LECTURE 6
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N-particle Phase-Space (I'-space):

the 6N-dimensional phase-space of a dynamical system is a space in which
all possible states of a system are represented, which each possible space
corresponding to one unique point in that phase-space.

r-space u-space

momentum
momentum

position position

1-particle Phase-Space (u-space):

the 6-dimensional phase-space of a dynamical system is a space covering
all possible phase-space coordinates of individual particles. Each particles
corresponding to one point in that phase-space.

Note: unlike in I'-space, in which two trajectories can never intersect one-another,
in p-space the trajectories (of individual particles) can cross one another.



The BBGKY Hierarchy
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The Mayer Cluster Expansion

FOUG, G, 71, Ba) = FOUGL 7L FOUG, 52) + 9(q1, G, s P2)

l short-hand notation

f@,2) = f0) fO2) +9(1,2)

2-point correlation function

fO(1,2,3) = f(1) £(2) f(3) + £(1) 9(2,3) + f(2) 9(1,3) + F(3) 9(1,2) + (1, 2,3)

3-point correlation function
etc. p

Correlations are induced by collisions (interactions) among the particles



[A] Collisionless System — g(1,2)=0 — Collisionless Boltzmann Equation (CBE)
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[B] System with short-range collisions (neutral gas or liquid)
assumption of molecular chaos; f®(q,q,7:,5) = f(q,51) f(F, P2)

— Boltzmann Equation

M M O
F {0, 3y = af g.agf _vo. agv _ [0

df® af()
dt

[C] System with long-range collisions (collisional Plasma or low-N gravitational system)

assumptions; h(1,2,3)=0 + fluid is homogeneous + g(1,2) relaxes faster than (1)

— Lenard-Balescu equation
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From Boltzmann to Navier-Stokes

In what follows we focus on the 1-particle distribution function /', dropping the (W-superscript

We consider collision integral term in the Boltzmann equation:
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P1 consider the following elastic two-particle collision

_ﬁl +ﬁ2_ — P’ + P2’

P2 these collisions obey:

momentum conservation: ) + 9, =Py’ + P’
energy conservation: |pi|? + [pa]? = |p1/]? + |p2/|?




Write the rate at which particles of momentum p1 at x experience collisions p; + p> — p1’ +7ﬁ2 ' as:
R = w(p1, Pa|p1’, 52 ") fO(Z, T, P, P2) d*Pa d3p1 ' d3ps

The function w(p1, P2|p1’, P2 ') depends on the interaction potential U(r) and can be calculated
(in principle) via differential cross sections

Momentum & energy conservation — w(@1, Ba|ph’,pa") o< 63(P—P') §(E —E')

with P=5,+p and P =5+ 5’
. = =S| = | =/ == /) = /= =
Time reversibility = w(p1, p2|p1’,P2") = w(p1' P2 '|P1, P2)

Using principle of molecular chaos — f®(z, Z, 51, p») = fO(Z, p1) fO(Z, §a)

| I[f] = / d’py &°p1 " P> w(ph ', B2 "1, Do) [f (D) f(B2") — f(BL) f(P2)]

replenishing depleting

collisions collisions

for brevity we no longer write out the explicit x-dependence of the DF



What can we learn about the equilibrium distribution function, feq(x,p) ?

Equilibrium = Ofeq/0t =0
}on

Ignore external potential & spatial homogeneity = {H, feq} = 0

I[f] = /d3172 d’py &%y’ w(py’, po ' 1P1, P2) [F (1)) f(P2) — f(PL) F(P2)] =0
Detailed balance — f(Z,p1") f(Z,02) — f(Z,P1) f(&,P2) =0

— log[f(p1)] + log[f (p2)] = log[f (1 )] + log[f (P2 )]

This has form of a conservation law, and suggests that log[f] must be equal to sum of
conserved quantities, A(p), that obey A(p,) + A(p) = A(py') + A(p>”)

We have the following collisional invariants:

A=1 particle number conservations
A=p momentum conservation
A=p?/(2m)  energy conservation

This therefore suggests that log[fe ()] < a1 + as P+ a3 |p]?



This therefore suggests that log[fe ()] < a1 + as P+ a3 |pl?

It can be shown that this implies the Maxwell-Boltzmann distribution

n ex — p2
(ZkaBT)3/2 P kaBT

fea(@) =

In other words: the MB-distribution is the equilibrium solution of the Boltzmann equation



It can be shown that /d3ﬁA(ﬁ) (%) =0
coll

Proof:
define I, = / &’p1 ’pa &1 " P2 w(Bi ', b2 [P, B2) A(Pr) [f(B1") F(B2) — (1) f (52)]
re-labelling 1— 2 and re-ordering yields
1, = /d3ﬁ1 d&*pe d°p1 ' &2’ w(ph ', P2 '|P1, P2) A(D2) (1) f(B2") — F(PL) £ (P2)]
Starting from the first expression and swapping p1— p’1 yields
Iy = - / &°pr AP d°pr ' A0 " w(py, Balp1 ', 52 ) ABL) [f (1) f(B2) — f () £ (P2)]
re-labelling 1— 2 and re-ordering yields

T, = — /d?’ﬁl d’pp d°py ' P2’ w(ph, palpr ' B2 ') AB2") [f (1) f(B2) — F(Ph) £ (P2)]

Time reversibility w(p1’, p2'|p1,P2) = w1, p2|p1’,p2") implies that Zy =13 =1y, =1,
and thus Z; = [Il + 7y + I3 -+ I4]/4



=T +T,+ I3+ 14 /4

substituting the expressions from the previous page:

1 — — — — — — — —
T == / d*p1 d*ps d*p1 ' gy w (P, P[P, Pa) X

4
{A(D1) + A@p2) — A(pr') — A=)} [F(0) f(22") — f(P1) f(2)]

A(p) is a collisional invariant = A(p1) + A(pz) — A(p1') — A(py") =0 - Z; =0

Q.E.D.

