LECTURE 18

Part IV: Collisionless Dynamics

20: Jeans Equations and Dynamical Modeling 199
21: The Jeans Theorem 208
22: Virial Theorem \& Gravothermal Catastrophe 212
23: Collisions \& Encounters of Collisionless Systems 217
24: Integrability \& Relaxation 227

11	Tue 11/07	Collisionless Dynamics: Jeans equations \& dynamical modeling
11	Thu 11/09	Collisionless Dynamics: virial theorem \& gravothermal catastrophe
12	Tue 11/14	Collisionless Dynamics: collisions \& encounters

Jeans Equations and Dynamical Modelling

Collisionless dynamics is governed by the Collisionless Boltmann Equation (CBE)

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial f}{\partial t}+v_{i} \frac{\partial f}{\partial x_{i}}-\frac{\partial \Phi}{\partial x_{i}} \frac{\partial f}{\partial v_{i}}=0
$$

By taking velocity moments of the CBE, we end up with the momentum equations:

$$
\frac{\partial u_{i}}{\partial t}+u_{i} \frac{\partial u_{j}}{\partial x_{i}}=\frac{1}{\rho} \frac{\partial \hat{\sigma}_{i j}}{\partial x_{i}}-\frac{\partial \Phi}{\partial x_{i}}
$$

These are called the Jeans equations, and are basically exactly the same as the Euler equations or the Navier-Stokes equations, except that the stress tensor is different

$$
\begin{aligned}
\text { Stress Tensor: } & \hat{\sigma}_{i j}=-\rho\left\langle w_{i} w_{j}\right\rangle=\rho\left\langle v_{i}\right\rangle\left\langle v_{j}\right\rangle-\rho\left\langle v_{i} v_{j}\right\rangle \\
\text { Velocity Dispersion Tensor: } & \sigma_{i j}^{2}=\left\langle v_{i} v_{j}\right\rangle-\left\langle v_{i}\right\rangle\left\langle v_{j}\right\rangle=-\frac{\hat{\sigma}_{i j}}{\rho}
\end{aligned}
$$

Note that, for consistency with most literature on galactic dynamics, we write $\left\langle v_{i}\right\rangle$ rather than u_{i}

The Issue of Closure:

For a collisional fluid, we have that $\hat{\sigma}_{i j}=-\rho \sigma_{i j}^{2}=-P \delta_{i j}+\tau_{i j}$
with the deviatoric stress tensor depending on kinetic and bulk viscocity.

Using the equation of state $\mathrm{P}=\mathrm{P}(\rho, \mathrm{T})$ and constitutive equations for the transport coefficients $\mu=\mu(\mathrm{T})$ and $\eta=\eta(\mathrm{T})$ we achieve closure: \#variables = \#equations

For a collisionless fluid, no constitutive equations or equation of state exist... Hence, the stress tensor, which is manifest symmetric, has 6 unknowns and the Jeans equations (together with continuity equation) does not form a closed set

Adding higher-order moment equations of the CBE (i.e., equivalent of energy equation) does not help; although this adds equations, it adds even more unknowns such as $\left\langle v_{i} v_{j} v_{k}\right\rangle$, etc

The set of CBE moment equations never closes...

The Issue of Closure:

The velocity dispersion tensor is a local quantity: $\sigma_{i j}^{2}=\sigma_{i j}^{2}(\vec{x})$

At each location, it can be diagonalized to the local velocity ellipsoid, whose principal axes are defined by the orthogonal eigenvectors, with corresponding eigenvalues $\sigma_{i}{ }^{2}=\sigma_{i i}{ }^{2}$

These represent the anisotropic pressure-like forces that counteract the gravitational force
In general, we should expect $\sigma_{1}{ }^{2} \neq \sigma_{3}{ }^{2} \neq \sigma_{3}{ }^{2}$, which implies that the system will be triaxial

In order to be able to solve the Jeans equations (i.e., to achieve closure), it is common to impose certain symmetries. A typical example is to assume that the system is isotropic, in which case $\sigma_{1}{ }^{2}=\sigma_{3}{ }^{2}=\sigma_{3}{ }^{2}$: the stress tensor in that case has only one unknown and the Jeans equations are closed.

Jeans equations in cylindrical coordinates: $\quad(R, \phi, z)$

$$
\begin{aligned}
& \frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial f}{\partial t}+\dot{R} \frac{\partial f}{\partial R}+\dot{\phi} \frac{\partial f}{\partial \phi}+\dot{z} \frac{\partial f}{\partial z}+\dot{v}_{R} \frac{\partial f}{\partial v_{R}}+\dot{v}_{\phi} \frac{\partial f}{\partial v_{\phi}}+\dot{v}_{z} \frac{\partial f}{\partial v_{z}} \\
& \dot{v}_{R}=-\frac{\partial \Phi}{\partial R}+\frac{v_{\phi}^{2}}{R} \\
& \dot{v}_{\phi}=-\frac{1}{R} \frac{\partial \Phi}{\partial R}+\frac{v_{R} v_{\phi}}{R} \quad \text { see lecture notes } \\
& \dot{v}_{z}=-\frac{\partial \Phi}{\partial z}
\end{aligned}
$$

$$
\frac{\partial f}{\partial t}+v_{R} \frac{\partial f}{\partial R}+\frac{v_{\phi}}{R} \frac{\partial f}{\partial \phi}+v_{z} \frac{\partial f}{\partial z}+\left[\frac{v_{\phi}^{2}}{R}-\frac{\partial \Phi}{\partial R}\right] \frac{\partial f}{\partial v_{R}}-\frac{1}{R}\left[v_{R} v_{\phi}+\frac{\partial \Phi}{\partial \phi}\right] \frac{\partial f}{\partial v_{\phi}}-\frac{\partial \Phi}{\partial z} \frac{\partial f}{\partial v_{z}}=0
$$

The Jeans equations follow from multiplication with v_{R}, v_{ϕ}, and v_{z} and integrating over velocity space. Note that the cylindrical symmetry requires that all derivatives with respect to ϕ vanish. The remaining terms are:

$$
\begin{aligned}
\int v_{R} \frac{\partial f}{\partial t} \mathrm{~d}^{3} \vec{v} & =\frac{\partial}{\partial t} \int v_{R} f \mathrm{~d}^{3} \vec{v}=\frac{\partial\left(\rho\left\langle v_{R}\right\rangle\right)}{\partial t} \\
\int v_{R}^{2} \frac{\partial f}{\partial R} \mathrm{~d}^{3} \vec{v} & =\frac{\partial}{\partial R} \int v_{R}^{2} f \mathrm{~d}^{3} \vec{v}=\frac{\partial\left(\rho\left\langle v_{R}^{2}\right\rangle\right)}{\partial R} \\
\int v_{R} v_{z} \frac{\partial f}{\partial z} \mathrm{~d}^{3} \vec{v} & =\frac{\partial}{\partial z} \int v_{R} v_{z} f \mathrm{~d}^{3} \vec{v}=\frac{\partial\left(\rho\left\langle v_{R} v_{z}\right\rangle\right)}{\partial z} \\
\int \frac{v_{R} v_{\phi}^{2}}{R} \frac{\partial f}{\partial v_{R}} \mathrm{~d}^{3} \vec{v} & =\frac{1}{R}\left[\int \frac{\partial\left(v_{R} v_{\phi}^{2} f\right)}{\partial v_{R}} \mathrm{~d}^{3} \vec{v}-\int \frac{\partial\left(v_{R} v_{\phi}^{2}\right)}{\partial v_{R}} f \mathrm{~d}^{3} \vec{v}\right]=-\rho \frac{\left\langle v_{\phi}^{2}\right\rangle}{R} \\
\int v_{R} \frac{\partial \Phi}{\partial R} \frac{\partial f}{\partial v_{R}} \mathrm{~d}^{3} \vec{v} & =\frac{\partial \Phi}{\partial R}\left[\int \frac{\partial\left(v_{R} f\right)}{\partial v_{R}} \mathrm{~d}^{3} \vec{v}-\int \frac{\partial v_{R}}{\partial v_{R}} f \mathrm{~d}^{3} \vec{v}\right]=-\rho \frac{\partial \Phi}{\partial R} \\
\int \frac{v_{R}^{2} v_{\phi}}{R} \frac{\partial f}{\partial v_{\phi}} \mathrm{d}^{3} \vec{v} & =\frac{1}{R}\left[\int \frac{\partial\left(v_{R}^{2} v_{\phi} f\right)}{\partial v_{\phi}} \mathrm{d}^{3} \vec{v}-\int \frac{\partial\left(v_{R}^{2} v_{\phi}\right)}{\partial v_{\phi}} f \mathrm{~d}^{3} \vec{v}\right]=-\rho \frac{\left\langle v_{R}^{2}\right\rangle}{R} \\
\int v_{R} \frac{\partial \Phi}{\partial z} \frac{\partial f}{\partial v_{z}} \mathrm{~d}^{3} \vec{v} & =\frac{\partial \Phi}{\partial z}\left[\int \frac{\partial\left(v_{R} f\right)}{\partial v_{z}} \mathrm{~d}^{3} \vec{v}-\int \frac{\partial v_{z}}{\partial v_{R}} f \mathrm{~d}^{3} \vec{v}\right]=0
\end{aligned}
$$

Jeans equations in cylindrical coordinates: $\quad(R, \phi, z)$

$$
\begin{aligned}
& \frac{\partial\left(\rho\left\langle v_{R}\right\rangle\right)}{\partial t}+\frac{\partial\left(\rho\left\langle v_{R}^{2}\right\rangle\right)}{\partial R}+\frac{\partial\left(\rho\left\langle v_{R} v_{z}\right\rangle\right)}{\partial z}+\rho\left[\frac{\left\langle v_{R}^{2}\right\rangle-\left\langle v_{\phi}^{2}\right\rangle}{R}+\frac{\partial \Phi}{\partial R}\right]=0 \\
& \frac{\partial\left(\rho\left\langle v_{\phi}\right\rangle\right)}{\partial t}+\frac{\partial\left(\rho\left\langle v_{R} v_{\phi}\right\rangle\right)}{\partial R}+\frac{\partial\left(\rho\left\langle v_{\phi} v_{z}\right\rangle\right)}{\partial z}+2 \rho \frac{\left\langle v_{R} v_{\phi}\right\rangle}{R}=0 \\
& \frac{\partial\left(\rho\left\langle v_{z}\right\rangle\right)}{\partial t}+\frac{\partial\left(\rho\left\langle v_{R} v_{z}\right\rangle\right)}{\partial R}+\frac{\partial\left(\rho\left\langle v_{z}^{2}\right\rangle\right)}{\partial z}+\rho\left[\frac{\left\langle v_{R} v_{z}\right\rangle}{R}+\frac{\partial \Phi}{\partial z}\right]=0
\end{aligned}
$$

Upon inspection, these are 3 equations for a total of 9 unknowns.....no closure.

To proceed, it is common to make the following assumptions:
1 System is static \Rightarrow the $\frac{\partial}{\partial t}$-terms are zero and $\left\langle v_{R}\right\rangle=\left\langle v_{z}\right\rangle=0$.
2 Velocity dispersion tensor is diagonal $\Rightarrow\left\langle v_{i} v_{j}\right\rangle=0$ (if $i \neq j$).
3 Meridional isotropy $\Rightarrow\left\langle v_{R}^{2}\right\rangle=\left\langle v_{z}^{2}\right\rangle=\sigma_{R}^{2}=\sigma_{z}^{2} \equiv \sigma^{2}$.

Jeans equations in cylindrical coordinates: $\quad(R, \phi, z)$

The Jeans equations now reduce to:

$$
\begin{aligned}
& \frac{\partial\left(\rho \sigma^{2}\right)}{\partial R}+\rho\left[\frac{\sigma^{2}-\left\langle v_{\phi}^{2}\right\rangle}{R}+\frac{\partial \Phi}{\partial R}\right]=0 \\
& \frac{\partial\left(\rho \sigma^{2}\right)}{\partial z}+\rho \frac{\partial \Phi}{\partial z}=0
\end{aligned}
$$

2 equations with 2 unknowns....closure.

Jeans Modelling:

Observations:	
surface brightness	$\Sigma(\mathbf{x}, \mathbf{y})$
rotation velocity	$\operatorname{Vrot}_{\operatorname{rot}}(\mathbf{x} \mathbf{y})$
velocity dispersion	$\sigma_{\operatorname{los}(\mathbf{x}, \mathbf{y})}$

Assumptions

inclination angle mass-to-light ratio dark matter distribution central black hole mass

$$
\begin{array}{cllllll}
\Sigma(\mathbf{x}, \mathbf{y}) & \rightarrow & \rho(\mathrm{R}, \mathrm{z}) & \rightarrow & \boldsymbol{\Phi}(\mathrm{R}, \mathrm{z}) & \rightarrow & \sigma(\mathrm{R}, \mathrm{z}) \\
& \rightarrow & \rightarrow & \\
\text { deprojection } & & \text { Poisson eq. } & \text { 2nd Jeans eq. } & \text { 1st Jeans eq. } \\
\text { M/L ratio }
\end{array}
$$

Jeans equations in cylindrical coordinates: $\quad(R, \phi, z)$

Note that $\left\langle\mathrm{v}_{\phi^{2}}\right\rangle=\left\langle\mathrm{v}_{\phi}\right\rangle^{2}+\sigma_{\phi^{2}}$; we still don't know how the rms motion in the azimuthal direction splits in bulk motion (rotation) and random motion (dispersion)

In practice, one often follows Satoh (1980) and writes $\left\langle v_{\phi}\right\rangle^{2}=k\left[\left\langle v_{\phi}{ }^{2}\right\rangle-\left\langle V_{R^{2}}\right\rangle\right]$ with k a free parameter.

Once you pick a value for k, the full dynamics are specified: next step is to project on the sky and compare to the observed $\mathrm{V}_{\text {rot }}(\mathbf{x}, \mathbf{y})$ and $\sigma_{\mathrm{los}}(\mathbf{x}, \mathbf{y})$. Use goodness-of-fit to find best fit values for inclination angle, mass-to-light ratio, Мвн, and dark matter halo...

van den Bosch et al. 1998,
Cretton \& van den Bosch 1999

Jeans Modelling:

$$
\begin{aligned}
& k=1 \\
& i=90^{\circ}
\end{aligned}
$$

Non-zero BH seems to be required, but rms-velocity poorly fit.

Too many assumptions made....
Even if a Jeans model exists that can fit the data, there is not guarantee that $f \geq 0 \ldots$

Robust `detection’ of BH mass requires more general, Schwarzschild orbit modelling
van den Bosch et al. 1998,
Cretton \& van den Bosch 1999

