LECTURE 3

Classical Dynamics: a primer

Typically, a system of N particles has $n=3 N$ degrees of freedom (unless there are holonomic constraints, which is rarely the case in astrophysical fluids)

Let $\vec{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ be the vector of generalized coordinates that specifies the positions of all N particles in configuration space

The action is defined as $S=\int_{t_{1}}^{t_{2}} \mathcal{L}(\vec{q}, \dot{\vec{q}}, t) \mathrm{d} t \quad$ where $\mathcal{L}=K-W$ is the Lagrangian

Different paths between the begining and end positions have a different value for the action

Principle of least action (aka Hamilton's principle) states that path taken by particle is the one for which the action is an extremum, i.e., $\delta S=0$.

Using calculus of variations, this implies that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right)-\frac{\partial \mathcal{L}}{\partial q_{i}}=0, \quad(i=1,2, \ldots, n)
$$

These n second-order differential equations are the Euler-Lagrange equations

If q_{i} is a Cartesian coordinate, then $\partial \mathcal{L} / \partial \dot{q}_{i}=m \dot{q}_{i}=p_{i}$ is a momentum
This suggests we define the conjugate momentum $p_{i} \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}$

If the Lagrangian of a system does not contain a given coordinate q_{j}, then this coordinate is said to be cyclic or ignorable.

In that case, we have that $\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}}\right)=\frac{\mathrm{d} p_{j}}{\mathrm{~d} t}=0$

The generalized momentum conjugate to a cyclic coordinate is conserved (i.e.,, is a constant of motion)

Noether's Theorem

With each continous symmetry of the Lagrangian corresponds a conserved quantity

Consider a one-parameter family of maps $q_{i}(t) \rightarrow Q_{i}(\lambda, t), \quad \lambda \in \mathbb{R}$ such that $Q_{i}(0, t)=q_{i}(t)$, and with λ a continous variable that characterizes the coordinate transformation $q_{i} \rightarrow Q_{i}$

This transformation is said to be a continuous symmetry of the Lagrangian if

$$
\begin{gathered}
\frac{\partial}{\partial \lambda} \mathcal{L}\left(Q_{i}(\lambda, t), \dot{Q}(\lambda, t), t\right)_{\lambda=0}=0 \\
\frac{\partial \mathcal{L}}{\partial \lambda}=\frac{\partial \mathcal{L}}{\partial Q_{i}} \frac{\partial Q_{i}}{\partial \lambda}+\frac{\partial \mathcal{L}}{\partial \dot{Q}_{i}} \frac{\partial \dot{Q}_{i}}{\partial \lambda} \longrightarrow\left(\frac{\partial \mathcal{L}}{\partial \lambda}\right)_{\lambda=0}=\frac{\partial \mathcal{L}}{\partial q_{i}} \frac{\partial Q_{i}}{\partial \lambda}+\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \frac{\partial \dot{Q}_{i}}{\partial \lambda}
\end{gathered}
$$

Using Euler-Lagrange eq. $\quad\left(\frac{\partial \mathcal{L}}{\partial \lambda}\right)_{\lambda=0}=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right) \frac{\partial Q_{i}}{\partial \lambda}+\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \frac{\partial \dot{Q}_{i}}{\partial \lambda}=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \frac{\partial Q_{i}}{\partial \lambda}\right)$

Hence, if $(\partial \mathcal{L} / \partial \lambda)_{\lambda=0}=0$, then $\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \frac{\partial Q_{i}}{\partial \lambda}=\sum_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \frac{\partial Q_{i}}{\partial \lambda}$ is a conserved quantity.

