LECTURE 19
Jeans equations in spherical coordinates: \((r, \theta, \phi)\).

\[
\begin{align*}
\frac{\partial (\rho \langle v_r \rangle)}{\partial t} + \frac{\partial (\rho \langle v_r^2 \rangle)}{\partial r} + \frac{\rho}{r} \left[2\langle v_r^2 \rangle - \langle v_r \rangle - \langle v_r^2 \rangle \right] + \rho \frac{\partial \Phi}{\partial r} &= 0 \\
\frac{\partial (\rho \langle v_\theta \rangle)}{\partial t} + \frac{\partial (\rho \langle v_r v_\theta \rangle)}{\partial r} + \frac{\rho}{r} \left[3\langle v_r v_\theta \rangle + (\langle v_\theta^2 \rangle - \langle v_\phi^2 \rangle) \cot \theta \right] &= 0 \\
\frac{\partial (\rho \langle v_\phi \rangle)}{\partial t} + \frac{\partial (\rho \langle v_r v_\phi \rangle)}{\partial r} + \frac{\rho}{r} \left[3\langle v_r v_\phi \rangle + 2\langle v_\theta v_\phi \rangle \cot \theta \right] &= 0
\end{align*}
\]

Upon inspection, these are 3 equations for a total of 9 unknowns…..no closure.

To proceed, it is common to make the following assumptions:

1. System is static \(\rightarrow\) time derivatives vanish

2. Kinematics are also spherical symmetric \(\rightarrow\) no streaming motions
 \(\rightarrow\) mixed 2nd order motions vanish

Only one Jeans eq. remains:

\[
\frac{\partial (\rho \sigma_r^2)}{\partial r} + \frac{2\rho}{r} \left[\sigma_r^2 - \sigma_\theta^2 \right] + \rho \frac{\partial \Phi}{\partial r} = 0
\]
Jeans equations in spherical coordinates:

\[\frac{\partial (\rho \sigma^2_r)}{\partial r} + \frac{2\rho}{r} [\sigma^2_r - \sigma^2_\theta] + \rho \frac{\partial \Phi}{\partial r} = 0 \]

One equation with two unknowns….

Upon defining the anisotropy parameter

\[\beta(r) \equiv 1 - \frac{\sigma^2_\theta(r) + \sigma^2_\phi(r)}{2\sigma^2_r(r)} = 1 - \frac{\sigma^2_\theta(r)}{\sigma^2_r(r)} \]

The spherical Jeans equation can be written as

\[\frac{1}{\rho} \frac{\partial \langle v^2_r \rangle}{\partial r} + 2 \frac{\beta \langle v^2_r \rangle}{r} = -\frac{d\Phi}{dr} \]

which can be solved for any fixed \(\beta \)

Using that \(\frac{d\Phi}{dr} = GM(r)/r \)

this can be written as

\[M(r) = -\frac{r \langle v^2_r \rangle}{G} \left[\frac{d\ln \rho}{d\ln r} + \frac{d\ln \langle v^2_r \rangle}{d\ln r} + 2\beta \right] \]

For comparison:

Hydrostatic eq. for collisional fluid

\[M(r) = -\frac{k_B T(r) r}{\mu m_p G} \left[\frac{d\ln \rho}{d\ln r} + \frac{d\ln T}{d\ln r} \right] \]
Jeans modeling of spherical systems

For a spherical system the surface brightness $\Sigma(R)$ is related to the 3D luminosity density $\nu(r)$ according to

$$\Sigma(R) = 2 \int_{R}^{\infty} \frac{\nu r \, dr}{\sqrt{r^2 - R^2}}$$

Using the Abel transform, we can solve for the inverse relation, and thus obtain the luminosity density $\nu(r)$ directly from the surface brightness $\Sigma(R)$

$$\nu(r) = -\frac{1}{\pi} \int_{r}^{\infty} \frac{d\Sigma}{dR} \frac{dR}{\sqrt{R^2 - r^2}}$$

