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In general, a random process is completely specified by the following set of

probability functions:
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Similarly, we can also compute the ensemble averages that involve multiple epochs, 

such as
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For f(x) = x, ergodicity means that the time average of a given realization (when averaged 

over a sufficiently long time) is equal to the ensemble average over many realizations
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Hence we have that

which impies that a stationary Markov process is completely specified by

and

Bayes Theorem: P(A,B) = P(A|B) P(B) = P(B|A) P(A) P(A|B) =             =  P(B|A) P(A) 
P(B)P(B)

P(A,B)  



Consider a collisional N-body system, and lauch particles with phase-space 
coordinates (q0,p0) at different times ti

Each of these particles will execute different trajectories, 𝛍i(t) = (q(t),p(t)) in 
phase-space due to the fact that the forces, F(t), it experiences are stochastic

In other words, F(t), is a random variable, and as a consequence, so is 𝛍(t)

The stochasticity is a manifestation of collisions with all the other particles.

Hamiltonian systems are deterministic, and this stochasticity is only a consequence of 
not knowing the exact microstate corresponding to the macrostate of the system

Let  <𝛍(t)>  be the ensemble average trajectory

We can write:

where  <F(x)> is the force field that gives rise to  <𝛍(t)> , and the residual   <𝛅F(x,t)> 
is the stochastic force, for which <𝛅F>=0 
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We can write  <F(x)>  as the sum of a velocity-independent, conservative force,

Fc(x) = -∇ V(x) , and a velocity-dependent force, Fnc(x,t)

Hence,  <𝛍(t)>  is NOT the same as the trajectory in the absence of stochastic forces !!!

The velocity-dependent component manifests as a friction force.

Note that particles experience both friction (<v>: v0 → 0)  as well as diffusion
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Evolution of an ensemble of particles in a thermal bath
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In what follows, we ignore spatial dependence; we assume a homogeneous sea of particles

of density ρ, and we will assume that the impact of stochasticity at x where the density is

ρ(x) is identical to the impact it would experience in a homogeneous sea of that density.

This is known as the local approximation, which is common in gravitational N-body systems

Using Taylor series expansion, and making the local approximation, we have that

Since velocity-independent force is already accounted for by Fc(x) = -∇ V(x), we have that c0=0

Let’s truncate series at first order, so that equation of motion for our subject mass becomes

where we have replaced c1 by 𝛾, which is called the friction coefficient   ( [𝛾] = g s-1)
The quantity 1/𝛾 is sometimes called the mobility

The equation of motion is a stochastic differential equation, known as the Langevin equation
It differs from ordinary differential equations in that it contains a stochastic term, 𝛅F(t).

It has a different solution for each realization of the random process.
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What are you supposed to do with a stochastic equation, like the Langevin equation?

You try to solve for the ensemble average, <𝛍(t)>, using statistical properties of the random

process; in this case, statistical properties of 𝛅F(t)

Because of our assumption of homogeneity, we actually have that ∇ V(x) = 0.
If we further simplify matters by considering a 1D system, the Langevin eq. simplifies to

Multiplying by exp(𝛾t/m) and rearranging yields

which is easily solved:
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Taking the ensemble average, and using that <𝛅F>=0,  we obtain

Hence, the ensemble average decays to zero on a `dissipation’ time  𝝉d= m/𝛾

NOTE: it is called a dissipation time, because a decrease in kinetic energy implies a 

decrease in energy (recall that V=0). This may sound confusing, given that we are working 

with Hamiltonian systems, which are non-dissipative.  However, the energy is transferred 

to other particles, though, so there is no net dissipation.

Let’s now solve for the ensemble average of the trajectory:

As expected, this represents a particle that moves in a straight line with a velocity

that is decaying with time…
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But we can also compute more complicated ensemble averages, for example the correlation

between the velocities at different times:

Here again we have used the fact that <𝛅F>=0 to drop the cross terms

As is evident, in order to compute the correlation between the velocities, we need to know

how the stochastic forces are correlated.

Typically, if t2-t1 ≫ 𝝉coll  then the forces will be uncorrelated, i.e., <𝛅F(t1)  𝛅F(t2)>=0

If 𝝉coll  is much shorter than any other timescale of interest, we can effectively take the 

limit 𝝉coll → 0, for which 

Here the factor 𝛾2 has been put in for convenience, and D characterizes the strength of 

the correlation. It is called the diffusion coefficient  ( [D] = cm2 s-1)  as will become evident.

A stochastic variable x that obeys  <x(t1) x(t2)> ∝ 𝛿(t2-t1)  is referred to as white noise
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Substituting                                                      yields

In the limit t→∞  we can drop the last term, as well as                        since v→0, hence

Using that we assume stochastic force to be stationary, we can rewrite this as

Hence, velocities are correlated but only for a short period; they become uncorrelated 

again on the dissipation time 𝝉d= m/𝛾.  This justifies Boltzmann’s molecular chaos ansatz
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Reverting back from 1D to 3D, this becomes

Hence, after a sufficiently long time the velocity dispersion among particles that all started 

from an identical point in phase-space, is given by

Thus we see that the velocity dispersion asymptotes to a constant value!!!

This is a manifestation of the fluctuation-dissipation theorem, which basically states that

fluctuating forces cause dissipation (friction)

We thus infer that

which is known as the Einstein-Smoluchowski relation. It shows that the diffusion coefficient 
and the friction coefficient are closely related

The Einstein-Smoluchowski Equation

valid as long as field particles are 
thermal bath in thermal equilibrium

We know that collisions drive the system towards equipartition, in which the kinetic energy 

of the subject mass becomes equal to that of the field particles:



The Smoluchowski Equation
Consider three arbitrary times:  t3 > t2 > t1  and let x(t) be a random process
We can alway write that

which simply states that as x transitions from x1 at t1 to x3 at t3, it must pass through 

some x2 at t2

Iff the random process is Markovian and stationary, we have that

In this case the expression simplifies to

known as the Smoluchowski equation (or the Chapman-Kolmogorov equation)




From Smoluchowski Equation to Fokker-Planck

where                                                                         is the transition probability that 

starting from               at t the random variable undergoes a change        in timestep 

Using a Taylor series expansion for the integrant in the above expression, we obtain

only valid for stationary, Markovian random process



Using that the n=0 term in the Taylor series expansion is nothing but                    we obtain 

where we have defined

If we only keep the first two terms in the Taylor series expansion (i.e., we assume that 

∆x is small enough such that the higher order terms can be ignored), then we obtain the

Fokker-Planck equation

This is a generalized diffusion equation for the evolution of P2

From Smoluchowski Equation to Fokker-Planck