Example

Consider a closed system of N particles with Lagrangian $\mathcal{L}=\frac{1}{2} \sum_{i} m_{i} \dot{\vec{r}}_{i}^{2}-\sum_{i \neq j} V\left(\left|\vec{r}_{i}-\vec{r}_{j}\right|\right)$
This Lagrangian is symmetric under the continuous transformation $\vec{r}_{i}(t) \rightarrow \vec{r}_{i}(t)+\lambda \vec{n}$ for any $\lambda \in \mathbb{R}$ and any vector \vec{n}

According to Noether's theorem, this implies that $\sum_{i} \frac{\partial \mathcal{L}}{\partial \overrightarrow{\vec{r}}_{i}} \cdot \vec{n}=\sum_{i} \vec{p}_{i} \cdot \vec{n}$ is conserved
This is simply the component of the total linear momentum in the direction of \vec{n}

Implications of Noether's Theorem

Invariance of \mathcal{L} under	time	translation	\Leftrightarrow conservation of energy
Invariance of \mathcal{L} under	spatial	translation	\Leftrightarrow conservation of linear momentum
Invariance of \mathcal{L} under	rotational translation	\Leftrightarrow conservation of angular momentum	

Hamiltonian Dynamics

Let $\vec{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ be the vector of generalized coordinates that specifies the positions of all N particles in configuration space

The state of a system is specified by both \vec{q} and $\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ where

$$
\dot{p}_{i}=\frac{\partial \mathcal{L}}{\partial q_{i}}, \quad(i=1,2, \ldots, n)
$$

is the conjugate momentum
The state of a system (\vec{q}, \vec{p}) lives in $2 n$-dimensional phase-space Γ
The state-variables (\vec{q}, \vec{p}) are known as canonical coordinates
Note; no trajectories in Γ-space can ever cross each other!!

Hamilton introduced a new function of the canonical phase-space coordinates which is generated from the Lagrangian via a Legendre transformation

$$
\underset{\text { index form }}{\mathcal{H}\left(q_{i}, p_{i}, t\right)=\dot{q}_{i} p_{i}-\mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right)}
$$

$$
\underbrace{\mathcal{H}(\vec{q}, \vec{p}, t)=\dot{\vec{q}} \cdot \vec{L}(\vec{q}, \dot{\vec{q}}, t)}_{\text {vector form }}
$$

This serves as the definition of the Hamiltonian

Hamiltonian Dynamics

$$
\mathcal{H}\left(q_{i}, p_{i}, t\right)=\dot{q}_{i} p_{i}-\mathcal{L}\left(q_{i}, \dot{q}_{i}, t\right)
$$

The total derivative of the Hamiltonian is $\mathrm{d} \mathcal{H}=\frac{\partial \mathcal{H}}{\partial q_{i}} \mathrm{~d} q_{i}+\frac{\partial \mathcal{H}}{\partial p_{i}} \mathrm{~d} p_{i}+\frac{\partial \mathcal{H}}{\partial t} \mathrm{~d} t$

An alternative expression can be obtained using the Legendre transformation:

$$
\begin{align*}
\mathrm{d} \mathcal{H} & =\dot{q}_{i} \mathrm{~d} p_{i}+p_{i} \mathrm{~d} \dot{q}_{i}-\mathrm{d} \mathcal{L} \\
& =\dot{q}_{i} \mathrm{~d} p_{i}+p_{i} \mathrm{~d} \dot{q}_{i}-\left(\frac{\partial \mathcal{L}}{\partial q_{i}} \mathrm{~d} q_{i}+\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \mathrm{~d} \dot{q}_{i}+\frac{\partial \mathcal{L}}{\partial t} \mathrm{~d} t\right) \\
& =\dot{q}_{i} \mathrm{~d} p_{i}-\frac{\partial \mathcal{L}}{\partial q_{i}} \mathrm{~d} q_{i}-\frac{\partial \mathcal{L}}{\partial t} \mathrm{~d} t \\
& =\dot{q}_{i} \mathrm{~d} p_{i}-\dot{p}_{i} \mathrm{~d} q_{i}-\frac{\partial \mathcal{L}}{\partial t} \mathrm{~d} t \tag{B}
\end{align*}
$$

Equating expressions $[A]$ and $[B]$ we obtain Hamilton's equations

$$
\dot{q}_{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q_{i}}, \quad \frac{\partial \mathcal{L}}{\partial t}=-\frac{\partial \mathcal{H}}{\partial t}
$$

