setting 
and the Fokker-Planck equation simplifies to 

and we are left with the task to compute              and  

The Diffusion Coefficients:

Working out how encounters with impact parameter b between a field particle and a subject 

mass impact the velocity of the latter and computing the expectation values <∆vi> and <∆vi ∆vj> 

by integrating over b and the velocity distribution f(v) of the field particles, yields

with h(v) and g(v) known as the Rosenbluth potentials, given by

(see Binney & Tremaine for detailed derivation)



If the velocity distribution of field particles is isotropic, this simplifies to

The Diffusion Coefficients:

where

It is straightforward to compute related diffusion coefficients, i.e.,



Now that we can compute the diffusion coefficient due to weak gravitational encounters

we can compute a more accurate (and more local) estimate of the two-body relaxation time

The Diffusion Coefficients:

Since the two-body relaxation time is defined as the time scale on which the cumulative

effect of two-body collisions becomes significant, we have that

Assuming that the velocity distribution of field particles is isotropic and Maxwellian, 

that v2rms = 𝜎2, and that the typical speed of a particle is equal to v = √3 𝜎, one obtains

Unlike the more common 𝝉relax = N/(8lnN) 𝝉cross this expression is based on local quantities

Solar neighborhood:






