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Jeans equations in spherical coordinates: (7,0, ¢).
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Upon inspection, these are 3 equations for a total of 9 unknowns.....no closure.

To proceed, it is common to make the following assumptions:

1. System is static — time derivatives vanish

2. Kinematics are also spherical symmetric =& no streaming motions
— mixed 2nd order motions vanish
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Only one Jeans eqg. remains: — o2l 4+ p— =0
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Jeans equations in spherical coordinates: (7,0, ¢).

d(pc?) 2 0P
(o) + P [af — Ug] +p+—=0 One equation with two unknowns....
or r or
o2(r) + o2(r 2
Upon defining the anisotropy parameter B(r) =1 — 9(2)02(T)¢( ) =1- ZZE:;
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The spherical Jeans equation can be written as la(p(vﬁ) + 26@"> = _d_(I)
p Or r dr
which can be solved for any fixed 8
Using that d®/dr = GM (r)/r M(r) = _7”<’UE> dlnp I dIn{v;) +23
this can be written as G |dlnr dlnr

For comparison:

M(r) =

Hydrostatic eq. for collisional fluid pm,G |dlnr  dlnr

kgT(r)r [dlnp N dlnT]




Jeans modeling of spherical systems

For a spherical system the surface brightness X(R) is related to the 3D luminosity
density v(r) acccording to

2]0 I/’f‘d?"
R

Using the Abel transform, we can solve for the inverse relation, and thus obtain the
luminosity density v(r) directly from the surface brightness X(R)

1 [dS dR
" =r ] RVRE =

The stellar mass density then follows from p(r) = Y(r) x v(r), with Y(r) the stellar mass-
to-light ratio



Jeans modeling of spherical systems /\Ve(
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To Observer

Similarly, the line-of-sight velocity dispersion, cp2(R), which can be inferred from spectroscopy,
is related to both internal dynamics and luminosity density according to

vrdr
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Jeans modeling of spherical systems Example

Assume isotropy, B(r)=0. In that case we can use the Abel transform to obtain

(o ]
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and the enclosed mass follows from the Jeans equations

~ r(@?) [dlnv  dIn(v?)
M(r)=-—¢ [dlnr+ dinr

from which one finally obtains the radially dependent mass-to-light ratio

M(r)

T(r) = A [ v(r)r2dr

which can be used to constrain a potential central Black Hole and/or the contribution
of a dark matter halo.

...But any such constraints are ONLY valid under the assumption of isotropy...



Mass-Anisotropy Degenerac 2y 141 d In(v?
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Typically, constraints on the mass profile are degenerate with constraints/
assumptions about the anisotropy profile.

Breaking this degeneracy typically requires going to higher order Jeans equations,

that can predict the kurtosis (or the Gauss-Hermite moment hs) of the line-of-sight
velocity distribution (LOSVD)

van der Marel & Franx (1993)



Radial anisotropy typically results in LOSVDs that are more peaked than a Gaussian (hs > 0)

Azimuthal anisotropy typically results in LOSVDs that are less peaked than a Gaussian (hs < 0)
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van der Marel & Franx (1993)

Making model predictions for hs (and other Gauss-Hermite moments) requires using
higher-order Jeans equations....

At this point it becomes easier to use Schwarschild’s orbit superposition method



RECALL: An integral of motion is a function I (&, U) of the phase-space
coordinates that is constant along all orbits, I.e.,
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Compare this to the CBE for a steady-state (static) system:
Vf—-V®.2 =

Thus the condition for I to be an integral of motion is identical with the
condition for I to be a steady-state solution of the CBE. Hence:
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Thus the condition for I to be an integral of motion is identical with the
condition for I to be a steady-state solution of the CBE. Hence:

Jeans Theorem | Any steady-state solution of the CBE depends on the
phase-space coordinates only through integrals of motion. Any function of
these integrals is a steady-state solution of the CBE.




RECALL: An integral of motion is a function I (&, U) of the phase-space
coordinates that is constant along all orbits, I.e.,

dI __ 98I da; oI dv; __ BI _
dt — O8xz; dt —I_(‘)vz dt = VI V(I) =0

Compare this to the CBE for a steady-state (static) system:
Vf—-V®.2 =

Thus the condition for I to be an integral of motion is identical with the
condition for I to be a steady-state solution of the CBE. Hence:

Jeans Theorem | Any steady-state solution of the CBE depends on the
phase-space coordinates only through integrals of motion. Any function of
these integrals is a steady-state solution of the CBE.

PROOF: Let f be any function of the 7 integrals of motion I, I5, ...I,, then

n
df __ of dI, __
dt_kz_: oI, dt =0

which proofs that f satisfies the CBE.



More useful than the Jeans Theorem is the Strong Jeans Theorem, which is
due to Lynden-Bell (1962).
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Strong Jeans Theorem | The DF of a steady-state system in which almost all

orbits are regular can be written as a function of the independent isolating
integrals of motion, or of the action-integrals.