Hamiltonian Dynamics

The first of these are the $2 n$ first-order differential equations that replace the n second-order Euler-Lagrange equations as the equations of motion:

$$
\dot{\vec{q}}=\frac{\partial \mathcal{H}}{\partial \vec{p}}, \quad \dot{\vec{p}}=-\frac{\partial \mathcal{H}}{\partial \vec{q}}
$$

If the equations of transformation that define the generalized coordinates do not depend explicitely on time, and the potential is independent of velocity (i.e., no friction) then the Hamiltonian is equal to the total energy
(see lecture notes for details)

If the potential is also time-independent, then time does not appear explicitely in the Lagrangian and we have that

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\frac{\mathrm{d} \mathcal{H}}{\mathrm{~d} t}=\frac{\partial \mathcal{H}}{\partial t}=-\frac{\partial \mathcal{L}}{\partial t}=0
$$

and we thus see that the total energy of the system is conserved.

Hamilton-Jacobi Theory

Given two functions $A\left(q_{i}, p_{i}\right)$ and $B\left(q_{i}, p_{i}\right)$ of the canonical phase-space coordinates q_{i} and p_{i} the Poisson bracket of A and B is defined as

$$
\{A, B\}=\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}
$$

index form

$$
\{A, B\}=\frac{\partial A}{\partial \vec{q}} \cdot \frac{\partial B}{\partial \vec{p}}-\frac{\partial A}{\partial \vec{p}} \cdot \frac{\partial B}{\partial \vec{q}}
$$

vector form

The Poisson brackets obey the following relations:

$$
\begin{aligned}
\{A, B\} & =-\{B, A\} \\
\{\alpha A+\beta B, C\} & =\alpha\{A, C\}+\beta\{B, C\} \quad \forall \alpha, \beta \in \mathbb{R} \\
\{A B, C\} & =A\{B, C\}+B\{A, C\} \\
\{\{A, B\}, C\}+\{\{B, C\}, A\}+\{\{C, A\}, B\} & =0
\end{aligned}
$$

Let A and B be the canonical variables \boldsymbol{q} and \boldsymbol{p} themselves, then

$$
\left\{q_{i}, q_{j}\right\}=0, \quad\left\{p_{i}, p_{j}\right\}=0, \quad\left\{q_{i}, p_{j}\right\}=\delta_{i j}
$$

These are known as the canonical commutation relations. Any set ($\mathbf{Q}, \boldsymbol{P}$) of canonical variable has to obey these relations otherwise they are not a canonical set

For any function $f(\mathbf{q}, \mathbf{p}, t)$

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} t} & =\frac{\partial f}{\partial q_{i}} \dot{q}_{i}+\frac{\partial f}{\partial p_{i}} \dot{p}_{i}+\frac{\partial f}{\partial t} \\
& =\frac{\partial f}{\partial q_{i}} \frac{\partial \mathcal{H}}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial \mathcal{H}}{\partial q_{i}}+\frac{\partial f}{\partial t} \\
& =\{f, \mathcal{H}\}+\frac{\partial f}{\partial t}
\end{aligned}
$$

If for f we subsitute one of the canonical variables itself, then we see that

$$
\dot{q}_{i}=\left\{q_{i}, \mathcal{H}\right\}, \quad \dot{p}_{i}=\left\{p_{i}, \mathcal{H}\right\}
$$

If we now introduce the $2 n$-dimensional vector $\boldsymbol{w}=(\boldsymbol{q}, \boldsymbol{p})$, Hamilton's equations of motion can be written in the short-hand form

$$
\dot{\vec{w}}=\{\vec{w}, \mathcal{H}\}
$$

Note that the generalized coordinates and conjugate momenta can be treated on equal footing...

