
MHD equations can be derived heuristically by taking moment equations from the 

Vlasov equation to which we add a collision term

a = e or i

continuity equationparticles conserved 

in collisions

momentum equationselectron/ion momentum 
NOT conserved

Due to collisions between electrons and much heavier ions, momentum is transferred 

between these different species.  Note, though, that total momentum of electrons plus 

ions IS conserved:  Ce = -Ci



mass conservation

me x continuity eq. of electrons + mi x continuity eq. of ions yields

Since in MHD we treat the plasma as a single fluid, we now define the relevant quantities

charge conservation

qe x continuity eq. of electrons + qi x continuity eq. of ions yields



MHD Hydrodynamics

Momentum eqs

Energy eq.

Ohmic dissipationOhmic dissipationOhmic dissipation

Since both the momentum and energy equations contain the current density, we need to 

complement our set of equations with an evolution equation for the current

Generalized Ohm’s lawMultiplying  momentum eqs with charge, one obtains the


negligible

ignoring radiation



Assuming plasma is cold (P~0), that current is small compared to velocities, and that

𝜕J/𝜕t is small compared to collision term, the generalized Ohm’s law simplifies to 

Ohm’s law

𝜎 = 𝜂-1The electric resisticity is the inverse of the electric conductivity

electric resistivity

Heuristic derivation of the collision term:Heuristic derivation of the collision term:

Substituting expression for collision frequency



The MHD equations derived thus far (mass continuity, charge continuity, momentum 

conservation and Ohm’s law) need to be complemented with Maxwell equations: 

displacement current

Typically, the displacement current is negligle: hence, combining Ampère’s circuital law

with Ohm’s law yields

Hence, the electric field follows from the magnetic field (E is not an independent variable)

Faraday’s law of induction

Ampère’s circuital law

Gauss’ law of magnetism



Plugging this expression for the electric field in Faraday’s law of induction yields that

Using the vector identity                                                    this can be written as:

magnetic diffusivity

induction equation

Note the similarity with the vorticity equation:

Magnetic diffusivity is to magnetic field as viscosity is to vorticity



Next, using that

we can write the momentum equations (in index form) as

magnetic stress tensor

stress tensor (w/o viscosity)
Here

Recall the momentum equations:

Using Ampère’s circuital law w/o the displacement current:

we have that:

negligible



we can write the momentum equations (in index form) as

magnetic stress tensor

stress tensor (w/o viscosity)
Here

The diagonal elements of the magnetic stress tensor represent magnetic pressure

The off-diagonal elements of the magnetic stress tensor represent magnetic tension



A fluid that obeys 

these equations 


is called a 

magnetofluid

Note that Ohm’s law is not required for closure. After all, we can obtain the current directly 
from Ampère’s circuital law w/o the displacement current; 



Motivated by the similarities between vorticity equation and the induction equation 

we define the magnetic Reynold number as

where we simply replace the kinetic viscocity with the magnetic resistivity 

induction equation

When                 the second term dominates:  

This is situation in laboratory plasmas (U and L small). Hence, laboratory plasmas decay due to magnetic diffusion 
(magn. fields are related to currents, which die away due to Ohmic dissipation unless one applies a source of voltage)

[1]

When                 the first term dominates:  [2]

This is situation in astrophysics (U and L large). This is the realm of ideal MHD, in which electrical resistivity and

magnetic diffusivity  can be ignored (i.e., electrictal conductivity is infinite)  —> No Ohmic dissipation



Almost all MHD 
simulations in 

astronomy 
assume


these ideal MHD

conditions

Going from hydrodynamics to ideal MHD, one merely adds magnetic fields, which give 

rise to magnetic pressure and magnetic tension. Collisions between electrons and ions 
can create currents, which spawn magnetic fields, which can become amplified… 



An important implication of ideal MHD is that

This indicates that the magnetic flux is conserved as it moves with the fluid.

Alfvén’s theorem of flux freezing

This is equivalent to Helmholz’s theorem that the circulation of an inviscid fluid is 
conserved.

Once more this demonstrates the close similarity between magnetic field lines

and vortex lines…



Alfvén velocity

A linear perturbation analysis of the ideal MHD equations yields the following

dispersion relation:

This dispersion relation for hydromagnetic waves has several solutions

One of these is for transverse waves, in which the displacement, and thus the

velocity perturbation, u1, is perpendicular to both k and B

Under those conditions the dispersion relation reduces to:

These are called the Alfvén waves and have a group velocity

Similar to waves in a rope/string, Alfven waves are transverse waves along magnetic

field lines, for which the restoring force is the magnetic tension



In case of ideal MHD, magnetic resistivity is zero and there is no damping of the

Alfvén waves. In reality (resistive MHD), Alfvén waves damp out due to magnetic

diffusion, thereby transferring wave energy to thermal energy…

Other solutions to the dispersion relation of hydromagnetic waves are the 

so-called slow and fast mode waves.  


Without going into any details; in slow and fast mode waves the restoring force

are BOTH magnetic pressure and magnetic tension.


Any hydromagnetic wave can be represented as a superposition of Alfvén, fast

and slow waves,



The End