The stellar mass density then follows from $\rho(r) = \Upsilon(r) \times \nu(r)$, with $\Upsilon(r)$ the stellar mass-to-light ratio.
Jeans modeling of spherical systems

Similarly, the line-of-sight velocity dispersion, \(\sigma_p^2(R) \), which can be inferred from spectroscopy, is related to both internal dynamics and luminosity density according to

\[
\Sigma(R) \sigma_p^2(R) = 2 \int_0^\infty \left(\langle v_r \cos \alpha - v_\theta \sin \alpha \rangle^2 \right) \frac{\nu r \, dr}{\sqrt{r^2 - R^2}}
\]

\[
= 2 \int_0^\infty \left(\langle v_r^2 \rangle \cos^2 \alpha + \langle v_\theta^2 \rangle \sin^2 \alpha \right) \frac{\nu r \, dr}{\sqrt{r^2 - R^2}}
\]

\[
= 2 \int_0^\infty \left(1 - \beta \frac{R^2}{r^2} \right) \frac{\nu \langle v_r^2 \rangle \, r \, dr}{\sqrt{r^2 - R^2}}
\]
Assume isotropy, $\beta(r)=0$. In that case we can use the Abel transform to obtain

$$
\nu(r) \langle v_r^2 \rangle (r) = -\frac{1}{\pi} \int_r^\infty \frac{d(\Sigma \sigma_p^2)}{dR} \frac{dR}{\sqrt{R^2 - r^2}}
$$

and the enclosed mass follows from the Jeans equations

$$
M(r) = -\frac{r \langle v_r^2 \rangle}{G} \left[\frac{d \ln \nu}{d \ln r} + \frac{d \ln \langle v_r^2 \rangle}{d \ln r} \right]
$$

from which one finally obtains the radially dependent mass-to-light ratio

$$
\Upsilon(r) = \frac{M(r)}{4\pi \int_0^r \nu(r) r^2 dr}
$$

which can be used to constrain a potential central Black Hole and/or the contribution of a dark matter halo.

...But any such constraints are ONLY valid under the assumption of isotropy...
Mass-Anisotropy Degeneracy

\[M(r) = - \frac{r \langle v_r^2 \rangle}{G} \left[\frac{d \ln \rho}{d \ln r} + \frac{d \ln \langle v_r^2 \rangle}{d \ln r} + 2 \beta \right] \]

Typically, constraints on the mass profile are degenerate with constraints/assumptions about the anisotropy profile.

Breaking this degeneracy typically requires going to higher order Jeans equations, that can predict the kurtosis (or the Gauss-Hermite moment \(h_4 \)) of the line-of-sight velocity distribution (LOSVD)

\[\Phi(v) \]

\[v \]

\[h_3 = -0.1 \]
\[h_3 = 0 \]
\[h_3 = 0.1 \]

\[h_4 = -0.1 \]
\[h_4 = 0 \]
\[h_4 = 0.1 \]

van der Marel & Franx (1993)
Radial anisotropy typically results in LOSVDs that are **more** peaked than a Gaussian ($h_4 > 0$).

Azimuthal anisotropy typically results in LOSVDs that are **less** peaked than a Gaussian ($h_4 < 0$).

Making model predictions for h_4 (and other Gauss-Hermite moments) requires using higher-order Jeans equations.

At this point it becomes easier to use Schwarschild’s orbit superposition method.
RECALL: An integral of motion is a function $I(x, \vec{v})$ of the phase-space coordinates that is constant along all orbits, i.e.,

$$\frac{dI}{dt} = \frac{\partial I}{\partial x_i} \frac{dx_i}{dt} + \frac{\partial I}{\partial v_i} \frac{dv_i}{dt} = \vec{v} \cdot \vec{\nabla} I - \vec{\nabla} \Phi \cdot \frac{\partial I}{\partial \vec{v}} = 0$$

Compare this to the CBE for a steady-state (static) system:

$$\vec{v} \cdot \vec{\nabla} f - \vec{\nabla} \Phi \cdot \frac{\partial f}{\partial \vec{v}} = 0$$

