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Jeans Equations and Dynamical Modelling

Collisionless dynamics is governed by the Collisionless Boltmann Equation (CBE)
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By taking velocity moments of the CBE, we end up with the momentum equations:
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These are called the Jeans equations, and are basically exactly the same as the
Euler equations or the Navier-Stokes equations, except that the stress tensor is different

Stress Tensor: 0ij = —p <wz’wj> = p(vs) (Uj> - P(Uz'vj>

Velocity Dispersion Tensor: 05 = (viv;) — (v;) (v;) = ;

Note that, for consistency with most literature on galactic dynamics,
we write <v;> rather than u;



The Issue of Closure:

For a collisional fluid, we have that &;; = —po;; = —Pd;; + 7

with the deviatoric stress tensor depending on kinetic and bulk viscocity.

Using the equation of state P=P(p,T) and constitutive equations for the transport
coefficients p=p(T) and n=n(T) we achieve closure: #variables = #equations

For a collisionless fluid, no constitutive equations or equation of state exist...

Hence, the stress tensor, which is manifest symmetric, has 6 unknowns and
the Jeans equations (together with continuity equation) does not form a closed set

Adding higher-order moment equations of the CBE (i.e., equivalent of energy equation)
does not help; although this adds equations, it adds even more unknowns such as
<v; Vj x>, etc

The set of CBE moment equations never closes...




The Issue of Closure:

The velocity dispersion tensor is a local quantity: o7, = o7;(Z)
At each location, it can be diagonalized to the local velocity ellipsoid, whose principal
axes are defined by the orthogonal eigenvectors, with corresponding eigenvalues c2=0;

These represent the anisotropic pressure-like forces that counteract the gravitational force

In general, we should expect cg12#032#032, which implies that the system will be triaxial

In order to be able to solve the Jeans equations (i.e., to achieve closure), it is common
to impose certain symmetries. A typical example is to assume that the system is
isotropic, in which case 012=032=03? : the stress tensor in that case has only one

unknown and the Jeans equations are closed.



Jeans equations in cylindrical coordinates: (R, qb, Z)
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Jeans equations in cylindrical coordinates:
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of of
ot T'Ror T Rap T

’U¢(9f+ f+[

of _8@ of
0¢ | Ovy 0z Ov,

%]w 1

% — E !’UR'U¢+

=0

The Jeans equations follow from multiplication with vg, v,4, and v, and integrat-

ing over velocity space.

derivatives with respect to ¢ vanish. The remaining terms are:
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Note that the cylindrical symmetry requires that all




Jeans equations in cylindrical coordinates: (R, gb, Z)
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Upon inspection, these are 3 equations for a total of 9 unknowns.....no closure.

To proceed, it is common to make the following assumptions:

1 System is static = the 2-terms are zero and (vg) = (v,) = 0.

2 Velocity dispersion tensor is diagonal = (v,v;) =0 (if ¢ # j).

2
z

2
z

o2,

3 Meridional isotropy = (v) = (v) = 0% =0



Jeans equations in cylindrical coordinates:

The Jeans equations now reduce to:

Jeans Modelling:

Observations:
surface brightness  Z(x,y)

rotation velocity — Vrot(X,y)
velocity dispersion ocios(X,Y)

Xxy) —  p(R2 -
deprojection Poisson eq.
M/L ratio dark matter

black hole
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2 equations with 2 unknowns....closure.

Assumptions

inclination angle
mass-to-light ratio
dark matter distribution
central black hole mass

®(R,2) - o(R,z) - <Vg2>

2nd Jeans eq. 1st Jeans eq.



Jeans equations in cylindrical coordinates: (R, qb, Z)

X(x,y) — P(R,2) — d(R,2) — o(R,2) — <Vg2>

deprojection Poisson eq. 2nd Jeans eq. 1st Jeans eq.
M/L ratio dark matter
black hole

Note that <v?> = <vy>2 + 042 ; we still don’t know how the rms motion in the azimuthal
direction splits in bulk motion (rotation) and random motion (dispersion)

In practice, one often follows Satoh (1980) and writes <V¢>?2 = K [<Vg?> - <VRZ>]

with k a free parameter.

Once you pick a value for k, the full dynamics are specified: next step is to project on the
sky and compare to the observed viot(X,y) and oios(X,y). Use goodness-of-fit to find best

fit values for inclination angle, mass-to-light ratio, Mg, and dark matter halo...



Example: NGC 4342
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van den Bosch et al. 1998,
Cretton & van den Bosch 1999
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