Note that a regular orbit in a system with . degrees of freedom is uniquely,
and completely, specified by the values of the n isolating integrals of motion
in involution. Thus the DF can be thought of as a function that expresses the
probability for finding a star on each of the phase-space tori.



More useful than the Jeans Theorem is the Strong Jeans Theorem, which is
due to Lynden-Bell (1962).

Strong Jeans Theorem | The DF of a steady-state system in which almost all

orbits are regular can be written as a function of the independent isolating
integrals of motion, or of the action-integrals.

Note that a regular orbit in a system with . degrees of freedom is uniquely,
and completely, specified by the values of the n isolating integrals of motion
in involution. Thus the DF can be thought of as a function that expresses the
probability for finding a star on each of the phase-space tori.

We first consider an application of the Jeans Theorem to Spherical Systems
As we have seen, any orbit in a spherical potential admits four isolating
integrals of motion: F/, L., L,, L..

Therefore, according to the Strong Jeans Theorem, the DF of any'
steady-state spherical system can be expressed as f = f(FE, E)

T except for point masses and uniform spheres, which have five isolating
integrals of motion



If the system is spherically symmetric in all its properties, then

f = f(E, L?) rather than f = f(E, L): ie., the DF can only depend on
the magnitude of the angular momentum vector, not on its direction.
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as beautifully illustrated by Lynden-Bell (1960), a spherical system can rotate
without being oblate.
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for each star S on a orbit O, there is exactly one star on the same orbit O
but counterrotating with respect to .S. Consequently, this system is perfectly
spherically symmetric in all its properties.



If the system is spherically symmetric in all its properties, then
f = f(E, L?) rather than f = f(E, L): ie., the DF can only depend on
the magnitude of the angular momentum vector, not on its direction.

Contrary to what one might naively expect, this is not true in general. In fact,
as beautifully illustrated by Lynden-Bell (1960), a spherical system can rotate
without being oblate.

Consider a spherical system with f(E, L) = f(E, —L). In such a system,
for each star S on a orbit O, there is exactly one star on the same orbit O
but counterrotating with respect to .S. Consequently, this system is perfectly
spherically symmetric in all its properties.

Now consider all stars in the z = 0-plane, and revert the sense of all those
stars with L, < 0. Clearly this does not influence p(7), but it does give the
system a net sense of rotation around the z-axis.

Thus, although a system with f = f(FE, L?) is not the most general case,
systems with f = f(FE, 1_':) are rarely considered in galactic dynamics.



An even simpler case to consider is the one in which f = f(FE).

Since E = ®(7) + ;[v2 + v} + v}] we have that
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(v3) = %f dv,dvedvy vE f (<I> + [v2 4+ v3 + ’qus])
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Since these equations differ only in the labelling of one of the variables of
integration, it is immediately evident that (v2) = (vg) = (v3).

Assuming that f = f(F) is identical to assuming that the system is isotropic

Note that from
(v;) = %f dv,.dvedvy v; f (<I> + 2[vZ +v2 + vfb])

it is also immediately evident that (v,.) = (vg) = (v4) = 0. Thus, similar

as for a system with f = f(E, L?) a system with f = f(E) has no net
sense of rotation.




In what follows we define the relative potential ¥ = —® + ®( and relative

energy £ = —FE + &, = ¥ — 202, In general one chooses ®, such that
2

f>0for€ >0and f =0for£ <0

Now consider a self-consistent, spherically symmetric system with
f = f(&). Here self-consistent means that the potential is due to the
system itself, i.e.,

V20 = —4nGp = —4nG [ f(€)d?*T

(note the minus sign in the Poisson equation), which can be written as

14 (;24%) _ 16720 [ £(£) \/2(T — E) dE
0




Using that ¥ is a monotonic function of r, so that p can be regarded as a
function of ¥, we have

p(¥) = [ £0°5 = am | 1(€)\/2(T — E)e

differentiating both sides with respect to ¥ yields

1 ff(é' d&
\/_wd‘I’ VUI-—-E

which is an Abel integral equation, whose solution is

E
f(g)_\/_lﬂad g \/L\p

This is called Eddington’s formula, which may also be written in the form

E
I | d? dw¥ 1 d
.f(g) - \/§71-2 |:0 d\I,pz /—8—\11 + \/E (dé)\IJ:O:|




Using Eddington’s formula

E
f(g)_\/_lﬂ.zd g o d\P

we see that the requirement f(£) > 0 is identical to the the requirement
that the function

£

f dp dW¥

0 d¥ /E—W¥
is an increasing function of £.

If a density distribution p(7) does not satisfy this requirement, then the
model obtained by setting the anisotropy parameter 3 = O [i.e., by
assuming that f = f(&)] and solving the Jeans Equations is unphysical.