Thus the condition for I to be an integral of motion is identical with the condition for I to be a steady-state solution of the CBE. Hence:
RECALL: An integral of motion is a function \(I(\vec{x}, \vec{v}) \) of the phase-space coordinates that is constant along all orbits, i.e.,

\[
\frac{dI}{dt} = \frac{\partial I}{\partial x_i} \frac{dx_i}{dt} + \frac{\partial I}{\partial v_i} \frac{dv_i}{dt} = \vec{v} \cdot \vec{\nabla} I - \vec{\nabla} \Phi \cdot \frac{\partial I}{\partial \vec{v}} = 0
\]

Compare this to the CBE for a steady-state (static) system:

\[
\vec{v} \cdot \vec{\nabla} f - \vec{\nabla} \Phi \cdot \frac{\partial f}{\partial \vec{v}} = 0
\]

Thus the condition for \(I \) to be an integral of motion is identical with the condition for \(I \) to be a steady-state solution of the CBE. Hence:

Jeans Theorem Any steady-state solution of the CBE depends on the phase-space coordinates only through integrals of motion. Any function of these integrals is a steady-state solution of the CBE.
RECALL: An integral of motion is a function $I(\vec{x}, \vec{v})$ of the phase-space coordinates that is constant along all orbits, i.e.,

$$\frac{dI}{dt} = \frac{\partial I}{\partial x_i} \frac{dx_i}{dt} + \frac{\partial I}{\partial v_i} \frac{dv_i}{dt} = \vec{v} \cdot \nabla I - \vec{v} \cdot \nabla \Phi \cdot \frac{\partial I}{\partial \vec{v}} = 0$$

Compare this to the CBE for a steady-state (static) system:

$$\vec{v} \cdot \nabla f - \vec{v} \cdot \nabla \Phi \cdot \frac{\partial f}{\partial \vec{v}} = 0$$

Thus the condition for I to be an integral of motion is identical with the condition for I to be a steady-state solution of the CBE. Hence:

Jeans Theorem Any steady-state solution of the CBE depends on the phase-space coordinates only through integrals of motion. Any function of these integrals is a steady-state solution of the CBE.

PROOF: Let f be any function of the n integrals of motion $I_1, I_2, \ldots I_n$ then

$$\frac{df}{dt} = \sum_{k=1}^{n} \frac{\partial f}{\partial I_k} \frac{dI_k}{dt} = 0$$

which proofs that f satisfies the CBE.
More useful than the Jeans Theorem is the Strong Jeans Theorem, which is due to Lynden-Bell (1962).
More useful than the Jeans Theorem is the Strong Jeans Theorem, which is due to Lynden-Bell (1962).

Strong Jeans Theorem The DF of a steady-state system in which almost all orbits are regular can be written as a function of the independent isolating integrals of motion, or of the action-integrals.

Note that a regular orbit in a system with n degrees of freedom is uniquely, and completely, specified by the values of the n isolating integrals of motion in involution. Thus the DF can be thought of as a function that expresses the probability for finding a star on each of the phase-space tori.
More useful than the **Jeans Theorem** is the **Strong Jeans Theorem**, which is due to Lynden-Bell (1962).

Strong Jeans Theorem The DF of a steady-state system in which almost all orbits are regular can be written as a function of the independent isolating integrals of motion, or of the action-integrals.

Note that a regular orbit in a system with \(n \) degrees of freedom is uniquely, and completely, specified by the values of the \(n \) isolating integrals of motion in involution. Thus the DF can be thought of as a function that expresses the probability for finding a star on each of the phase-space tori.

We first consider an application of the **Jeans Theorem** to Spherical Systems. As we have seen, any orbit in a spherical potential admits four isolating integrals of motion: \(E, L_x, L_y, L_z \).

Therefore, according to the **Strong Jeans Theorem**, the DF of any\(^\dagger\) steady-state spherical system can be expressed as \(f = f(E, \vec{L}) \).

