
LECTURE 6





N-particle Phase-Space  (𝚪-space):  

                     the 6N-dimensional phase-space of a dynamical system is a space in which 

                     all possible states of a system are represented, which each possible space            

                     corresponding to one unique point in that phase-space.

1-particle Phase-Space (𝛍-space):  

                    the 6-dimensional phase-space of a dynamical system is a space covering

                    all possible phase-space coordinates of individual particles. Each particles

                    corresponding to one point in that phase-space.

Note: unlike in 𝚪-space, in which two trajectories can never intersect one-another, 

          in 𝛍-space the trajectories (of individual particles) can cross one another.




The BBGKY Hierarchy

Liouville Theorem

reduced k-particle DF

one-particle DF

Hamiltonian
2-body  
interaction 
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external  
potential



short-hand notation

etc.

2-point correlation function

3-point correlation function

Correlations are induced by collisions (interactions) among the particles

The Mayer Cluster Expansion



Collisionless System  →  g(1,2)=0  →  Collisionless Boltzmann Equation (CBE)[A]

System with long-range collisions  (collisional Plasma or low-N gravitational system)

assumptions;  h(1,2,3)=0   +  fluid is homogeneous  +  g(1,2) relaxes faster than f (1)

→  Lenard-Balescu equation

here f = f (1)see chapter 27

[C]

System with short-range collisions  (neutral gas or liquid) 

assumption of molecular chaos;  
→  Boltzmann Equation

[B]



In what follows we focus on the 1-particle distribution function f , dropping the (1)-superscript

We consider collision integral term in the Boltzmann equation:

consider the following elastic two-particle collision

these collisions obey:



Write the rate at which particles of momentum p1 at x experience collisions                                 as:                                                    

The function                            depends on the interaction potential U(r) and can be calculated

(in principle) via differential cross sections

Momentum & energy conservation  →

with                      and

Time reversibility  →  

Using principle of molecular chaos  →  

➠

for brevity we no longer write out the explicit x-dependence of the DF

depleting  
collisions

replenishing  
collisions



What can we learn about the equilibrium distribution function, feq(x,p) ?

Equilibrium →

Ignore external potential & spatial homogeneity →
}

Detailed balance  →

  →

This has form of a conservation law, and suggests that log[f] must be equal to sum of

conserved quantities, A(p), that obey

We have the following collisional invariants:

This therefore suggests that



This therefore suggests that

It can be shown that this implies the Maxwell-Boltzmann distribution

In other words: the MB-distribution is the equilibrium solution of the Boltzmann equation



It can be shown that

Proof:

define

re-labelling 1⥋ 2 and re-ordering yields

Starting from the first expression and swapping p1⥋ p’1  yields

re-labelling 1⥋ 2 and re-ordering yields

Time reversibility                                                         implies that 
and thus



substituting the expressions from the previous page:

A(p) is a collisional invariant  →                                                                   →

Q.E.D.

As long as A(p) is a collisional invariant we have that                                                                  

we will use this shortly to obtain the Navier-Stokes equations from the Boltzmann equation



Solving the Boltzmann equation

for the 7-dimensional DF f (x,v,t) is a non-trivial task 

Rather, we are going to solve moment equations of the Boltzmann equation

Consider a scalar function Q(v). The expectation value for Q at location x at time t is given by

using that

we see that



these are our macroscopic quantities of interest…

Define

NOTE:   u(x,t) = <v(x,t)>  is the mean velocity of all particles at location x at time t



Rather than solving the Boltzmann equation

we seek to solve the following moment equations:

In particular, we will focus on Q(v) that are collisional invariants for which the rhs vanishes

NOTE:  if we had started with the CBE, rather than the Boltzmann equation, we would have

             obtained the same moment equations.

HENCE: what follows is valid for both collisional (short-range collisions) and collisionless systems



I             +              II                 -                    III              = 0  

Integral I

Integral II

where we have used that



Integral III

I  +  II  -  III  = 0     ➡

Master Moment equation

This master moment equation holds for any collisional invariant, Q(v), and for both collisionless 
and collisional (short-range forces only) systems 



Let’s consider Q=m  (mass conservation) and substitute this in the Master Moment Equation

using that                , that               ,, and that                                       we obtain that

which is the continuity equation (in index-form)



Let’s consider Q=mvj  (momentum conservation) and substitute this in the Master Moment Equation

using that                                 , and that           

one finds that      

In order to make sense of the                            term, it is useful to write the microscopic

particle velocity, v, as the sum of a streaming motion, u, and a random velocity, w

we have that                and  

indicates an average over nearby particles (sometimes called a fluid element)

As detailed in the lecture notes, this can be manipulated to yield the momentum equations



It is convenient to introduce the stress tensor

Recall that these apply to both collisional (short-range force) and collisionless systems…. 

QUESTION:  where has the impact of collisions (recall we started with a collision integral) gone??
ANSWER:  it is `hidden’ in the detailed expression for the stress tensor

Substituting this in the momentum equations we obtain the more common form:

Momentum equations



Momentum equations

Collisionless Fluid:

No collisions, there is nothing special we can say about the stress tensor.
Momentum equations take on form above and are called the Jeans equations

Collisional Fluid:

As we will see, as long as the fluid is Newtonian, we have that 

with P the hydrodynamic pressure, and 

the deviatoric stress tensor with 𝜇 and 𝜂 the shear viscosity and bulk viscosity, respectively. 

Substituting this in the momentum equations yields the Navier-Stokes equations

Setting 𝜇 = 𝜂 = 0 (assuming an ideal fluid), these become the Euler equations



Let’s consider Q=mv2/2  (energy conservation) and substitute this in the Master Moment Equation

Here                   is the specific internal energy.

As detailed in Appendix J of the lecture notes, working out the various terms ultimately yields

which is known as the energy equation (in Lagrangian index-form).

As we will see in Part III of the lecture notes, the energy equation (for collisional fluids) can 

be recast as

with 𝒱  the rate of viscous dissipation, and Fcond the conductive heat flux.


