
LECTURE 3



The action is defined as where                      is the Lagrangian

Typically, a system of N particles has n=3N degrees of freedom (unless there are 

holonomic constraints, which is rarely the case in astrophysical fluids)

Let                             be the vector of generalized coordinates that specifies the

positions of all N particles in configuration space

Principle of least action (aka Hamilton’s principle) states that path taken by particle

is the one for which the action is an extremum, i.e., 

q(t1)

q(t2)

Different paths between the begining and end 
positions have a different value for the action



Using calculus of variations, 
this implies that

These n second-order differential equations are the Euler-Lagrange equations

If qi is a Cartesian coordinate, then                                      is a momentum 

This suggests we define the conjugate momentum 

The generalized momentum conjugate to a cyclic coordinate

is conserved  (i.e.,, is a constant of motion) !

If the Lagrangian of a system does not contain a given coordinate qj, 

then this coordinate is said to be cyclic or ignorable.

In that case, we have that



Noether’s Theorem With each continous symmetry of the Lagrangian

corresponds a conserved quantity !

Consider a one-parameter family of maps

such that                          , and with λ a continous variable that characterizes  

the coordinate transformation

This transformation is said to be a continuous symmetry of the Lagrangian if

Using Euler-Lagrange eq.

Hence, if                            then                                      is a conserved quantity.

Q.E.D.Einstein summation convention



This Lagrangian is symmetric under the continuous transformation
for any λ∈ℝ and any vector 

Example
Consider a closed system of N particles with Lagrangian

According to Noether’s theorem, this implies that                                       is conserved

This is simply the component of the total linear momentum in the direction of 

Implications of Noether’s Theorem

Invariance of 𝓛 under      time     translation   ⇔  conservation of energy

Invariance of 𝓛 under    spatial   translation   ⇔  conservation of linear momentum

Invariance of 𝓛 under  rotational translation   ⇔  conservation of angular momentum



Hamiltonian Dynamics
Let                             be the vector of generalized coordinates that specifies the

positions of all N particles in configuration space

The state of a system is specified by both    and                                where

is the conjugate momentum

The state of a system          lives in 2n-dimensional phase-space 𝚪

𝚪-space

trajectory

Note; no trajectories in 𝚪-space can ever cross each other!!

The state-variables           are known as canonical coordinates         

Hamilton introduced a new function of the canonical phase-space coordinates

which is generated from the Lagrangian via a Legendre transformation

This serves as the definition of the Hamiltonian
index form vector form

(see App E of lecture notes for description of Legendre transformations)



Hamiltonian Dynamics

The total derivative of the Hamiltonian is [A]

An alternative expression can be obtained using the Legendre transformation:

[B]

Equating expressions [A] and [B] we obtain Hamilton’s equations 



Hamiltonian Dynamics

The first of these are the 2n first-order differential equations that replace the 

n second-order Euler-Lagrange equations as the equations of motion:

!

If the equations of transformation that define the generalized coordinates do not 
depend explicitely on time, and the potential is independent of velocity (i.e., no 
friction) then the Hamiltonian is equal to the total energy (see lecture notes for details)

If the potential is also time-independent, then time does not appear explicitely 
in the Lagrangian and we have that

and we thus see that the total energy of the system is conserved.



Given two functions A(qi,pi) and B(qi,pi) of the canonical phase-space 
coordinates qi and pi the Poisson bracket of A and B is defined as

index form vector formindex formindex form

The Poisson brackets obey the following relations:

(Jacobi identity)

Let A and B be the canonical variables q and p themselves, then

These are known as the canonical commutation relations.  Any set (Q,P) of 

canonical variable has to obey these relations otherwise they are not a canonical set



For any function  f(q,p,t)

Poisson’s equation of motion

If for f we subsitute one of the canonical variables itself, then we see that

If we now introduce the 2n-dimensional vector w = (q,p), Hamilton’s equations 
of motion can be written in the short-hand form

! Note that the generalized coordinates 

and conjugate momenta can be treated

on equal footing…

If the function has no explicit time dependence, such that  f = f(q,p), and the 
function Poisson commutes with the Hamiltonian, i.e., 

then f is a constant of motion  (i.e., df/dt = 0).  It is called an integral of motion.

Two integrals of motion that Poisson commute with each other are said to be in involution



Canonical Transformations

Consider the following transformation of the Lagrangian
where F = F(q,t)

Under this transformation the action integral becomes

Variations of the action leave the start and end points fixed, hence we have that 
which implies that the equations of motion remain invariant.

Hence, we see that there is some non-uniqueness to the Lagrangian, which 

we can use to our advantage…

Canonical transformations are transformations of the form (q,p) → (Q,P) between two

canonical coordinate systems that leaves the equations of motion invariant.

Let                and                   be the corresponding Lagrangians. Then in order for the 

equations of motion to be invariant we require that




Canonical Transformations

Using the definition of the Hamiltonian, based on the Legendre transform, we have that

Hence,

[A]

If we take                          then we also can write that 

[B]

Equating [A] and [B] we obtain the transformation rules:

The function                         is called the generating function of the canonical

transformation

(see lecture notes for details)



Canonical Transformations

Canonical transformations leave the equations of motion, and therefore also the 

Poisson brackets, invariant.

QUESTION:  is there a particular canonical transformation for which the

                      equations of motion become particularly simple?

YES:  if we can find a canonical transformation                            for which the new

         Hamiltonian                                , i.e., all new generalized coordinates are cyclic,

then the equations of motion become

Hence, the new generalized momenta are all integrals of motion, and the solution

for the dynamics is trivially given by

with



Hamilton-Jacobi equation

How can we find the generator of the canonical transformation for which all Q are cyclic?

here we focus exclusively on conservative systems for which                   , and we assume that  

✢

✢

Consider a generator of the second kind, F=F2(q,P) without explicit time-dependence
for which the transformation rules are:

We have that 

Substituting the transformation rule for pi in the original Hamiltonian we obtain

!
This is the Hamilton-Jacobi equation, which is a PDE of n variables qi

The solution for the generating function is called Hamilton’s characteristic function,

and is typically indicated by the symbol W(q,P), rather than F2(q,P)



Hamilton-Jacobi equation

So, we have a complete solution for the dynamics of a Hamiltonian system, if we can

solve the Hamilton-Jacobi equation…
Unfortunately, solving an n-dimensional PDE is extremely hard…

However, if Hamilton’s characteristic function is separable, which means can be written as

then the Hamilton-Jacobi equation reduces to a set of n first-order ODEs, which are easily

solved by quadrature (i.e., can be written as n integral equations).

If the Hamilton-Jacobi equation is separable, we say that the Hamiltonian is integrable

An integrable Hamiltonian with n degrees of freedom has n integrals of motion in involution
these are the n generalized coordinates Pi

If a system with n degrees of freedom has n mutually Poisson commuting 

integrals of motion  I1, I2,…,In  then the system is integrable.

Liouville’s Theorem of Integrable Systems