\(\dagger\) except for point masses and uniform spheres, which have five isolating integrals of motion
If the system is spherically symmetric in all its properties, then $f = f(E, L^2)$ rather than $f = f(E, \vec{L})$: i.e., the DF can only depend on the magnitude of the angular momentum vector, not on its direction.
If the system is spherically symmetric in all its properties, then
\[f = f(E, L^2) \] rather than \[f = f(E, \vec{L}) \]: ie., the DF can only depend on the magnitude of the angular momentum vector, not on its direction.

Contrary to what one might naively expect, this is not true in general. In fact, as beautifully illustrated by Lynden-Bell (1960), a spherical system can rotate without being oblate.
If the system is spherically symmetric in all its properties, then $f = f(E, L^2)$ rather than $f = f(E, \vec{L})$: i.e., the DF can only depend on the magnitude of the angular momentum vector, not on its direction.

Contrary to what one might naively expect, this is not true in general. In fact, as beautifully illustrated by Lynden-Bell (1960), a spherical system can rotate without being oblate.

Consider a spherical system with $f(E, \vec{L}) = f(E, -\vec{L})$. In such a system, for each star S on an orbit \mathcal{O}, there is exactly one star on the same orbit \mathcal{O} but counterrotating with respect to S. Consequently, this system is perfectly spherically symmetric in all its properties.
If the system is spherically symmetric in all its properties, then
\[f = f(E, L^2) \] rather than \[f = f(E, \vec{L}) \]: ie., the DF can only depend on the magnitude of the angular momentum vector, not on its direction.

Contrary to what one might naively expect, this is not true in general. In fact, as beautifully illustrated by Lynden-Bell (1960), a spherical system can rotate without being oblate.

Consider a spherical system with \(f(E, \vec{L}) = f(E, -\vec{L}) \). In such a system, for each star \(S \) on a orbit \(\mathcal{O} \), there is exactly one star on the same orbit \(\mathcal{O} \) but counterrotating with respect to \(S \). Consequently, this system is perfectly spherically symmetric in all its properties.

Now consider all stars in the \(z = 0 \)-plane, and revert the sense of all those stars with \(L_z < 0 \). Clearly this does not influence \(\rho(r) \), but it does give the system a net sense of rotation around the \(z \)-axis.

Thus, although a system with \(f = f(E, L^2) \) is not the most general case, systems with \(f = f(E, \vec{L}) \) are rarely considered in galactic dynamics.
An even simpler case to consider is the one in which $f = f(E)$.

Since $E = \Phi(\mathbf{r}) + \frac{1}{2} [v_r^2 + v_\theta^2 + v_\phi^2]$ we have that

$$\langle v_r^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi \, v_r^2 \, f \left(\Phi + \frac{1}{2} [v_r^2 + v_\theta^2 + v_\phi^2] \right)$$

$$\langle v_\theta^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi \, v_\theta^2 \, f \left(\Phi + \frac{1}{2} [v_r^2 + v_\theta^2 + v_\phi^2] \right)$$

$$\langle v_\phi^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi \, v_\phi^2 \, f \left(\Phi + \frac{1}{2} [v_r^2 + v_\theta^2 + v_\phi^2] \right)$$
An even simpler case to consider is the one in which \(f = f(E) \).

Since \(E = \Phi(\vec{r}) + \frac{1}{2} [v_r^2 + v_\theta^2 + v_\phi^2] \) we have that

\[
\langle v_r^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi \; v_r^2 \; f \left(\Phi + \frac{1}{2} [v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

\[
\langle v_\theta^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi \; v_\theta^2 \; f \left(\Phi + \frac{1}{2} [v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

\[
\langle v_\phi^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi \; v_\phi^2 \; f \left(\Phi + \frac{1}{2} [v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

Since these equations differ only in the labelling of one of the variables of integration, it is immediately evident that \(\langle v_r^2 \rangle = \langle v_\theta^2 \rangle = \langle v_\phi^2 \rangle \).
An even simpler case to consider is the one in which \(f = f(E) \).