As long as A(p) is a collisional invariant we have that

we will use this shortly to obtain the Navier-Stokes equations from the Boltzmann equation




Solving the Boltzmann equation
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for the 7-dimensional DF f (x,v,t) is a non-trivial task

Rather, we are going to solve moment equations of the Boltzmann equation

Consider a scalar function Q(v). The expectation value for Q at location x at time t is given by

— - — d3—»
@ = @@y = LEIE 00
using that n=n(Z,t) = /f(:f, 7,t) d*v

we see that /Q(U) f(&,7,t) d°0 =n (Q)




Define g(Z,t) = /Q(@’) f(z v,t) d*

Q) =1 = 9(Z,t) = n(Z,t) number density
Q(U) =m = 9(Z,t) = p(Z,t) mass density
Q(U) =m7d = g(Z,t) = p(Z,t) u(Z,t) momentum flux density
Q) =sm(T—u)? = g(&,t) =p(Z t)e(Z,t) specific energy density

!

these are our macroscopic quantities of interest...

NOTE: uw(x,t) = <v(x,t)> is the mean velocity of all particles at location x at time t



Rather than solving the Boltzmann equation g—{ +7-Vf-Vo. g{ = (g—{)
coll

we seek to solve the following moment equations:

(7 Of | ,
Jao [t ves-ve o= oo (3), o

In particular, we will focus on Q(v) that are collisional invariants for which the rhs vanishes

/Q d3* /Q ) ¥ - Vfd3*—/Qz7)vq> g{d3“’ 0

NOTE: if we had started with the CBE, rather than the Boltzmann equation, we would have
obtained the same moment equations.

HENCE: what follows is valid for both collisional (short-range collisions) and collisionless systems



Integral 1

Integral 11
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Master Moment equation

This master moment equation holds for any collisional invariant, Q(v), and for both collisionless
and collisional (short-range forces only) systems



Let’s consider Q=m (mass conservation) and substitute this in the Master Moment Equation

using that (m) = m, that mn = p , and that (mv;) = m(v;) = mu; we obtain that

Op  Opu;

which is the continuity equation (in index-form)



Let’s consider Q=mv; (momentum conservation) and substitute this in the Master Moment Equation

: 0d /Omu, 0P /ov, 0P 0P
using that n(mwv,v;) = p(v;v;) , and that axin< 6vij> = axi'o<8vz> = amipdij = p&‘—acj

one finds that

Opu; N Op{v;v;) N 0P

ot oz < Pog 0

As detailed in the lecture notes, this can be manipulated to yield the momentum equations

Ou; 0 |[p(vivj) — puuy] N 0P

. — =0
Ba:z- + 8$z p@xj

In order to make sense of the p(v;v;) — pu;u; term, it is useful to write the microscopic
particle velocity, v, as the sum of a streaming motion, u, and a random velocity, w

Hff}' = U+ fu'ju we have that (W) = 0 and (0) =4

() indicates an average over nearby particles (sometimes called a fluid element)



It is convenient to introduce the stress tensor | 0;; = —p(w;w;) = —p(v;v;) + puu,

Substituting this in the momentum equations we obtain the more common form:

% +u % = 180@- — 8_<I> Momentum equations
ot "Or; pOr; Oz, -

Recall that these apply to both collisional (short-range force) and collisionless systems....

QUESTION: where has the impact of collisions (recall we started with a collision integral) gone??

ANSWER: it is "hidden’ in the detailed expression for the stress tensor



Ou;  Ou; 100y 0P
Momentum equations E U; = —

Collisionless Fluid:

No collisions, there is nothing special we can say about the stress tensor.

Momentum equations take on form above and are called the Jeans equations

Collisional Fluid:

As we will see, as long as the fluid is Newtonian, we have that o;; = —P(Sij + Tij

with P the hydrodynamic pressure, and

Ou; Ou; 2 _ Oug Ouy,

= _ g, 2k 5. =k
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the deviatoric stress tensor with 4 and » the shear viscosity and bulk viscosity, respectively.

Substituting this in the momentum equations yields the Navier-Stokes equations

Setting 4 = n = 0 (assuming an ideal fluid), these become the Euler equations



Let’s consider Q=mv2/2 (energy conservation) and substitute this in the Master Moment Equation

As detailed in Appendix J of the lecture notes, working out the various terms ultimately yields

9 u—2+8 __9 u—2+€ up — oiru; + p{w le) — ua—@
ot |7\ 2 ~ oz |7\ 2 kT Okt T PR Pk B

which is known as the energy equation (in Lagrangian index-form).

(w?) is the specific internal energy.

N =

Here € =

As we will see in Part lll of the lecture notes, the energy equation (for collisional fluids) can
be recast as

de a’U:k 8Fcond k
— =P —_

with V the rate of viscous dissipation, and Fcond the conductive heat flux.