There are limits to self-consistent, isotropic, spherical density distributions...



SPHERICAL MODELS: SUMMARY

In its most general form, the DF of a static, spherically symmetric model has

the form f = f(FE, 1_':) From the symmetry of individual orbits one can see
that one always has to have

(vr) = (vg) =0 (vrvg) = (Vrve) = (Vovyp) =0

This leaves four unknowns: (fv¢), (vf), (’03), and (v?,Q
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SPHERICAL MODELS: SUMMARY

In its most general form, the DF of a static, spherically symmetric model has

the form f = f(E, L). From the symmetry of individual orbits one can see
that one always has to have

(vr) = (vg) =0 (vrvg) = (Vrve) = (Vovyp) =0

This leaves four unknowns: (fv¢), (vf), (’Ug), and (v?b)

If one makes the assumption that the system is spherically symmetric in all
its properties then f(FE, 1_';) — f(E, L?) and

(vp) =0 (vg) = (vg)

In this case the only non-trivial Jeans equation is

Op(v1)) 4 9BwE) _ _de

1
P dr

with the anisotropy parameter defined by

w3 (r)
Br) =1 - 5w




SPHERICAL MODELS: SUMMARY

Many different models, with different orbital anisotropies, can correspond to
the same density distribution. Examples of models are:

f(E,L?) = f(E) isotropic model, i.e., 3 = 0
f(E,L?) = g(E)é(L) radial orbits only, i.e. 3 = 1
f(E,L?) = g(E)6[L — L.(E)] circular orbits only, i.e., 3 = —o0
f(E,L?) = g(E)L—2P constant anisotropy, i.e. 3(r) = 3
f(E,L?) = g(E)h(L) anisotropy depends on circularity function h
f(E,L?*) = f(E + L?/2r2) center isotropic, outside radial

\



Next we consider axisymmetric systems. If we only consider systems for
which most orbits are regular, then the strong Jeans Theorem states that, in
the most general case, f = f(E, L., I3).
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From the symmetries of the individual orbits, it is evident that in this case

(vR) = (vz) =0 (VRVg) = (Vzvg) = 0

Note that, in this case, (vrv,) # 0, which is immediately evident when
considering a thin tube orbit. In other words, in general the velocity ellipsoid
is not aligned with (R, ¢, z).
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Thus, in a three-integral model with f = f(FE, L., I3) the stress tensor
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contains four unknowns: (vg), (v3), (v3), and (VRv:).
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which most orbits are regular, then the strong Jeans Theorem states that, in
the most general case, f = f(E, L., I3).

From the symmetries of the individual orbits, it is evident that in this case

(vR) = (vz) =0 (VRVg) = (Vzvg) = 0

Note that, in this case, (vrv,) # 0, which is immediately evident when
considering a thin tube orbit. In other words, in general the velocity ellipsoid
is not aligned with (R, ¢, z).

Thus, in a three-integral model with f = f(FE, L., I3) the stress tensor
contains four unknowns: (v%), (v3), (vZ), and (VRv:).

In this case there are two non-trivial Jeans Equations:

8(P<”R>) _|_8(P<'UR'UZ>) _|_p <vR) <v¢> _|_ }:0

a(p<g;vz>> IRLIGICA) <v%vz> n a] — 0

which clearly doesn’t suffice to solve for the four unknowns.



To make progress, one therefore often makes the additional assumption that
the DF has the two-integral form f = f(E, L,).
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To make progress, one therefore often makes the additional assumption that
the DF has the two-integral form f = f(E, L,).

It is not that difficult to show that, under these conditions,

J= f(Ea Lz) — (’012%> . (’Uz> and (’UR’UZ> =0

Now we have two unknowns left, (v%) and (vi), and the Jeans equations
reduce to

8(P<’vz>) _I_ pa_‘I’ —0

which can be solved. Note, however, that the Jeans equations provide no
information regarding how <v<2p> splits in streaming and random motions.

In practice one often follows Satoh (1980), and writes that
(vp)2 =k [(vfb) = (fsz)] . Here k is a free parameter, and the model is

isotropic for k = 1.
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where we have defined f_|_ as the part of the DF thatis evenin L, i.e.,

f(€, L)
f:l:(ga Lz)

f+(8aLz) +.f—(8aLz)
% [f(ga Lz) + f(ga _Lz)]

We thus see that the density depends only on the even part of the DF (i.e., the
density contributed by a star does not depend on its sense of rotation). This
also implies that there are infinitely many DFs f(E, L) that correspond to

exactly the same p( R, z), namely all those that only differin f_ (€, L).

Given a density distribution p(R,z), one can calculate the corresponding

f+(e,L-) using a complex contour integral equation (due to Hunter & Qian 1993)
that is the equivalent of the Eddington’s formula for spherical systems.

The odd part of the DF, f.(c,L.), specifies the rotational streaming motion.
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