Since \(E = \Phi(\vec{r}) + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \) we have that

\[
\langle v_r^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi v_r^2 f \left(\Phi + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

\[
\langle v_\theta^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi v_\theta^2 f \left(\Phi + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

\[
\langle v_\phi^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi v_\phi^2 f \left(\Phi + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

Since these equations differ only in the labelling of one of the variables of integration, it is immediately evident that \(\langle v_r^2 \rangle = \langle v_\theta^2 \rangle = \langle v_\phi^2 \rangle \).

Assuming that \(f = f(E) \) is identical to assuming that the system is isotropic.
An even simpler case to consider is the one in which \(f = f(E) \).

Since \(E = \Phi(\vec{r}) + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \) we have that

\[
\langle v_r^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi v_r^2 f \left(\Phi + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

\[
\langle v_\theta^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi v_\theta^2 f \left(\Phi + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

\[
\langle v_\phi^2 \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi v_\phi^2 f \left(\Phi + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

Since these equations differ only in the labelling of one of the variables of integration, it is immediately evident that \(\langle v_r^2 \rangle = \langle v_\theta^2 \rangle = \langle v_\phi^2 \rangle \).

Assuming that \(f = f(E) \) is identical to assuming that the system is isotropic.

Note that from

\[
\langle v_i \rangle = \frac{1}{\rho} \int dv_r dv_\theta dv_\phi v_i f \left(\Phi + \frac{1}{2}[v_r^2 + v_\theta^2 + v_\phi^2] \right)
\]

it is also immediately evident that \(\langle v_r \rangle = \langle v_\theta \rangle = \langle v_\phi \rangle = 0 \). Thus, similar as for a system with \(f = f(E, L^2) \) a system with \(f = f(E) \) has no net sense of rotation.
In what follows we define the relative potential \(\Psi \equiv -\Phi + \Phi_0 \) and relative energy \(\mathcal{E} = -E + \Phi_0 = \Psi - \frac{1}{2}\nu^2 \). In general one chooses \(\Phi_0 \) such that \(f > 0 \) for \(\mathcal{E} > 0 \) and \(f = 0 \) for \(\mathcal{E} \leq 0 \).

Now consider a self-consistent, spherically symmetric system with \(f = f(\mathcal{E}) \). Here self-consistent means that the potential is due to the system itself, i.e.,

\[
\nabla^2 \Psi = -4\pi G \rho = -4\pi G \int f(\mathcal{E}) d^3 \vec{r}
\]

(note the minus sign in the Poisson equation), which can be written as

\[
\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\Psi}{dr} \right) = -16\pi^2 G \int_0^{\Psi} f(\mathcal{E}) \sqrt{2(\Psi - \mathcal{E})} \, d\mathcal{E}
\]
Using that Ψ is a monotonic function of r, so that ρ can be regarded as a function of Ψ, we have

$$\rho(\Psi) = \int f d^3\mathbf{v} = 4\pi \int_0^\Psi f(\mathcal{E}) \sqrt{2(\Psi - \mathcal{E})} d\mathcal{E}$$

differentiating both sides with respect to Ψ yields

$$\frac{1}{\sqrt{8\pi}} \frac{d\rho}{d\Psi} = \int_0^\Psi \frac{f(\mathcal{E}) d\mathcal{E}}{\sqrt{\Psi - \mathcal{E}}}$$

which is an Abel integral equation, whose solution is

$$f(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \frac{d}{d\mathcal{E}} \int_0^\mathcal{E} \frac{d\rho}{d\Psi} \frac{d\Psi}{\sqrt{\mathcal{E} - \Psi}}$$

This is called Eddington’s formula, which may also be written in the form

$$f(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \left[\int_0^\mathcal{E} \frac{d^2\rho}{d\Psi^2} \frac{d\Psi}{\sqrt{\mathcal{E} - \Psi}} + \frac{1}{\sqrt{\mathcal{E}}} \left(\frac{d\rho}{d\Psi} \right)_{\Psi=0} \right]$$
Using Eddington’s formula

\[f(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \frac{d}{d\mathcal{E}} \int_0^{\mathcal{E}} \frac{d\rho}{d\Psi} \frac{d\Psi}{\sqrt{\mathcal{E}-\Psi}} \]

we see that the requirement \(f(\mathcal{E}) \geq 0 \) is identical to the requirement that the function

\[\int_0^{\mathcal{E}} \frac{d\rho}{d\Psi} \frac{d\Psi}{\sqrt{\mathcal{E}-\Psi}} \]

is an increasing function of \(\mathcal{E} \).