If the function has no explicit time dependence, such that $f=f(\boldsymbol{q}, \boldsymbol{p})$, and the function Poisson commutes with the Hamiltonian, i.e.,

$$
\{f, \mathcal{H}\}=0
$$

then f is a constant of motion (i.e., $\mathrm{d} f / \mathrm{dt}=0$). It is called an integral of motion.
Two integrals of motion that Poisson commute with each other are said to be in involution

Canonical Transformations

Consider the following transformation of the Lagrangian $\mathcal{L} \rightarrow \mathcal{L}^{\prime}=\mathcal{L}+\frac{\mathrm{d} F}{\mathrm{~d} t}$ where $F=F(\boldsymbol{q}, \mathrm{t})$

Under this transformation the action integral becomes

$$
S^{\prime}=\int_{t_{1}}^{t_{2}} \mathcal{L}^{\prime} \mathrm{d} t=\int_{t_{1}}^{t_{2}} \mathcal{L} \mathrm{~d} t+\int_{t_{1}}^{t_{2}} \frac{\mathrm{~d} F}{\mathrm{~d} t} \mathrm{~d} t=S+F\left(t_{2}\right)-F\left(t_{1}\right)
$$

Variations of the action leave the start and end points fixed, hence we have that $\delta S^{\prime}=\delta S$ which implies that the equations of motion remain invariant.

Hence, we see that there is some non-uniqueness to the Lagrangian, which we can use to our advantage...

Canonical transformations are transformations of the form (q,p) $\rightarrow(\mathbf{Q}, \boldsymbol{P})$ between two canonical coordinate systems that leaves the equations of motion invariant.

Let $\mathcal{L}(\vec{q}, \dot{\vec{q}}, t)$ and $\mathcal{L}^{\prime}(\vec{Q}, \dot{\vec{Q}}, t)$ be the corresponding Lagrangians. Then in order for the equations of motion to be invariant we require that

$$
\mathcal{L}(\vec{q}, \vec{p}, t)=\mathcal{L}^{\prime}(\vec{Q}, \vec{P}, t)+\frac{\mathrm{d} F}{\mathrm{~d} t}
$$

Canonical Transformations

Using the definition of the Hamiltonian, based on the Legendre transform, we have that

$$
\begin{aligned}
\mathcal{L}(\vec{q}, \vec{p}, t) & =\vec{p} \cdot \dot{\vec{q}}-\mathcal{H}(\vec{q}, \vec{p}, t) \\
\mathcal{L}^{\prime}(\vec{Q}, \vec{P}, t) & =\vec{P} \cdot \dot{\vec{Q}}-\mathcal{H}^{\prime}(\vec{Q}, \vec{P}, t)
\end{aligned}
$$

Hence, $\quad \mathcal{L}(\vec{q}, \vec{p}, t)=\mathcal{L}^{\prime}(\vec{Q}, \vec{P}, t)+\frac{\mathrm{d} F}{\mathrm{~d} t}$

$$
\begin{align*}
\Leftrightarrow \frac{\mathrm{d} F}{\mathrm{~d} t} & =\vec{p} \cdot \dot{\vec{q}}-\mathcal{H}(\vec{q}, \vec{p}, t)-\left[\vec{P} \cdot \dot{\vec{Q}}-\mathcal{H}^{\prime}(\vec{Q}, \vec{P}, t)\right] \\
\Leftrightarrow \mathrm{d} F & =p_{i} \mathrm{~d} q_{i}-P_{i} \mathrm{~d} Q_{i}+\left(\mathcal{H}^{\prime}-\mathcal{H}\right) \mathrm{d} t \tag{A}
\end{align*}
$$

If we take $F=F(\vec{q}, \vec{Q}, t)$ then we also can write that

$$
\begin{equation*}
\mathrm{d} F=\frac{\partial F}{\partial q_{i}} \mathrm{~d} q_{i}+\frac{\partial F}{\partial Q_{i}} \mathrm{~d} Q_{i}+\frac{\partial F}{\partial t} \mathrm{~d} t \tag{B}
\end{equation*}
$$

Equating $[\mathrm{A}]$ and $[\mathrm{B}]$ we obtain the transformation rules:

$$
p_{i}=\frac{\partial F}{\partial q_{i}}, \quad P_{i}=-\frac{\partial F}{\partial Q_{i}}, \quad \mathcal{H}^{\prime}=\mathcal{H}+\frac{\partial F}{\partial t}
$$