If a density distribution \(\rho(r) \) does not satisfy this requirement, then the model obtained by setting the anisotropy parameter \(\beta = 0 \) [i.e., by assuming that \(f = f(\mathcal{E}) \)] and solving the Jeans Equations is unphysical.

There are limits to self-consistent, isotropic, spherical density distributions...
SPHERICAL MODELS: SUMMARY

In its most general form, the DF of a static, spherically symmetric model has the form $f = f(E, \vec{L})$. From the symmetry of individual orbits one can see that one always has to have

$$\langle v_r \rangle = \langle v_\theta \rangle = 0 \quad \langle v_r v_\phi \rangle = \langle v_r v_\theta \rangle = \langle v_\theta v_\phi \rangle = 0$$

This leaves four unknowns: $\langle v_\phi \rangle$, $\langle v_r^2 \rangle$, $\langle v_\theta^2 \rangle$, and $\langle v_\phi^2 \rangle$.
SPHERICAL MODELS: SUMMARY

In its most general form, the DF of a static, spherically symmetric model has the form \(f = f(E, \vec{L}) \). From the symmetry of individual orbits one can see that one always has to have

\[
\langle v_r \rangle = \langle v_\theta \rangle = 0 \quad \langle v_r v_\phi \rangle = \langle v_\theta v_\phi \rangle = \langle v_\phi v_\phi \rangle = 0
\]

This leaves four unknowns: \(\langle v_\phi \rangle, \langle v_r^2 \rangle, \langle v_\theta^2 \rangle \), and \(\langle v_\phi^2 \rangle \)

If one makes the assumption that the system is spherically symmetric in all its properties then \(f(E, \vec{L}) \rightarrow f(E, L^2) \) and

\[
\langle v_\phi \rangle = 0 \quad \langle v_\theta^2 \rangle = \langle v_\phi^2 \rangle
\]
SPHERICAL MODELS: SUMMARY

In its most general form, the DF of a static, spherically symmetric model has the form $f = f(E, \vec{L})$. From the symmetry of individual orbits one can see that one always has to have

$$\langle v_r \rangle = \langle v_\theta \rangle = 0, \quad \langle v_r v_\phi \rangle = \langle v_r v_\theta \rangle = \langle v_\theta v_\phi \rangle = 0$$

This leaves four unknowns: $\langle v_\phi \rangle$, $\langle v_r^2 \rangle$, $\langle v_\theta^2 \rangle$, and $\langle v_\phi^2 \rangle$

If one makes the assumption that the system is spherically symmetric in all its properties then $f(E, \vec{L}) \rightarrow f(E, L^2)$ and

$$\langle v_\phi \rangle = 0, \quad \langle v_\theta^2 \rangle = \langle v_\phi^2 \rangle$$

In this case the only non-trivial Jeans equation is

$$\frac{1}{\rho} \frac{\partial (\rho \langle v_r^2 \rangle)}{\partial r} + 2 \frac{\beta \langle v_r^2 \rangle}{r} = - \frac{d\Phi}{dr}$$

with the anisotropy parameter defined by

$$\beta(r) = 1 - \frac{\langle v_r^2 \rangle(r)}{\langle v_r^2 \rangle(r)}$$
SPHERICAL MODELS: SUMMARY

Many different models, with different orbital anisotropies, can correspond to the same density distribution. Examples of models are:

- \(f(E, L^2) = f(E) \) \hspace{1cm} \text{isotropic model, i.e., } \beta = 0
- \(f(E, L^2) = g(E) \delta(L) \) \hspace{1cm} \text{radial orbits only, i.e. } \beta = 1
- \(f(E, L^2) = g(E) \delta[L - L_c(E)] \) \hspace{1cm} \text{circular orbits only, i.e., } \beta = -\infty
- \(f(E, L^2) = g(E) L^{-2\beta} \) \hspace{1cm} \text{constant anisotropy, i.e. } \beta(r) = \beta
- \(f(E, L^2) = g(E) h(L) \) \hspace{1cm} \text{anisotropy depends on circularity function } h
- \(f(E, L^2) = f(E + L^2 / 2r_a^2) \) \hspace{1cm} \text{center isotropic, outside radial}

Osipkov-Merritt models
Next we consider \textit{axisymmetric} systems. If we only consider systems for which most orbits are regular, then the strong Jeans Theorem states that, in the most general case, \(f = f(E, \, L_z, \, I_3) \).
Next we consider axisymmetric systems. If we only consider systems for which most orbits are regular, then the strong Jeans Theorem states that, in the most general case, \(f = f(E, L_z, I_3) \).

From the symmetries of the individual orbits, it is evident that in this case

\[
\langle v_R \rangle = \langle v_z \rangle = 0 \quad \langle v_R v_\phi \rangle = \langle v_z v_\phi \rangle = 0
\]

Note that, in this case, \(\langle v_R v_z \rangle \neq 0 \), which is immediately evident when considering a thin tube orbit. In other words, in general the velocity ellipsoid is not aligned with \((R, \phi, z)\).
Next we consider axisymmetric systems. If we only consider systems for which most orbits are regular, then the strong Jeans Theorem states that, in the most general case, \(f = f(E, L_z, I_3) \).

From the symmetries of the individual orbits, it is evident that in this case

\[
\langle v_R \rangle = \langle v_z \rangle = 0 \quad \langle v_R v_\phi \rangle = \langle v_z v_\phi \rangle = 0
\]

Note that, in this case, \(\langle v_R v_z \rangle \neq 0 \), which is immediately evident when considering a thin tube orbit. In other words, in general the velocity ellipsoid is not aligned with \((R, \phi, z)\).

Thus, in a three-integral model with \(f = f(E, L_z, I_3) \) the stress tensor contains four unknowns: \(\langle v_R^2 \rangle, \langle v_\phi^2 \rangle, \langle v_z^2 \rangle \), and \(\langle v_R v_z \rangle \).
Next we consider axisymmetric systems. If we only consider systems for which most orbits are regular, then the strong Jeans Theorem states that, in the most general case, \(f = f(E, L_z, I_3) \).

From the symmetries of the individual orbits, it is evident that in this case

\[
\langle v_R \rangle = \langle v_z \rangle = 0 \quad \langle v_R v_\phi \rangle = \langle v_z v_\phi \rangle = 0
\]

Note that, in this case, \(\langle v_R v_z \rangle \neq 0 \), which is immediately evident when considering a thin tube orbit. In other words, in general the velocity ellipsoid is not aligned with \((R, \phi, z)\).

Thus, in a three-integral model with \(f = f(E, L_z, I_3) \) the stress tensor contains four unknowns: \(\langle v^2_R \rangle, \langle v^2_\phi \rangle, \langle v^2_z \rangle \), and \(\langle v_R v_z \rangle \).

In this case there are two non-trivial Jeans Equations:

\[
\frac{\partial (\rho \langle v^2_R \rangle)}{\partial R} + \frac{\partial (\rho \langle v_R v_z \rangle)}{\partial z} + \rho \left[\frac{\langle v^2_R \rangle - \langle v^2_\phi \rangle}{R} + \frac{\partial \Phi}{\partial R} \right] = 0
\]

\[
\frac{\partial (\rho \langle v_R v_z \rangle)}{\partial R} + \frac{\partial (\rho \langle v^2_z \rangle)}{\partial z} + \rho \left[\frac{\langle v_R v_z \rangle}{R} + \frac{\partial \Phi}{\partial z} \right] = 0
\]

which clearly doesn’t suffice to solve for the four unknowns.
To make progress, one therefore often makes the additional assumption that the DF has the two-integral form $f = f(E, L_z)$.
To make progress, one therefore often makes the additional assumption that the DF has the two-integral form $f = f(E, L_z)$.