The function $F=F(\vec{q}, \vec{Q}, t)$ is called the generating function of the canonical transformation $(\vec{q}, \vec{p}) \rightarrow(\vec{Q}, \vec{P})$

Canonical Transformations

Canonical transformations leave the equations of motion, and therefore also the Poisson brackets, invariant.

$$
\{A, B\}_{\vec{q}, \vec{p}}=\{A, B\}_{\vec{Q}, \vec{P}}
$$

QUESTION: is there a particular canonical transformation for which the equations of motion become particularly simple?

YES: if we can find a canonical transformation $(\vec{q}, \vec{p}) \rightarrow(\vec{Q}, \vec{P})$ for which the new Hamiltonian $\mathcal{H}^{\prime}(\vec{Q}, \vec{P})=\mathcal{H}^{\prime}(\vec{P})$, i.e., all new generalized coordinates are cyclic, then the equations of motion become

$$
\dot{P}_{i}=-\frac{\partial \mathcal{H}^{\prime}}{\partial Q_{i}}=0, \quad \dot{Q}_{i}=\frac{\partial \mathcal{H}^{\prime}}{\partial P_{i}}=\text { constant }
$$

Hence, the new generalized momenta are all integrals of motion, and the solution for the dynamics is trivially given by

$$
Q_{i}(t)=\omega_{i} t+Q_{i}(0), \quad P_{i}(t)=P_{i}(0) \quad \text { with } \omega_{i} \equiv \partial \mathcal{H}^{\prime} / \partial P_{i}
$$

Hamilton-Jacobi equation ${ }^{+}$

How can we find the generator of the canonical transformation for which all Q are cyclic?

Consider a generator of the second kind, $F=F_{2}(\boldsymbol{q}, \boldsymbol{P})$ without explicit time-dependence for which the transformation rules are:

$$
p_{i}=\frac{\partial F_{2}}{\partial q_{i}}, \quad Q_{i}=\frac{\partial F_{2}}{\partial P_{i}}, \quad \mathcal{H}^{\prime}=\mathcal{H}+\frac{\partial F_{2}}{\partial t}
$$

We have that $\mathcal{H}(\vec{q}, \vec{p})=\mathcal{H}^{\prime}(\vec{P})=E$

Substituting the transformation rule for p_{i} in the original Hamiltonian we obtain

$$
\mathcal{H}\left(q_{i}, \frac{\partial F_{2}}{\partial q_{i}}\right)=E
$$

This is the Hamilton-Jacobi equation, which is a PDE of n variables q_{i}

The solution for the generating function is called Hamilton's characteristic function, and is typically indicated by the symbol $W(\boldsymbol{q}, \boldsymbol{P})$, rather than $F_{2}(\boldsymbol{q}, \boldsymbol{P})$

[^0]
Hamilton-Jacobi equation

So, we have a complete solution for the dynamics of a Hamiltonian system, if we can solve the Hamilton-Jacobi equation...

Unfortunately, solving an n-dimensional PDE is extremely hard...

However, if Hamilton's characteristic function is separable, which means can be written as

$$
W(\vec{q}, \vec{P})=\sum_{i=1}^{n} W_{i}\left(q_{i}, \vec{P}\right)
$$

then the Hamilton-Jacobi equation reduces to a set of n first-order ODEs, which are easily solved by quadrature (i.e., can be written as n integral equations).

If the Hamilton-Jacobi equation is separable, we say that the Hamiltonian is integrable

An integrable Hamiltonian with n degrees of freedom has n integrals of motion in involution
these are the n generalized coordinates P_{i}

Liouville's Theorem of Integrable Systems

If a system with n degrees of freedom has n mutually Poisson commuting integrals of motion $I_{1}, I_{2}, \ldots, I_{n}$ then the system is integrable.

[^0]: t here we focus exclusively on conservative systems for which $\partial \mathcal{H} / \partial t=0$, and we assume that $\mathcal{H}=E$