It is not that difficult to show that, under these conditions,

$$f = f(E, L_z) \implies \langle v_R^2 \rangle = \langle v_z^2 \rangle \text{ and } \langle v_R v_z \rangle = 0$$
To make progress, one therefore often makes the additional assumption that the DF has the **two-integral form** \(f = f(E, L_z) \).

It is not that difficult to show that, under these conditions,

\[
 f = f(E, L_z) \quad \Rightarrow \quad \langle v_R^2 \rangle = \langle v_z^2 \rangle \text{ and } \langle v_R v_z \rangle = 0
\]

Now we have two unknowns left, \(\langle v_R^2 \rangle \) and \(\langle v_\phi^2 \rangle \), and the Jeans equations reduce to

\[
 \frac{\partial (\rho \langle v_R^2 \rangle)}{\partial R} + \rho \left(\frac{\langle v_R^2 \rangle - \langle v_\phi^2 \rangle}{R} + \frac{\partial \Phi}{\partial R} \right) = 0
\]

\[
 \frac{\partial (\rho \langle v_z^2 \rangle)}{\partial z} + \rho \frac{\partial \Phi}{\partial z} = 0
\]

which can be solved. Note, however, that the Jeans equations provide no information regarding how \(\langle v_\phi^2 \rangle \) splits in streaming and random motions.

In practice one often follows Satoh (1980), and writes that

\[\langle v_\phi \rangle^2 = k \left[\langle v_\phi^2 \rangle - \langle v_R^2 \rangle \right].\]

Here \(k \) is a free parameter, and the model is **isotropic** for \(k = 1 \).
Given a density distribution \(\rho(R, z) \), one can calculate the corresponding \(f_{+}(\varepsilon, L_z) \) using a complex contour integral equation (due to Hunter & Qian 1993) that is the equivalent of the Eddington’s formula for spherical systems.

\[
\rho = \frac{2\pi}{R} \int_0^\Psi d\varepsilon \int_{L_z < 2(\Psi - \varepsilon)R^2} f(\varepsilon, L_z) dL_z
= \frac{2\pi}{R} \int_0^\Psi d\varepsilon \int_0^{R\sqrt{2(\Psi - \varepsilon)}} [f(\varepsilon, L_z) + f(\varepsilon, -L_z)] dL_z
= \frac{4\pi}{R} \int_0^\Psi d\varepsilon \int_0^{R\sqrt{2(\Psi - \varepsilon)}} f_{+}(\varepsilon, L_z) dL_z
\]

where we have defined \(f_{+} \) as the part of the DF that is even in \(L_z \), i.e.,

\[
f(\varepsilon, L_z) = f_{+}(\varepsilon, L_z) + f_{-}(\varepsilon, L_z)
\]

\[
f_{\pm}(\varepsilon, L_z) \equiv \frac{1}{2} [f(\varepsilon, L_z) \pm f(\varepsilon, -L_z)]
\]

We thus see that the density depends only on the even part of the DF (i.e., the density contributed by a star does not depend on its sense of rotation). This also implies that there are infinitely many DFs \(f(E, L_z) \) that correspond to exactly the same \(\rho(R, z) \), namely all those that only differ in \(f_{-}(\varepsilon, L_z) \).

Given a density distribution \(\rho(R, z) \), one can calculate the corresponding \(f_{+}(\varepsilon, L_z) \) using a complex contour integral equation (due to Hunter & Qian 1993) that is the equivalent of the Eddington’s formula for spherical systems.

The odd part of the DF, \(f_{-}(\varepsilon, L_z) \), specifies the rotational streaming motion.